Accurate and Robust Line Segment Extraction Using Minimum Entropy With Hough Transform

The Hough transform is a popular technique used in the field of image processing and computer vision. With a Hough transform technique, not only the normal angle and distance of a line but also the line-segment's length and midpoint (centroid) can be extracted by analysing the voting distributi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 24; číslo 3; s. 813 - 822
Hlavní autoři: Zezhong Xu, Bok-Suk Shin, Klette, Reinhard
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2015
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Hough transform is a popular technique used in the field of image processing and computer vision. With a Hough transform technique, not only the normal angle and distance of a line but also the line-segment's length and midpoint (centroid) can be extracted by analysing the voting distribution around a peak in the Hough space. In this paper, a method based on minimum-entropy analysis is proposed to extract the set of parameters of a line segment. In each column around a peak in Hough space, the voting values specify probabilistic distributions. The corresponding entropies and statistical means are computed. The line-segment's normal angle and length are simultaneously computed by fitting a quadratic polynomial curve to the voting entropies. The line-segment's midpoint and normal distance are computed by fitting and interpolating a linear curve to the voting means. The proposed method is tested on simulated images for detection accuracy by providing comparative results. Experimental results on real-world images verify the method as well. The proposed method for line-segment detection is both accurate and robust in the presence of quantization error, background noise, or pixel disturbances.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2014.2387020