An effective memetic algorithm for UAV routing and orientation under uncertain navigation environments

Navigation correction is usually frequently required by unmanned aerial vehicles (UAVs), especially under uncertain navigation environments. Although the UAV’s straight flights that connect navigation correction points can constitute a plan of navigation corrections, the underlying attitude orientat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Memetic computing Ročník 13; číslo 2; s. 169 - 183
Hlavní autoři: Xiang, Shang, Wang, Ling, Xing, Lining, Du, Yonghao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Témata:
ISSN:1865-9284, 1865-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Navigation correction is usually frequently required by unmanned aerial vehicles (UAVs), especially under uncertain navigation environments. Although the UAV’s straight flights that connect navigation correction points can constitute a plan of navigation corrections, the underlying attitude orientations of the UAV when flying through the visited points are also required by appropriate steering motions. In this regard, a UAV routing and orientation problem (UAV-ROP) that minimizes the 3D flight distances of the UAV under navigational, steering and uncertain constraints, is introduced and proven NP-hard in this paper. To optimize the layered routing and orientations in the UAV-ROP simultaneously, an effective memetic algorithm is proposed in this paper. In the algorithm, the GA performs the outer loop for optimizing the route and the local search metaheuristic does the inner loop for optimizing the orientations. Also, a globally maintained knowledge base that records high-quality sub-routes is used to accelerate the inner optimization of the memetic algorithm. The highlight in addressing the UAV-ROP in this paper is a layered optimization idea in a memetic algorithm to fit the layered optimization requirements of the problem. Experiments on open-access datasets indicate that, the proposed memetic algorithm shows an excellent overall performance compared with other competitors, which is qualified to give an authenticated reliable route with orientations of the UAV despite uncertain navigation environments.
AbstractList Navigation correction is usually frequently required by unmanned aerial vehicles (UAVs), especially under uncertain navigation environments. Although the UAV’s straight flights that connect navigation correction points can constitute a plan of navigation corrections, the underlying attitude orientations of the UAV when flying through the visited points are also required by appropriate steering motions. In this regard, a UAV routing and orientation problem (UAV-ROP) that minimizes the 3D flight distances of the UAV under navigational, steering and uncertain constraints, is introduced and proven NP-hard in this paper. To optimize the layered routing and orientations in the UAV-ROP simultaneously, an effective memetic algorithm is proposed in this paper. In the algorithm, the GA performs the outer loop for optimizing the route and the local search metaheuristic does the inner loop for optimizing the orientations. Also, a globally maintained knowledge base that records high-quality sub-routes is used to accelerate the inner optimization of the memetic algorithm. The highlight in addressing the UAV-ROP in this paper is a layered optimization idea in a memetic algorithm to fit the layered optimization requirements of the problem. Experiments on open-access datasets indicate that, the proposed memetic algorithm shows an excellent overall performance compared with other competitors, which is qualified to give an authenticated reliable route with orientations of the UAV despite uncertain navigation environments.
Author Du, Yonghao
Xiang, Shang
Xing, Lining
Wang, Ling
Author_xml – sequence: 1
  givenname: Shang
  surname: Xiang
  fullname: Xiang, Shang
  organization: College of Systems Engineering, National University of Defense Technology
– sequence: 2
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  organization: Department of Automation, Tsinghua University
– sequence: 3
  givenname: Lining
  orcidid: 0000-0002-6983-4244
  surname: Xing
  fullname: Xing, Lining
  email: xinglining@gmail.com
  organization: College of Systems Engineering, National University of Defense Technology, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology
– sequence: 4
  givenname: Yonghao
  surname: Du
  fullname: Du, Yonghao
  organization: College of Systems Engineering, National University of Defense Technology
BookMark eNp9kMtOAyEUhompibX2BVyRuB7lMhdYNo23xMSNdUsol5GmAxVoE99edIwmLsoCSM7_nQPfOZj44A0AlxhdY4S6m4QJ4bRCBFcIUVpX_ARMMWubihNOJr93Vp-BeUobVBYlHavxFNiFh8Zao7I7GDiYwWSnoNz2Ibr8NkAbIlwtXmEM--x8D6XXsJSMzzK74OHeaxPLrkzM0nno5cH1Y8n4g4vBDyWbLsCpldtk5j_nDKzubl-WD9XT8_3jcvFUKYp5rlpL1kbJRvNaSk0sxgxx3UrVqm6NUS0116xRlpFGd2Styp8Yt7XlhtUtxpLOwNXYdxfD-96kLDZhH30ZKUhDW4Z515CSImNKxZBSNFbsohtk_BAYiS-lYlQqilLxrVTwArF_kHKjhByl2x5H6YimMsf3Jv696gj1CWYtjtE
CitedBy_id crossref_primary_10_1007_s11227_022_04886_6
crossref_primary_10_1111_itor_13154
crossref_primary_10_3390_drones7070448
crossref_primary_10_3390_smartcities8020049
crossref_primary_10_1016_j_knosys_2024_112569
crossref_primary_10_1109_ACCESS_2023_3262160
crossref_primary_10_1016_j_knosys_2022_109031
crossref_primary_10_1016_j_tre_2022_102967
crossref_primary_10_1007_s12293_022_00353_0
crossref_primary_10_1016_j_iot_2023_100683
crossref_primary_10_1109_TETCI_2023_3234564
crossref_primary_10_1007_s10586_024_04761_4
crossref_primary_10_1371_journal_pone_0316431
Cites_doi 10.1007/s12293-019-00291-4
10.1016/j.trpro.2016.02.007
10.1016/j.cie.2019.05.038
10.1016/j.endm.2018.01.008
10.1109/TASE.2018.2867614
10.1016/j.omega.2018.01.001
10.1016/j.adhoc.2017.09.005
10.2307/2372560
10.1109/LCOMM.2016.2626293
10.1007/s11042-018-5739-5
10.1007/978-3-319-64027-3_23
10.1007/s10845-014-0871-1
10.1109/TEVC.2009.2033578
10.1007/978-3-030-27541-9_21
10.1007/s10846-018-0961-y
10.1007/s12293-020-00304-7
10.1109/TVT.2016.2623666
10.1016/j.cie.2018.05.013
10.1016/j.ejor.2010.03.045
10.1016/j.ejor.2016.04.059
10.1109/LWC.2018.2880467
10.1007/s12293-015-0153-2
10.1016/j.cor.2017.04.011
10.1007/s11432-018-9576-x
10.1287/ijoc.1060.0186
10.1109/TCYB.2019.2932996
10.1109/TII.2012.2198665
10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
10.1016/j.cor.2017.09.013
10.1016/0377-2217(94)00289-4
10.1016/j.cie.2005.01.018
10.1016/j.jclepro.2019.03.185
10.1007/s12293-016-0187-0
10.1007/s12293-019-00295-0
10.1109/ICARM49381.2020.9195287
10.1016/j.swevo.2018.06.005
10.1016/j.tre.2016.04.003
10.3390/rs10040641
10.3233/ICA-150498
10.1016/j.ast.2019.06.027
10.1016/j.cie.2019.106241
10.1007/s11432-018-9603-y
10.1016/j.cie.2015.04.011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12293-021-00334-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1865-9292
EndPage 183
ExternalDocumentID 10_1007_s12293_021_00334_9
GrantInformation_xml – fundername: Hunan Key Laboratory of Intelligent Logistics Technology
  grantid: 2019TP1015
– fundername: State Key Lab of Digital Manufacturing Equipment and Technology (CN)
  grantid: DMETKF2020030
– fundername: National Natural Science Foundation of China (CN)
  grantid: 61773120
– fundername: Hunan Provincial Innovation Foundation for Postgraduate
  grantid: CX2018B022; CX20190008
  funderid: http://dx.doi.org/10.13039/501100010083
– fundername: National Natural Science Foundation of China
  grantid: 61873328; 61525304
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Innovation Team of Guangdong Provincial Department of Education
  grantid: 2018KCXTD031
GroupedDBID -5B
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-6f2beca5d94aad2f11809d6ac6c7b104ad9d85cf825d72bc92889f4f9e84611a3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650566000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1865-9284
IngestDate Thu Sep 25 00:52:24 EDT 2025
Sat Nov 29 04:09:16 EST 2025
Tue Nov 18 22:33:30 EST 2025
Fri Feb 21 02:48:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Navigation correction
Memetic algorithm
Routing
Uncertainty
Unmanned aerial vehicle
Orientation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6f2beca5d94aad2f11809d6ac6c7b104ad9d85cf825d72bc92889f4f9e84611a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6983-4244
PQID 2536819752
PQPubID 2044125
PageCount 15
ParticipantIDs proquest_journals_2536819752
crossref_primary_10_1007_s12293_021_00334_9
crossref_citationtrail_10_1007_s12293_021_00334_9
springer_journals_10_1007_s12293_021_00334_9
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Memetic computing
PublicationTitleAbbrev Memetic Comp
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References VansteenwegenPSouffriauWVan OudheusdenDThe orienteering problem: a surveyEur J Oper Res2011209111027468481205.90253
ZengZZYuXGChenMLiuYYA memetic algorithm to pack unequal circles into a squareComput Oper Res201892475537586161391.90539
YangXBostelNDejaxPA MILP model and memetic algorithm for the hub location and routing problem with distinct collection and delivery toursComput Ind Eng2019135105119
CoelhoBNCoelhoVNCoelhoIMOchiLSHaghnazarRZuidemaDLimaMSda CostaARA multi-objective green UAV routing problemComput Oper Res20178830631536870491391.90544
PengBZhangYLüZChengTGloverFA learning-based memetic algorithm for the multiple vehicle pickup and delivery problem with lifo loadingComput Ind Eng2020142106241
AtenciaCRDel SerJCamachoDWeighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planningSwarm Evolut Comput201944480495
Kim SJ, Jeong Y, Park S, Ryu K, Oh G (2018) A survey of drone use for entertainment and AVR (augmented and virtual reality). In: Augmented reality and virtual reality. Springer, pp 339–352
ManfredaSMcCabeMFMillerPELucasRPajuelo MadrigalVMallinisGBen DorEHelmanDEstesLCiraoloGOn the use of unmanned aerial systems for environmental monitoringRemote Sens2018104641
ShengWChenSShengMXiaoGMaoJZhengYAdaptive multisubpopulation competition and multiniche crowding-based memetic algorithm for automatic data clusteringIEEE Trans Evol Comput2016206838858
ZhuZXiaoJLiJQWangFZhangQGlobal path planning of wheeled robots using multi-objective memetic algorithmsIntegr Comput-Aided Eng2015224387404
Almadhoun R, Taha T, Dias J, Seneviratne L, Zweiri Y (2019) Coverage path planning for complex structures inspection using unmanned aerial vehicle (uav). In: International conference on intelligent robotics and applications. Springer, pp 243–266
LiJHanYOptimal resource allocation for packet delay minimization in multi-layer UAV networksIEEE Commun Lett2016213580583
DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAm J Math1957793497516894570098.35401
WangTQinRChenYSnoussiHChoiCA reinforcement learning approach for UAV target searching and trackingMultim Tools Appl201978443474364
SongBDParkKKimJPersistent UAV delivery logistics: MILP formulation and efficient heuristicComput Ind Eng2018120418428
Ma L, Huang X, Chen J, Li J, Sun T (2020) A two-level memetic path planning algorithm for unmanned air/ground vehicle cooperative detection systems. In: 2020 5th international conference on advanced robotics and mechatronics (ICARM). IEEE, pp 25–30
GunawanALauHCVansteenwegenPOrienteering problem: a survey of recent variants, solution approaches and applicationsEur J Oper Res2016255231533235188041346.90703
HuangYChenJWangHSuGA method of 3d path planning for solar-powered UAV with fixed target and solar trackingAerosp Sci Technol201992831838
ReinaDTawfikHToralSMulti-subpopulation evolutionary algorithms for coverage deployment of UAV-networksAd Hoc Netw2018681632
GoldenBLLevyLVohraRThe orienteering problemNaval Res Logist (NRL)19873433073180647.90099
HuoMDuanHYangQZhangDQiuHLive-fly experimentation for pigeon-inspired obstacle avoidance of quadrotor unmanned aerial vehiclesSci China Inf Sci2019625522013937986
HarikumarKSenthilnathJSundaramSMulti-UAV oxyrrhis marina-inspired search and dynamic formation control for forest firefightingIEEE Trans Autom Sci Eng2018162863873
LiuXAnsariNResource allocation in UAV-assisted m2m communications for disaster rescueIEEE Wirel Commun Lett201882580583
KhosiawanYKhalfayANielsenIScheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimizationInt J Adv Rob Syst20181511729
LiJDengGLuoCLinQYanQMingZA hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systemsIEEE Trans Veh Technol2016651295859596
GuzeyHMDierksTJagannathanSAcarLModified consensus-based output feedback control of quadrotor UAV formations using neural networksJ Intell Robot Syst2019941283300
MaLLiJLinQGongMCoelloCACMingZCost-aware robust control of signed networks by using a memetic algorithmIEEE Trans Cybern2019501044304443
LinJZhouWWolfsonOElectric vehicle routing problemTransp Res Procedia201612508521
WuXCheAA memetic differential evolution algorithm for energy-efficient parallel machine schedulingOmega201982155165
ChaoIMGoldenBLWasilEAThe team orienteering problemEur J Oper Res19968834644740911.90145
NekkaaMBoughaciDA memetic algorithm with support vector machine for feature selection and classificationMemet Comput2015715973
EremeevAVKovalenkoYVA memetic algorithm with optimal recombination for the asymmetric travelling salesman problemMemet Comput20201212336
KachitvichyanukulVSombunthamPKunnapapdeelertSTwo solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSOComput Ind Eng201589125136
RobergeVTarbouchiMLabontéGComparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planningIEEE Trans Ind Inf201291132141
XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Trans Evol Comput2009143356374
ChenMCHsiaoYHReddyRHTiwariMKThe self-learning particle swarm optimization approach for routing pickup and delivery of multiple products with material handling in multiple cross-docksTransp Res Part E Logist Transp Rev201691208226
da CostaPRdOMauceriSCarrollPPallonettoFA genetic algorithm for a green vehicle routing problemElectron Notes Discrete Math201864657437808891392.90019
XiaWWuZAn effective hybrid optimization approach for multi-objective flexible job-shop scheduling problemsComput Ind Eng2005482409425
GuoKLiXXieLSimultaneous cooperative relative localization and distributed formation control for multiple UAVsSci China Inf Sci20206311192014013786
LimAZhangXA two-stage heuristic with ejection pools and generalized ejection chains for the vehicle routing problem with time windowsInforms J Comput201719344345723454361241.90051
YangHMengCWangCA probability first memetic algorithm for the dynamic multiple-fault diagnosis problem with non-ideal testsMemet Comput202012101113
SammaHLimCPSalehJMSuandiSAA memetic-based fuzzy support vector machine model and its application to license plate recognitionMemet Comput201683235251
LiYSoleimaniHZohalMAn improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectivesJ Clean Prod201922711611172
ChenFWangHXieYQiCAn ACO-based online routing method for multiple order pickers with congestion consideration in warehouseJ Intell Manuf2016272389408
XueYRuiZYuXSangXLiuWEstimation of distribution evolution memetic algorithm for the unrelated parallel-machine green scheduling problemMemet Comput2019114423437
Y Xue (334_CR41) 2019; 11
Y Khosiawan (334_CR18) 2018; 15
S Manfreda (334_CR28) 2018; 10
IM Chao (334_CR3) 1996; 88
BN Coelho (334_CR6) 2017; 88
A Lim (334_CR23) 2017; 19
B Peng (334_CR30) 2020; 142
W Sheng (334_CR34) 2016; 20
Y Li (334_CR22) 2019; 227
V Kachitvichyanukul (334_CR17) 2015; 89
LE Dubins (334_CR8) 1957; 79
W Xia (334_CR39) 2005; 48
X Wu (334_CR38) 2019; 82
K Harikumar (334_CR14) 2018; 16
J Li (334_CR20) 2016; 65
K Guo (334_CR12) 2020; 63
Z Zhu (334_CR45) 2015; 22
X Liu (334_CR25) 2018; 8
334_CR1
BL Golden (334_CR10) 1987; 34
HM Guzey (334_CR13) 2019; 94
T Wang (334_CR37) 2019; 78
P Vansteenwegen (334_CR36) 2011; 209
MC Chen (334_CR5) 2016; 91
M Nekkaa (334_CR29) 2015; 7
J Lin (334_CR24) 2016; 12
H Yang (334_CR42) 2020; 12
F Chen (334_CR4) 2016; 27
A Gunawan (334_CR11) 2016; 255
334_CR26
PRdO da Costa (334_CR7) 2018; 64
ZZ Zeng (334_CR44) 2018; 92
334_CR19
X Yang (334_CR43) 2019; 135
CR Atencia (334_CR2) 2019; 44
M Huo (334_CR16) 2019; 62
BD Song (334_CR35) 2018; 120
AV Eremeev (334_CR9) 2020; 12
Y Huang (334_CR15) 2019; 92
V Roberge (334_CR32) 2012; 9
J Li (334_CR21) 2016; 21
L Xing (334_CR40) 2009; 14
H Samma (334_CR33) 2016; 8
D Reina (334_CR31) 2018; 68
L Ma (334_CR27) 2019; 50
References_xml – reference: ReinaDTawfikHToralSMulti-subpopulation evolutionary algorithms for coverage deployment of UAV-networksAd Hoc Netw2018681632
– reference: da CostaPRdOMauceriSCarrollPPallonettoFA genetic algorithm for a green vehicle routing problemElectron Notes Discrete Math201864657437808891392.90019
– reference: LiYSoleimaniHZohalMAn improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectivesJ Clean Prod201922711611172
– reference: ManfredaSMcCabeMFMillerPELucasRPajuelo MadrigalVMallinisGBen DorEHelmanDEstesLCiraoloGOn the use of unmanned aerial systems for environmental monitoringRemote Sens2018104641
– reference: GunawanALauHCVansteenwegenPOrienteering problem: a survey of recent variants, solution approaches and applicationsEur J Oper Res2016255231533235188041346.90703
– reference: LiJHanYOptimal resource allocation for packet delay minimization in multi-layer UAV networksIEEE Commun Lett2016213580583
– reference: HuoMDuanHYangQZhangDQiuHLive-fly experimentation for pigeon-inspired obstacle avoidance of quadrotor unmanned aerial vehiclesSci China Inf Sci2019625522013937986
– reference: WangTQinRChenYSnoussiHChoiCA reinforcement learning approach for UAV target searching and trackingMultim Tools Appl201978443474364
– reference: ChenFWangHXieYQiCAn ACO-based online routing method for multiple order pickers with congestion consideration in warehouseJ Intell Manuf2016272389408
– reference: ZhuZXiaoJLiJQWangFZhangQGlobal path planning of wheeled robots using multi-objective memetic algorithmsIntegr Comput-Aided Eng2015224387404
– reference: ZengZZYuXGChenMLiuYYA memetic algorithm to pack unequal circles into a squareComput Oper Res201892475537586161391.90539
– reference: LimAZhangXA two-stage heuristic with ejection pools and generalized ejection chains for the vehicle routing problem with time windowsInforms J Comput201719344345723454361241.90051
– reference: ChenMCHsiaoYHReddyRHTiwariMKThe self-learning particle swarm optimization approach for routing pickup and delivery of multiple products with material handling in multiple cross-docksTransp Res Part E Logist Transp Rev201691208226
– reference: DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAm J Math1957793497516894570098.35401
– reference: LiuXAnsariNResource allocation in UAV-assisted m2m communications for disaster rescueIEEE Wirel Commun Lett201882580583
– reference: XueYRuiZYuXSangXLiuWEstimation of distribution evolution memetic algorithm for the unrelated parallel-machine green scheduling problemMemet Comput2019114423437
– reference: KachitvichyanukulVSombunthamPKunnapapdeelertSTwo solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSOComput Ind Eng201589125136
– reference: XiaWWuZAn effective hybrid optimization approach for multi-objective flexible job-shop scheduling problemsComput Ind Eng2005482409425
– reference: NekkaaMBoughaciDA memetic algorithm with support vector machine for feature selection and classificationMemet Comput2015715973
– reference: HuangYChenJWangHSuGA method of 3d path planning for solar-powered UAV with fixed target and solar trackingAerosp Sci Technol201992831838
– reference: XingLRohlfshagenPChenYYaoXAn evolutionary approach to the multidepot capacitated arc routing problemIEEE Trans Evol Comput2009143356374
– reference: YangHMengCWangCA probability first memetic algorithm for the dynamic multiple-fault diagnosis problem with non-ideal testsMemet Comput202012101113
– reference: CoelhoBNCoelhoVNCoelhoIMOchiLSHaghnazarRZuidemaDLimaMSda CostaARA multi-objective green UAV routing problemComput Oper Res20178830631536870491391.90544
– reference: HarikumarKSenthilnathJSundaramSMulti-UAV oxyrrhis marina-inspired search and dynamic formation control for forest firefightingIEEE Trans Autom Sci Eng2018162863873
– reference: ShengWChenSShengMXiaoGMaoJZhengYAdaptive multisubpopulation competition and multiniche crowding-based memetic algorithm for automatic data clusteringIEEE Trans Evol Comput2016206838858
– reference: WuXCheAA memetic differential evolution algorithm for energy-efficient parallel machine schedulingOmega201982155165
– reference: SammaHLimCPSalehJMSuandiSAA memetic-based fuzzy support vector machine model and its application to license plate recognitionMemet Comput201683235251
– reference: Kim SJ, Jeong Y, Park S, Ryu K, Oh G (2018) A survey of drone use for entertainment and AVR (augmented and virtual reality). In: Augmented reality and virtual reality. Springer, pp 339–352
– reference: VansteenwegenPSouffriauWVan OudheusdenDThe orienteering problem: a surveyEur J Oper Res2011209111027468481205.90253
– reference: GuzeyHMDierksTJagannathanSAcarLModified consensus-based output feedback control of quadrotor UAV formations using neural networksJ Intell Robot Syst2019941283300
– reference: Ma L, Huang X, Chen J, Li J, Sun T (2020) A two-level memetic path planning algorithm for unmanned air/ground vehicle cooperative detection systems. In: 2020 5th international conference on advanced robotics and mechatronics (ICARM). IEEE, pp 25–30
– reference: KhosiawanYKhalfayANielsenIScheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimizationInt J Adv Rob Syst20181511729
– reference: EremeevAVKovalenkoYVA memetic algorithm with optimal recombination for the asymmetric travelling salesman problemMemet Comput20201212336
– reference: GoldenBLLevyLVohraRThe orienteering problemNaval Res Logist (NRL)19873433073180647.90099
– reference: RobergeVTarbouchiMLabontéGComparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planningIEEE Trans Ind Inf201291132141
– reference: SongBDParkKKimJPersistent UAV delivery logistics: MILP formulation and efficient heuristicComput Ind Eng2018120418428
– reference: AtenciaCRDel SerJCamachoDWeighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planningSwarm Evolut Comput201944480495
– reference: LiJDengGLuoCLinQYanQMingZA hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systemsIEEE Trans Veh Technol2016651295859596
– reference: YangXBostelNDejaxPA MILP model and memetic algorithm for the hub location and routing problem with distinct collection and delivery toursComput Ind Eng2019135105119
– reference: PengBZhangYLüZChengTGloverFA learning-based memetic algorithm for the multiple vehicle pickup and delivery problem with lifo loadingComput Ind Eng2020142106241
– reference: Almadhoun R, Taha T, Dias J, Seneviratne L, Zweiri Y (2019) Coverage path planning for complex structures inspection using unmanned aerial vehicle (uav). In: International conference on intelligent robotics and applications. Springer, pp 243–266
– reference: GuoKLiXXieLSimultaneous cooperative relative localization and distributed formation control for multiple UAVsSci China Inf Sci20206311192014013786
– reference: LinJZhouWWolfsonOElectric vehicle routing problemTransp Res Procedia201612508521
– reference: ChaoIMGoldenBLWasilEAThe team orienteering problemEur J Oper Res19968834644740911.90145
– reference: MaLLiJLinQGongMCoelloCACMingZCost-aware robust control of signed networks by using a memetic algorithmIEEE Trans Cybern2019501044304443
– volume: 12
  start-page: 23
  issue: 1
  year: 2020
  ident: 334_CR9
  publication-title: Memet Comput
  doi: 10.1007/s12293-019-00291-4
– volume: 12
  start-page: 508
  year: 2016
  ident: 334_CR24
  publication-title: Transp Res Procedia
  doi: 10.1016/j.trpro.2016.02.007
– volume: 135
  start-page: 105
  year: 2019
  ident: 334_CR43
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.05.038
– volume: 64
  start-page: 65
  year: 2018
  ident: 334_CR7
  publication-title: Electron Notes Discrete Math
  doi: 10.1016/j.endm.2018.01.008
– volume: 16
  start-page: 863
  issue: 2
  year: 2018
  ident: 334_CR14
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2018.2867614
– volume: 15
  start-page: 17
  issue: 1
  year: 2018
  ident: 334_CR18
  publication-title: Int J Adv Rob Syst
– volume: 82
  start-page: 155
  year: 2019
  ident: 334_CR38
  publication-title: Omega
  doi: 10.1016/j.omega.2018.01.001
– volume: 68
  start-page: 16
  year: 2018
  ident: 334_CR31
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2017.09.005
– volume: 79
  start-page: 497
  issue: 3
  year: 1957
  ident: 334_CR8
  publication-title: Am J Math
  doi: 10.2307/2372560
– volume: 21
  start-page: 580
  issue: 3
  year: 2016
  ident: 334_CR21
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2016.2626293
– volume: 78
  start-page: 4347
  issue: 4
  year: 2019
  ident: 334_CR37
  publication-title: Multim Tools Appl
  doi: 10.1007/s11042-018-5739-5
– ident: 334_CR19
  doi: 10.1007/978-3-319-64027-3_23
– volume: 27
  start-page: 389
  issue: 2
  year: 2016
  ident: 334_CR4
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-014-0871-1
– volume: 20
  start-page: 838
  issue: 6
  year: 2016
  ident: 334_CR34
  publication-title: IEEE Trans Evol Comput
– volume: 14
  start-page: 356
  issue: 3
  year: 2009
  ident: 334_CR40
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2033578
– ident: 334_CR1
  doi: 10.1007/978-3-030-27541-9_21
– volume: 94
  start-page: 283
  issue: 1
  year: 2019
  ident: 334_CR13
  publication-title: J Intell Robot Syst
  doi: 10.1007/s10846-018-0961-y
– volume: 12
  start-page: 101
  year: 2020
  ident: 334_CR42
  publication-title: Memet Comput
  doi: 10.1007/s12293-020-00304-7
– volume: 65
  start-page: 9585
  issue: 12
  year: 2016
  ident: 334_CR20
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2623666
– volume: 120
  start-page: 418
  year: 2018
  ident: 334_CR35
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.05.013
– volume: 209
  start-page: 1
  issue: 1
  year: 2011
  ident: 334_CR36
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.03.045
– volume: 255
  start-page: 315
  issue: 2
  year: 2016
  ident: 334_CR11
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.04.059
– volume: 8
  start-page: 580
  issue: 2
  year: 2018
  ident: 334_CR25
  publication-title: IEEE Wirel Commun Lett
  doi: 10.1109/LWC.2018.2880467
– volume: 7
  start-page: 59
  issue: 1
  year: 2015
  ident: 334_CR29
  publication-title: Memet Comput
  doi: 10.1007/s12293-015-0153-2
– volume: 88
  start-page: 306
  year: 2017
  ident: 334_CR6
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2017.04.011
– volume: 62
  start-page: 52201
  issue: 5
  year: 2019
  ident: 334_CR16
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-018-9576-x
– volume: 19
  start-page: 443
  issue: 3
  year: 2017
  ident: 334_CR23
  publication-title: Informs J Comput
  doi: 10.1287/ijoc.1060.0186
– volume: 50
  start-page: 4430
  issue: 10
  year: 2019
  ident: 334_CR27
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2932996
– volume: 9
  start-page: 132
  issue: 1
  year: 2012
  ident: 334_CR32
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2012.2198665
– volume: 34
  start-page: 307
  issue: 3
  year: 1987
  ident: 334_CR10
  publication-title: Naval Res Logist (NRL)
  doi: 10.1002/1520-6750(198706)34:3<307::AID-NAV3220340302>3.0.CO;2-D
– volume: 92
  start-page: 47
  year: 2018
  ident: 334_CR44
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2017.09.013
– volume: 88
  start-page: 464
  issue: 3
  year: 1996
  ident: 334_CR3
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(94)00289-4
– volume: 48
  start-page: 409
  issue: 2
  year: 2005
  ident: 334_CR39
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2005.01.018
– volume: 227
  start-page: 1161
  year: 2019
  ident: 334_CR22
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.03.185
– volume: 8
  start-page: 235
  issue: 3
  year: 2016
  ident: 334_CR33
  publication-title: Memet Comput
  doi: 10.1007/s12293-016-0187-0
– volume: 11
  start-page: 423
  issue: 4
  year: 2019
  ident: 334_CR41
  publication-title: Memet Comput
  doi: 10.1007/s12293-019-00295-0
– ident: 334_CR26
  doi: 10.1109/ICARM49381.2020.9195287
– volume: 44
  start-page: 480
  year: 2019
  ident: 334_CR2
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2018.06.005
– volume: 91
  start-page: 208
  year: 2016
  ident: 334_CR5
  publication-title: Transp Res Part E Logist Transp Rev
  doi: 10.1016/j.tre.2016.04.003
– volume: 10
  start-page: 641
  issue: 4
  year: 2018
  ident: 334_CR28
  publication-title: Remote Sens
  doi: 10.3390/rs10040641
– volume: 22
  start-page: 387
  issue: 4
  year: 2015
  ident: 334_CR45
  publication-title: Integr Comput-Aided Eng
  doi: 10.3233/ICA-150498
– volume: 92
  start-page: 831
  year: 2019
  ident: 334_CR15
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.06.027
– volume: 142
  start-page: 106241
  year: 2020
  ident: 334_CR30
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.106241
– volume: 63
  start-page: 119201
  issue: 1
  year: 2020
  ident: 334_CR12
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-018-9603-y
– volume: 89
  start-page: 125
  year: 2015
  ident: 334_CR17
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.04.011
SSID ssj0000327841
Score 2.2848053
Snippet Navigation correction is usually frequently required by unmanned aerial vehicles (UAVs), especially under uncertain navigation environments. Although the UAV’s...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Complex Systems
Control
Engineering
Heuristic methods
Knowledge bases (artificial intelligence)
Mathematical and Computational Engineering
Mechatronics
Navigation
Optimization
Regular Research Paper
Robotics
Steering
Unmanned aerial vehicles
Title An effective memetic algorithm for UAV routing and orientation under uncertain navigation environments
URI https://link.springer.com/article/10.1007/s12293-021-00334-9
https://www.proquest.com/docview/2536819752
Volume 13
WOSCitedRecordID wos000650566000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1865-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327841
  issn: 1865-9284
  databaseCode: RSV
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG0RKnE-PFaJiQBUStOoWOXYMldoEpWl_P-d8NAUBEixZ7FjR3dl-F997BrhmnNmxp6Qh_QgTlEAxI4gc1xBcKSYsxYUqdGYf_eEwmEzYU0UKW9TV7vWRZLFSN2Q3SnWtGcX017Rtx2DbsONqtRmdoz-P139WTLs4TNOZVuC5BsMFuGLLfD_M5x2pgZlfTkaLDWfQ_t-nHsJBBTBJv4yII9iKkw6068sbSDWXO7C_oUR4DKqfkLK0A1c_Mo_nmttI-Ow1zab525wgtCWj_phk6VLXSROeSJJm04q4lBBNRcvwKcoKA5LwVaHdgU2bVLoTGA3uX-4ejOoKBkPg3MwNT1F0MnclcziXVGnBOCY9LjyBvjUdLpkMXKEwz5Q-jQQaO2DKUSxGXGNZ3D6FVpIm8RkQyW3EAqZjmdJzMEtE4Kk87loRtzBYoqgLVu2GUFT65PqajFnYKCtrs4Zo1rAwa8i6cLN-571U5_i1d6_2bljN1EVIXdtDVOS7tAu3tTeb5p9HO_9b9wvYo0VA6B84PWjl2TK-hF2xyqeL7KqI4A_GXety
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoH37TQpp95HOKYOIfgNvZW0qTRwdZJ9_H3e-nabYoK-tKXfFDuLsnvkrvfAVwzzuzYU9KQfoQOSqCYEUSOawiuFBOW4kJlPLMtv90O-n32nCeFTYpo9-JJMtupV8lulOpYM4rur2nbjsE2YcvRZXa0j_7SW96smHb2mKY9rcBzDYYbcJ4t8_00n0-kFcz88jKaHTiN8v9-9QD2c4BJ6guLOISNOKlAuSjeQPK1XIG9NSbCI1D1hCxCO3D3I6N4pHMbCR--jtPB9G1EENqSbr1H0vFMx0kTnkgyTgd54lJCdCpail-xiDAgCZ9n3B3YtJ5Kdwzdxn3nrmnkJRgMgWtzaniKopK5K5nDuaRKE8Yx6XHhCdSt6XDJZOAKhX6m9GkkUNgBU45iMeIay-L2CZSScRKfApHcRixgOpYpPQe9RASeyuOuFXELjSWKqmAVaghFzk-uy2QMwxWzshZriGINM7GGrAo3yzHvC3aOX3vXCu2G-UqdhNS1PURFvkurcFtoc9X882xnf-t-BTvNzlMrbD20H89hl2bGoS9zalCaprP4ArbFfDqYpJeZNX8A17PuVg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBsoqy-sANIhJn9bECKhCoQkCr3iLHjqFSm1Zp4PsZZyEFARLikosdK5oZ22_iec8AJ4wzO_aUNKQfYYISKGYEkeMagivFhKW4ULnO7J3f6QT9PrufYfHn1e7VkWTBadAqTUl2PpHqvCa-UarrziimwqZtOwabh0UHMxld1PXw2Pv4y2La-cGazroCzzUYLsYlc-b7YT7vTjXk_HJKmm8-7cb_P3sd1krgSVpFpGzAXJxsQqO61IGUc3wTVmcUCrdAtRJSlHzgqkhG8UhzHgkfPo_TQfYyIgh5SbfVI-n4VddPE55IMk4HJaEpIZqiluJTFJUHJOFvuaYHNs1S7Lah2756urg2yqsZDIFzNjM8RdH53JXM4VxSpYXkmPS48AT63HS4ZDJwhcL8U_o0Emj4gClHsRjxjmVxewcWknES7wKR3EaMYKL3pOdg9oiAVHnctSJuYRBFUROsyiWhKHXL9fUZw7BWXNZmDdGsYW7WkDXh9OOdSaHa8Wvvg8rTYTmDpyF1bQ_Rku_SJpxVnq2bfx5t72_dj2H5_rId3t10bvdhheaxof_xHMBClr7Gh7Ak3rLBND3KA_sdrsn3Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+memetic+algorithm+for+UAV+routing+and+orientation+under+uncertain+navigation+environments&rft.jtitle=Memetic+computing&rft.au=Xiang%2C+Shang&rft.au=Wang%2C+Ling&rft.au=Xing%2C+Lining&rft.au=Du%2C+Yonghao&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=13&rft.issue=2&rft.spage=169&rft.epage=183&rft_id=info:doi/10.1007%2Fs12293-021-00334-9&rft.externalDocID=10_1007_s12293_021_00334_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon