Mineral Prospectivity Prediction by Integration of Convolutional Autoencoder Network and Random Forest

The convolutional neural networks used widely in mineral prospectivity prediction usually perform mixed feature extraction for multichannel inputs. This results in redundant features and impacts further improvement of predictive performance. To solve this limitation, this paper utilized convolutiona...

Full description

Saved in:
Bibliographic Details
Published in:Natural resources research (New York, N.Y.) Vol. 31; no. 3; pp. 1103 - 1119
Main Authors: Yang, Na, Zhang, Zhenkai, Yang, Jianhua, Hong, Zenglin
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2022
Springer Nature B.V
Subjects:
ISSN:1520-7439, 1573-8981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The convolutional neural networks used widely in mineral prospectivity prediction usually perform mixed feature extraction for multichannel inputs. This results in redundant features and impacts further improvement of predictive performance. To solve this limitation, this paper utilized convolutional autoencoder networks to mine latent high-level features for each predictor variable in parallel to prevent the mixing of features and to enhance the feature mapping outcomes of each channel. Convolutional autoencoder networks, as unsupervised learning methods, can handle input images with high-dimensional features. They can train samples without differences such that the reconstructed outputs can restore inputs as accurately as possible to reduce the extraction of irrelevant feature information. Moreover, convolutional autoencoder networks focus on finding the fewest features for representing all inputs, and the extracted features express internal spatial relations at a high level. It is helpful to improve the performance of metallogenic prediction. Hence, this paper arranged these obtained features into one-dimensional vectors to establish the inputs of classifiers. Through modeling with four classifiers (logistic regression, support vector machine, artificial neural network, and random forest), we achieved different models for mineral prospectivity prediction. According to the comprehensive evaluations, the random forest model outperformed the other models. Taking the prediction of gold deposits in the Fengxian region of Southern Qinling in China as an example, the predictive capability of the proposed integrated method was shown to be effective and reliable. The predicted high-potential areas can provide significant guidance for gold deposit exploration in the study area.
AbstractList The convolutional neural networks used widely in mineral prospectivity prediction usually perform mixed feature extraction for multichannel inputs. This results in redundant features and impacts further improvement of predictive performance. To solve this limitation, this paper utilized convolutional autoencoder networks to mine latent high-level features for each predictor variable in parallel to prevent the mixing of features and to enhance the feature mapping outcomes of each channel. Convolutional autoencoder networks, as unsupervised learning methods, can handle input images with high-dimensional features. They can train samples without differences such that the reconstructed outputs can restore inputs as accurately as possible to reduce the extraction of irrelevant feature information. Moreover, convolutional autoencoder networks focus on finding the fewest features for representing all inputs, and the extracted features express internal spatial relations at a high level. It is helpful to improve the performance of metallogenic prediction. Hence, this paper arranged these obtained features into one-dimensional vectors to establish the inputs of classifiers. Through modeling with four classifiers (logistic regression, support vector machine, artificial neural network, and random forest), we achieved different models for mineral prospectivity prediction. According to the comprehensive evaluations, the random forest model outperformed the other models. Taking the prediction of gold deposits in the Fengxian region of Southern Qinling in China as an example, the predictive capability of the proposed integrated method was shown to be effective and reliable. The predicted high-potential areas can provide significant guidance for gold deposit exploration in the study area.
Author Yang, Jianhua
Yang, Na
Hong, Zenglin
Zhang, Zhenkai
Author_xml – sequence: 1
  givenname: Na
  surname: Yang
  fullname: Yang, Na
  organization: School of Automation, Northwestern Polytechnical University, Research Center of Intelligent Geological Survey, Northwestern Polytechnical University
– sequence: 2
  givenname: Zhenkai
  surname: Zhang
  fullname: Zhang, Zhenkai
  organization: School of Automation, Northwestern Polytechnical University, Research Center of Intelligent Geological Survey, Northwestern Polytechnical University, Shaanxi Center of Mineral Geological Survey, Natural Resources Shaanxi Satellite Application Technology Center
– sequence: 3
  givenname: Jianhua
  surname: Yang
  fullname: Yang, Jianhua
  email: yangjianhua@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Research Center of Intelligent Geological Survey, Northwestern Polytechnical University
– sequence: 4
  givenname: Zenglin
  surname: Hong
  fullname: Hong, Zenglin
  email: hongzenglin1963@163.com
  organization: School of Automation, Northwestern Polytechnical University, Research Center of Intelligent Geological Survey, Northwestern Polytechnical University, Shaanxi Institute of Geological Survey
BookMark eNp9kFtLwzAYhoNMcJv-Aa8KXldz6CG9HMPpYB4QvQ5p-nV0dslM0sn-vekqCF7sJslL3uc7vBM00kYDQtcE3xKM8ztHCE5ZjCmNg2Y8zs_QmKQ5i3nByah_UxznCSsu0MS5DQ4Q4-kY1U-NBivb6NUatwPlm33jD0FB1QRhdFQeoqX2sLbyKE0dzY3em7brZQBnnTeglanARs_gv439jKSuordwmG20MBacv0TntWwdXP3eU_SxuH-fP8arl4flfLaKFSOFj7OKJlVS44IqTqgqU8C0YikowCWGTKYlqRSlMnhUmZQ8fFa1VCUAlkmdZmyKboa6O2u-utBYbExnw5hO0IJwxrKc9y46uFRY2lmoxc42W2kPgmDR5ymGPEXIUxzzFHmA-D9INf6YibeyaU-jbEBd6KPXYP-mOkH9APCpjuo
CitedBy_id crossref_primary_10_1016_j_jappgeo_2024_105445
crossref_primary_10_1007_s11053_023_10249_6
crossref_primary_10_3390_min13101332
crossref_primary_10_1007_s12145_024_01579_x
crossref_primary_10_1016_j_oregeorev_2022_105065
crossref_primary_10_1016_j_oregeorev_2023_105381
crossref_primary_10_1007_s11053_024_10451_0
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_1016_j_chemer_2024_126155
crossref_primary_10_3390_min14101021
crossref_primary_10_1016_j_gexplo_2024_107543
crossref_primary_10_1016_j_chemer_2024_126190
crossref_primary_10_1016_j_rsase_2024_101316
crossref_primary_10_1007_s12145_024_01278_7
crossref_primary_10_1177_25726838231225055
crossref_primary_10_1016_j_oregeorev_2024_106329
crossref_primary_10_1016_j_oregeorev_2025_106866
crossref_primary_10_1016_j_geomat_2025_100066
crossref_primary_10_1016_j_gexplo_2025_107755
crossref_primary_10_1016_j_oregeorev_2025_106681
crossref_primary_10_1038_s41598_024_73357_0
crossref_primary_10_1016_j_acags_2025_100259
crossref_primary_10_1007_s11004_023_10076_8
crossref_primary_10_1007_s11053_024_10322_8
crossref_primary_10_1007_s11053_024_10328_2
crossref_primary_10_1007_s11053_024_10344_2
crossref_primary_10_1086_730159
crossref_primary_10_1007_s11004_024_10161_6
crossref_primary_10_1016_j_oregeorev_2022_104916
Cites_doi 10.1016/j.measurement.2017.12.006
10.1016/j.patrec.2005.10.010
10.1007/s00521-019-04341-3
10.1007/s11053-019-09510-8
10.1016/j.apgeochem.2021.105043
10.1016/j.measurement.2021.109097
10.1016/j.apgeochem.2021.104940
10.1007/s12583-021-1440-0
10.1016/j.oregeorev.2015.12.005
10.1016/j.oregeorev.2015.01.001
10.1145/3065386
10.1016/j.jafrearsci.2016.11.032
10.1007/s11053-017-9357-0
10.1016/j.oregeorev.2019.04.003
10.1016/j.cageo.2010.09.014
10.1007/s11053-021-09934-1
10.1016/j.oregeorev.2017.11.001
10.1016/j.jafrearsci.2016.04.019
10.1016/j.cageo.2015.04.007
10.1016/j.oregeorev.2014.08.010
10.1007/s11053-010-9112-2
10.1016/j.cageo.2015.03.007
10.1016/j.gsf.2020.02.012
10.1038/s41586-019-1583-7
10.1029/2019MS001705
10.1016/j.apgeochem.2020.104747
10.1016/j.oregeorev.2018.10.006
10.1002/2018GL077004
10.1016/j.gexplo.2015.10.008
10.1080/08120099.2017.1328705
10.1016/j.cageo.2014.10.004
10.1016/j.apgeochem.2020.104710
10.1016/j.cageo.2017.10.005
10.1016/j.gexplo.2021.106904
10.1007/s11053-020-09700-9
10.1016/j.mineng.2019.10589
10.1007/s11053-019-09471-y
10.1016/j.oregeorev.2014.09.024
10.1016/j.measurement.2018.10.094
10.1016/j.cageo.2015.10.006
10.1016/j.gexplo.2015.06.018
10.1007/s11053-017-9345-4
10.1016/j.jestch.2020.01.002
10.1007/s11430-015-5178-3
10.1111/1755-6724.13688
10.1016/j.cageo.2019.05.009
10.1016/j.cageo.2019.01.016
10.1016/j.gecco.2020.e00971
10.1016/j.oregeorev.2021.104264
10.1016/j.gexplo.2021.106839
10.1144/geochem2016-024
10.1016/j.oregeorev.2021.104316
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2022
International Association for Mathematical Geosciences 2022.
Copyright_xml – notice: International Association for Mathematical Geosciences 2022
– notice: International Association for Mathematical Geosciences 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
DOI 10.1007/s11053-022-10038-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 1119
ExternalDocumentID 10_1007_s11053_022_10038_7
GrantInformation_xml – fundername: Shaanxi Provincial Science and Technology Department
  grantid: 2021KJXX-87; Grant No. 202103; Grant No. 201918; No. 20180301
  funderid: http://dx.doi.org/10.13039/501100011710
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-6d24d4f092c812cb5e02d35ece0b0e6a5b1dc22ad4fcb4b82d3dfacbee0a4f563
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000774717600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 02:20:15 EST 2025
Tue Nov 18 22:43:05 EST 2025
Sat Nov 29 06:27:46 EST 2025
Fri Feb 21 02:45:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Feature extraction
Random forest
Convolutional autoencoder network
Mineral prospectivity prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6d24d4f092c812cb5e02d35ece0b0e6a5b1dc22ad4fcb4b82d3dfacbee0a4f563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918336786
PQPubID 2043663
PageCount 17
ParticipantIDs proquest_journals_2918336786
crossref_primary_10_1007_s11053_022_10038_7
crossref_citationtrail_10_1007_s11053_022_10038_7
springer_journals_10_1007_s11053_022_10038_7
PublicationCentury 2000
PublicationDate 20220600
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yang, Zhang, Yang, Hong, Shi (CR48) 2021; 30
Goetz, Brenning, Petschko, Leopold (CR11) 2015; 81
Wang, Zhang, Yin, Luo, Li (CR36) 2021; 12
Carranza, Laborte (CR3) 2015; 74
Zuo, Peng, Li, Xiong (CR67) 2021; 46
Wu, Li, Yuan, Li, Zhang (CR42) 2022; 232
Hao, Guo, Gu, Hu (CR13) 2019; 143
Zhang, Zhang, Yuan (CR55) 2001
Zhao (CR59) 2015; 34
Gao, Zhang, Xiong, Zuo (CR9) 2016; 75
Luo, Zuo, Xiong, Wang (CR23) 2021; 131
Yousefi, Nykänen (CR52) 2016; 164
Zuo, Carranza (CR65) 2011; 37
Zhang, Zuo, Xiong (CR57) 2016; 59
Zhou, Li, Wang, Xiao, Li, Gao (CR62) 2017; 36
Zuo, Zhang, Zhang, Carranza, Wang (CR68) 2015; 71
CR6
Xiong, Zuo (CR44) 2018; 111
Wang, Zuo, Xiong (CR37) 2019; 29
Zuo (CR63) 2017; 26
CR46
Zuo (CR64) 2020; 29
Gui, Chen, Wang (CR12) 2018; 38
Shabankareh, Hezarkhani (CR34) 2017; 128
Sun, Chen, Zhong, Liu, Wang (CR35) 2019; 109
Xiong, Zuo (CR43) 2016; 86
Maitre, Bouchard, Bédard (CR24) 2019; 130
Chen, Wu (CR7) 2017; 64
Wang, Wang, Gao, Chen, Liu (CR38) 2007; 40
Wang, Zuo, Dong (CR40) 2019; 28
Jiang, Xu, Wei (CR14) 2018; 45
Liu, Rui (CR20) 2016; 22
Zhao, Chen, Zuo (CR58) 2015; 164
CR10
CR54
CR53
Chen, Guan, Xiong, Liang, Wang, Xu (CR5) 2019; 125
McKay, Harris (CR26) 2015; 2
Zhao, Chen (CR60) 2021; 32
Pati, Panda, Tripathy, Pradhan, Patnaik (CR30) 2020; 23
Miao, Dong, Hao, Wang, Cao (CR27) 2021; 176
Weyn, Durran, Caruana (CR41) 2019; 11
Zhang, Chen, Yang, Wu, Ge (CR56) 2021; 28
Luo, Xiong, Zuo (CR22) 2020; 122
Chang, Zhu, Zhang, Zhang, Hu (CR4) 2018; 34
Li, Chen, Xiang (CR18) 2019; 32
Masci, Meier, Cireşan, Schmidhuber (CR25) 2011; 2011
Carranza, Laborte (CR2) 2015; 71
Wang, Chen, Hu, Zhang, Liu, Huang (CR39) 2018; 34
Liu, Zhu, Zhou (CR21) 2018; 34
Li (CR17) 2008; 22
Yousefi, Carranza (CR50) 2015; 79
Zhou, Zhou, Cui, Wang, Wang, Ding (CR61) 2016; 49
Fawcett (CR8) 2006; 27
Krizhevsky, Sutskever, Hinton (CR15) 2017; 60
Rahimi, Abedi, Yousefi, Bahroudi, Elyasi (CR31) 2021; 128
Mignan, Broccardo (CR28) 2019
Ramil, López, Pozo-Antonio (CR32) 2017; 117
Oh, Lee (CR29) 2010; 19
Yin, Xiao, Li, Zou (CR49) 2010; 29
Xiong, Zuo, Carranza (CR45) 2018; 102
Almasi, Yousefi, Carranza (CR1) 2017; 91
Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (CR33) 2015; 71
Liu, Jiang, Han, Zhou (CR19) 2019; 134
Zuo, Xiong (CR66) 2017; 27
Li, Li, Yuan, Jowitt, Zhang, Zhou (CR16) 2020; 122
Yousefi, Carranza (CR51) 2017; 128
R Zuo (10038_CR68) 2015; 71
C Pati (10038_CR30) 2020; 23
Y Chen (10038_CR7) 2017; 64
J Li (10038_CR17) 2008; 22
R Zuo (10038_CR63) 2017; 26
Z Zhang (10038_CR56) 2021; 28
R Zuo (10038_CR67) 2021; 46
L Chen (10038_CR5) 2019; 125
Z Zhang (10038_CR57) 2016; 59
H Rahimi (10038_CR31) 2021; 128
V Rodriguez-Galiano (10038_CR33) 2015; 71
M Yousefi (10038_CR52) 2016; 164
Y Zhou (10038_CR62) 2017; 36
J Wang (10038_CR37) 2019; 29
S Zhou (10038_CR61) 2016; 49
T Sun (10038_CR35) 2019; 109
C Miao (10038_CR27) 2021; 176
P Zhao (10038_CR60) 2021; 32
Z Wang (10038_CR40) 2019; 28
H Oh (10038_CR29) 2010; 19
JN Goetz (10038_CR11) 2015; 81
C Liu (10038_CR19) 2019; 134
H Hao (10038_CR13) 2019; 143
Y Wang (10038_CR39) 2018; 34
S Li (10038_CR18) 2019; 32
10038_CR10
10038_CR54
10038_CR53
Z Luo (10038_CR23) 2021; 131
A Mignan (10038_CR28) 2019
10038_CR6
R Zuo (10038_CR66) 2017; 27
Z Gui (10038_CR12) 2018; 38
Y Gao (10038_CR9) 2016; 75
Y Liu (10038_CR21) 2018; 34
Z Luo (10038_CR22) 2020; 122
EJM Carranza (10038_CR3) 2015; 74
A Krizhevsky (10038_CR15) 2017; 60
J Maitre (10038_CR24) 2019; 130
M Shabankareh (10038_CR34) 2017; 128
J Masci (10038_CR25) 2011; 2011
G Zhang (10038_CR55) 2001
L Liu (10038_CR20) 2016; 22
GQ Jiang (10038_CR14) 2018; 45
R Wang (10038_CR38) 2007; 40
H Wang (10038_CR36) 2021; 12
10038_CR46
R Zuo (10038_CR64) 2020; 29
R Zuo (10038_CR65) 2011; 37
EJM Carranza (10038_CR2) 2015; 71
T Fawcett (10038_CR8) 2006; 27
B Wu (10038_CR42) 2022; 232
J Yin (10038_CR49) 2010; 29
M Yousefi (10038_CR51) 2017; 128
JA Weyn (10038_CR41) 2019; 11
A Almasi (10038_CR1) 2017; 91
G McKay (10038_CR26) 2015; 2
Y Xiong (10038_CR45) 2018; 102
L Chang (10038_CR4) 2018; 34
M Yousefi (10038_CR50) 2015; 79
H Li (10038_CR16) 2020; 122
J Zhao (10038_CR58) 2015; 164
Y Xiong (10038_CR43) 2016; 86
N Yang (10038_CR48) 2021; 30
AJ Ramil (10038_CR32) 2017; 117
P Zhao (10038_CR59) 2015; 34
Y Xiong (10038_CR44) 2018; 111
References_xml – volume: 117
  start-page: 90
  year: 2017
  end-page: 95
  ident: CR32
  article-title: A computer vision system for identification of granite-forming minerals based on RGB data and artificial neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.12.006
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  ident: CR8
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 32
  start-page: 2037
  issue: 7
  year: 2019
  end-page: 2053
  ident: CR18
  article-title: Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-019-04341-3
– volume: 29
  start-page: 189
  issue: 1
  year: 2019
  end-page: 202
  ident: CR37
  article-title: Mapping mineral prospectivity via semi-supervised random forest
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09510-8
– volume: 131
  start-page: 105043
  year: 2021
  ident: CR23
  article-title: Detection of geochemical anomalies related to mineralization using the GANomaly network
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.105043
– volume: 176
  year: 2021
  ident: CR27
  article-title: Magnetic anomaly detection based on fast convergence wavelet artificial neural network in the aeromagnetic field
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109097
– volume: 128
  year: 2021
  ident: CR31
  article-title: Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.104940
– volume: 32
  start-page: 269
  issue: 2
  year: 2021
  end-page: 275
  ident: CR60
  article-title: Digital geosciences and quantitative mineral exploration
  publication-title: Journal of Earth Science
  doi: 10.1007/s12583-021-1440-0
– volume: 75
  start-page: 16
  year: 2016
  end-page: 28
  ident: CR9
  article-title: Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.12.005
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: CR33
  article-title: Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– ident: CR54
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR15
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– volume: 128
  start-page: 116
  year: 2017
  end-page: 126
  ident: CR34
  article-title: Application of support vector machines for copper potential mapping in Kerman region, Iran
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2016.11.032
– volume: 27
  start-page: 5
  issue: 1
  year: 2017
  end-page: 13
  ident: CR66
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-017-9357-0
– volume: 109
  start-page: 26
  year: 2019
  end-page: 49
  ident: CR35
  article-title: GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.04.003
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  end-page: 1975
  ident: CR65
  article-title: Support vector machine: A tool for mapping mineral prospectivity
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.09.014
– volume: 30
  start-page: 3905
  issue: 6
  year: 2021
  end-page: 3923
  ident: CR48
  article-title: A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09934-1
– volume: 91
  start-page: 1066
  year: 2017
  end-page: 1080
  ident: CR1
  article-title: Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2017.11.001
– volume: 128
  start-page: 47
  year: 2017
  end-page: 60
  ident: CR51
  article-title: Union score and fuzzy logic mineral prospectivity mapping using discretized and continuous spatial evidence values
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2016.04.019
– volume: 81
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR11
  article-title: Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.04.007
– volume: 71
  start-page: 777
  year: 2015
  end-page: 787
  ident: CR2
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of random forests algorithm
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.08.010
– volume: 34
  start-page: 3217
  issue: 11
  year: 2018
  end-page: 3224
  ident: CR21
  article-title: Application of convolutional neural network in prospecting prediction of ore deposits: Taking the Zhaojikou Pb-Zn ore deposit in Anhui Province as a case
  publication-title: Acta Petrologica Sinica
– volume: 19
  start-page: 103
  issue: 2
  year: 2010
  end-page: 124
  ident: CR29
  article-title: Application of artificial neural network for gold-silver deposits potential mapping: A case study of Korea
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-010-9112-2
– volume: 22
  start-page: 62
  issue: 01
  year: 2008
  end-page: 64
  ident: CR17
  article-title: Analysis on ore-controlling factors and prospecting potential of the Baguamiao-type gold deposits in Fengtai area, Shannxi
  publication-title: Mineral Resources and Geology
– ident: CR46
– volume: 79
  start-page: 69
  year: 2015
  end-page: 81
  ident: CR50
  article-title: Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.03.007
– volume: 46
  start-page: 350
  issue: 1
  year: 2021
  end-page: 358
  ident: CR67
  article-title: Challenges of geological prospecting big data mining and integration using deep learning algorithms
  publication-title: Earth Science
– volume: 34
  start-page: 1255
  issue: 7
  year: 2015
  end-page: 1259
  ident: CR59
  article-title: Digital mineral exploration and quantitative evaluation in the big data age
  publication-title: Geological Bulletin of China
– volume: 12
  start-page: 351
  issue: 1
  year: 2021
  end-page: 364
  ident: CR36
  article-title: Landslide identification using machine learning
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2020.02.012
– year: 2019
  ident: CR28
  article-title: One neuron versus deep learning in aftershock prediction
  publication-title: Nature
  doi: 10.1038/s41586-019-1583-7
– volume: 22
  start-page: 223
  issue: 02
  year: 2016
  end-page: 231
  ident: CR20
  article-title: Present situation and development tendency of metallogenic prediction
  publication-title: Journal of Geomechanics
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  end-page: 2693
  ident: CR41
  article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2019MS001705
– volume: 122
  year: 2020
  ident: CR16
  article-title: Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian-Zhangbaling area, Anhui Province, China
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2020.104747
– volume: 102
  start-page: 811
  year: 2018
  end-page: 817
  ident: CR45
  article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 45
  start-page: 3706
  issue: 8
  year: 2018
  end-page: 3716
  ident: CR14
  article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models
  publication-title: Geophysical Research Letters
  doi: 10.1002/2018GL077004
– volume: 2
  start-page: 125
  issue: 25
  year: 2015
  end-page: 143
  ident: CR26
  article-title: Comparison of the data-driven random forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada
  publication-title: Natural Resources Research
– volume: 164
  start-page: 94
  year: 2016
  end-page: 106
  ident: CR52
  article-title: Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2015.10.008
– volume: 49
  start-page: 234
  issue: 01
  year: 2016
  end-page: 240
  ident: CR61
  article-title: Application of logistic regression methods in geochemical data analysis and mineral exploration: Example from Karamay region
  publication-title: Northwestern Geology
– volume: 29
  start-page: 1564
  issue: 10
  year: 2010
  end-page: 1571
  ident: CR49
  article-title: Application of BP neural network in the classification of geo-chemical survey data
  publication-title: Geological Bulletin of China
– volume: 28
  start-page: 1
  issue: 3
  year: 2021
  end-page: 15
  ident: CR56
  article-title: Machine learning for mineral prospectivity: A case study of iron-polymetallic mineral prospectivity in Southwestern Fujian
  publication-title: Earth Science Frontiers
– volume: 64
  start-page: 639
  issue: 5
  year: 2017
  end-page: 651
  ident: CR7
  article-title: Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120099.2017.1328705
– volume: 74
  start-page: 60
  year: 2015
  end-page: 70
  ident: CR3
  article-title: Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines)
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2014.10.004
– volume: 122
  year: 2020
  ident: CR22
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2020.104710
– ident: CR53
– volume: 111
  start-page: 18
  year: 2018
  end-page: 25
  ident: CR44
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2017.10.005
– ident: CR10
– volume: 232
  year: 2022
  ident: CR42
  article-title: Transfer learning and Siamese neural network based identification of geochemical anomalies for mineral exploration: A case study from the Cu–Au deposit in the NW Junggar area of northern Xinjiang Province, China
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106904
– ident: CR6
– volume: 29
  start-page: 3415
  issue: 6
  year: 2020
  end-page: 3424
  ident: CR64
  article-title: Geodata science-based mineral prospectivity mapping: A review
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09700-9
– volume: 143
  year: 2019
  ident: CR13
  article-title: Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2019.10589
– volume: 28
  start-page: 1285
  issue: 4
  year: 2019
  end-page: 1298
  ident: CR40
  article-title: Mapping geochemical anomalies through integrating random forest and metric learning methods
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09471-y
– year: 2001
  ident: CR55
  publication-title: Qinling orogenic belt and continental dynamics
– volume: 71
  start-page: 502
  year: 2015
  end-page: 515
  ident: CR68
  article-title: Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 38
  start-page: 34
  issue: 01
  year: 2018
  end-page: 40
  ident: CR12
  article-title: Classification and forecasting of geological anomaly based on GEP-logistic regression: A case study from geochemical data of eastern Tianshan
  publication-title: Journal of Guilin University of Technology
– volume: 134
  start-page: 634
  year: 2019
  end-page: 648
  ident: CR19
  article-title: Slope displacement prediction using sequential intelligent computing algorithms
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.10.094
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: CR43
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.10.006
– volume: 164
  start-page: 54
  year: 2015
  end-page: 64
  ident: CR58
  article-title: Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2015.06.018
– volume: 34
  start-page: 314
  issue: 02
  year: 2018
  end-page: 318
  ident: CR4
  article-title: Spatial correlation analysis of mineral resources information
  publication-title: Acta Petrologica Sinica
– volume: 26
  start-page: 457
  issue: 4
  year: 2017
  end-page: 464
  ident: CR63
  article-title: Machine learning of mineralization-related geochemical anomalies: A review of potential methods
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-017-9345-4
– volume: 23
  start-page: 973
  issue: 5
  year: 2020
  end-page: 981
  ident: CR30
  article-title: A novel hybrid machine learning approach for change detection in remote sensing images
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2020.01.002
– volume: 59
  start-page: 556
  issue: 3
  year: 2016
  end-page: 572
  ident: CR57
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-015-5178-3
– volume: 36
  start-page: 327
  issue: 02
  year: 2017
  end-page: 331
  ident: CR62
  article-title: Research progress on big data and intelligent modelling of mineral deposits
  publication-title: Bulletin of Mineralogy, Petrology and Geochemistry
– volume: 40
  start-page: 77
  issue: 2
  year: 2007
  end-page: 84
  ident: CR38
  article-title: The main metal deposits metallogenic series and exploration direction in Feng-Tai ore cluster region, Shaanxi Province
  publication-title: Northwestern Geology
– volume: 34
  start-page: 1959
  issue: 7
  year: 2018
  end-page: 1976
  ident: CR39
  article-title: Tectonic controls on polymetallic mineralization in the Fengxian-Taibai ore cluster zone, Western Qinling, Shannxi Province
  publication-title: Acta Petrologica Sinica
  doi: 10.1111/1755-6724.13688
– volume: 130
  start-page: 84
  year: 2019
  end-page: 93
  ident: CR24
  article-title: Mineral grains recognition using computer vision and machine learning
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.05.009
– volume: 2011
  start-page: 52
  year: 2011
  end-page: 59
  ident: CR25
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artificial Neural Networks and Machine Learning-ICANN
– volume: 125
  start-page: 43
  year: 2019
  end-page: 54
  ident: CR5
  article-title: A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.01.016
– volume: 37
  start-page: 1967
  issue: 12
  year: 2011
  ident: 10038_CR65
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2010.09.014
– volume: 38
  start-page: 34
  issue: 01
  year: 2018
  ident: 10038_CR12
  publication-title: Journal of Guilin University of Technology
– volume: 74
  start-page: 60
  year: 2015
  ident: 10038_CR3
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2014.10.004
– volume: 34
  start-page: 3217
  issue: 11
  year: 2018
  ident: 10038_CR21
  publication-title: Acta Petrologica Sinica
– volume: 34
  start-page: 1255
  issue: 7
  year: 2015
  ident: 10038_CR59
  publication-title: Geological Bulletin of China
– volume: 102
  start-page: 811
  year: 2018
  ident: 10038_CR45
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 164
  start-page: 54
  year: 2015
  ident: 10038_CR58
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2015.06.018
– volume: 23
  start-page: 973
  issue: 5
  year: 2020
  ident: 10038_CR30
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2020.01.002
– volume: 29
  start-page: 1564
  issue: 10
  year: 2010
  ident: 10038_CR49
  publication-title: Geological Bulletin of China
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10038_CR15
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– volume: 81
  start-page: 1
  year: 2015
  ident: 10038_CR11
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.04.007
– volume: 27
  start-page: 5
  issue: 1
  year: 2017
  ident: 10038_CR66
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-017-9357-0
– volume: 32
  start-page: 2037
  issue: 7
  year: 2019
  ident: 10038_CR18
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-019-04341-3
– volume: 22
  start-page: 223
  issue: 02
  year: 2016
  ident: 10038_CR20
  publication-title: Journal of Geomechanics
– volume: 34
  start-page: 1959
  issue: 7
  year: 2018
  ident: 10038_CR39
  publication-title: Acta Petrologica Sinica
  doi: 10.1111/1755-6724.13688
– volume: 26
  start-page: 457
  issue: 4
  year: 2017
  ident: 10038_CR63
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-017-9345-4
– volume: 45
  start-page: 3706
  issue: 8
  year: 2018
  ident: 10038_CR14
  publication-title: Geophysical Research Letters
  doi: 10.1002/2018GL077004
– ident: 10038_CR10
  doi: 10.1016/j.gecco.2020.e00971
– volume: 22
  start-page: 62
  issue: 01
  year: 2008
  ident: 10038_CR17
  publication-title: Mineral Resources and Geology
– volume: 2
  start-page: 125
  issue: 25
  year: 2015
  ident: 10038_CR26
  publication-title: Natural Resources Research
– volume: 128
  year: 2021
  ident: 10038_CR31
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.104940
– volume: 122
  year: 2020
  ident: 10038_CR16
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2020.104747
– volume: 75
  start-page: 16
  year: 2016
  ident: 10038_CR9
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.12.005
– volume: 19
  start-page: 103
  issue: 2
  year: 2010
  ident: 10038_CR29
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-010-9112-2
– ident: 10038_CR54
  doi: 10.1016/j.oregeorev.2021.104264
– volume: 71
  start-page: 502
  year: 2015
  ident: 10038_CR68
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 64
  start-page: 639
  issue: 5
  year: 2017
  ident: 10038_CR7
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120099.2017.1328705
– volume: 34
  start-page: 314
  issue: 02
  year: 2018
  ident: 10038_CR4
  publication-title: Acta Petrologica Sinica
– volume: 111
  start-page: 18
  year: 2018
  ident: 10038_CR44
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2017.10.005
– volume: 134
  start-page: 634
  year: 2019
  ident: 10038_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.10.094
– volume: 143
  year: 2019
  ident: 10038_CR13
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2019.10589
– volume: 128
  start-page: 116
  year: 2017
  ident: 10038_CR34
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2016.11.032
– volume: 12
  start-page: 351
  issue: 1
  year: 2021
  ident: 10038_CR36
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2020.02.012
– volume: 40
  start-page: 77
  issue: 2
  year: 2007
  ident: 10038_CR38
  publication-title: Northwestern Geology
– volume: 29
  start-page: 3415
  issue: 6
  year: 2020
  ident: 10038_CR64
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09700-9
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10038_CR8
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– ident: 10038_CR53
  doi: 10.1016/j.gexplo.2021.106839
– ident: 10038_CR6
  doi: 10.1144/geochem2016-024
– volume: 117
  start-page: 90
  year: 2017
  ident: 10038_CR32
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.12.006
– volume: 2011
  start-page: 52
  year: 2011
  ident: 10038_CR25
  publication-title: Artificial Neural Networks and Machine Learning-ICANN
– volume: 176
  year: 2021
  ident: 10038_CR27
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109097
– volume: 46
  start-page: 350
  issue: 1
  year: 2021
  ident: 10038_CR67
  publication-title: Earth Science
– volume: 128
  start-page: 47
  year: 2017
  ident: 10038_CR51
  publication-title: Journal of African Earth Sciences
  doi: 10.1016/j.jafrearsci.2016.04.019
– volume: 109
  start-page: 26
  year: 2019
  ident: 10038_CR35
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2019.04.003
– volume: 79
  start-page: 69
  year: 2015
  ident: 10038_CR50
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.03.007
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  ident: 10038_CR41
  publication-title: Journal of Advances in Modeling Earth Systems
  doi: 10.1029/2019MS001705
– volume: 28
  start-page: 1
  issue: 3
  year: 2021
  ident: 10038_CR56
  publication-title: Earth Science Frontiers
– volume: 32
  start-page: 269
  issue: 2
  year: 2021
  ident: 10038_CR60
  publication-title: Journal of Earth Science
  doi: 10.1007/s12583-021-1440-0
– volume: 125
  start-page: 43
  year: 2019
  ident: 10038_CR5
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.01.016
– volume: 91
  start-page: 1066
  year: 2017
  ident: 10038_CR1
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2017.11.001
– volume: 130
  start-page: 84
  year: 2019
  ident: 10038_CR24
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2019.05.009
– volume: 232
  year: 2022
  ident: 10038_CR42
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106904
– volume: 30
  start-page: 3905
  issue: 6
  year: 2021
  ident: 10038_CR48
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09934-1
– volume: 36
  start-page: 327
  issue: 02
  year: 2017
  ident: 10038_CR62
  publication-title: Bulletin of Mineralogy, Petrology and Geochemistry
– volume: 131
  start-page: 105043
  year: 2021
  ident: 10038_CR23
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.105043
– volume: 28
  start-page: 1285
  issue: 4
  year: 2019
  ident: 10038_CR40
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09471-y
– ident: 10038_CR46
  doi: 10.1016/j.oregeorev.2021.104316
– volume: 122
  year: 2020
  ident: 10038_CR22
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2020.104710
– volume: 71
  start-page: 804
  year: 2015
  ident: 10038_CR33
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 71
  start-page: 777
  year: 2015
  ident: 10038_CR2
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.08.010
– volume: 49
  start-page: 234
  issue: 01
  year: 2016
  ident: 10038_CR61
  publication-title: Northwestern Geology
– volume: 86
  start-page: 75
  year: 2016
  ident: 10038_CR43
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2015.10.006
– volume: 29
  start-page: 189
  issue: 1
  year: 2019
  ident: 10038_CR37
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09510-8
– volume: 59
  start-page: 556
  issue: 3
  year: 2016
  ident: 10038_CR57
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-015-5178-3
– year: 2019
  ident: 10038_CR28
  publication-title: Nature
  doi: 10.1038/s41586-019-1583-7
– volume-title: Qinling orogenic belt and continental dynamics
  year: 2001
  ident: 10038_CR55
– volume: 164
  start-page: 94
  year: 2016
  ident: 10038_CR52
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2015.10.008
SSID ssj0007385
Score 2.4058008
Snippet The convolutional neural networks used widely in mineral prospectivity prediction usually perform mixed feature extraction for multichannel inputs. This...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1103
SubjectTerms Artificial neural networks
Chemistry and Earth Sciences
Classifiers
Computer Science
Earth and Environmental Science
Earth Sciences
Feature extraction
Fossil Fuels (incl. Carbon Capture)
Geography
Gold
Machine learning
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Neural networks
Original Paper
Performance enhancement
Performance prediction
Physics
Predictions
Statistics for Engineering
Support vector machines
Sustainable Development
Unsupervised learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UKujBR1WsL_bgTYPJNt0kJ9Hi62ApRaG3kH0EBE20SQv-e2fSbaOCXrwElt1sFr7Z2S87u98AnERpiCy1o50giYzjC64cKQLj4OpuVCiUFyZhlWwi6PXC4TDq2w23wh6rnPnEylHrXNEe-TmP0Pja6FrFxdu7Q1mjKLpqU2gsQoOUytDOG1fXvf5g7otJq6VSTMWfJKLe9trM9PIcUguKYXJ0RS5O--D70lTzzR8h0mrludn475g3Yd1yTnY5NZItWDBZE9a-KBE2YeW2yvD7sQ3pw3MlRM36o9xew0SijiWK6BCKTH6weysyQcU8Zd08m1gTpu-My5zkMbUZsd70lDlLMs0G-MhfGSUDLcodeLq5fuzeOTYZg6NwlpaO0NzXfupGXCEnULJjXK7bCKhxpWtE0pGeVpwn2EZJX4ZYqdNESWPcxE87or0LS1memT1gXKSRCHzpYYWPBCsh1TjtmrZ20TxCrwXeDIdYWaVySpjxEtcay4RdjNjFFXZx0ILT-TtvU52OP1sfzgCL7Zwt4hqtFpzNIK-rf-9t_-_eDmCVk5VVWzeHsFSOxuYIltWkfC5Gx9ZiPwE8g_JJ
  priority: 102
  providerName: ProQuest
Title Mineral Prospectivity Prediction by Integration of Convolutional Autoencoder Network and Random Forest
URI https://link.springer.com/article/10.1007/s11053-022-10038-7
https://www.proquest.com/docview/2918336786
Volume 31
WOSCitedRecordID wos000774717600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PCBAR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PATMY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: KB.
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UR88VsX1WPLgm1babDdNH1W8EJdlPfCtNEdR0Fa2VfDfO8mmrooK-lIakpYhc7aT-QZgO844Rqkd5UVprL2QUekJFmkPvbuWnMmAp9w2m4i6XX57G_dcUVhZn3avU5LWUo-K3TAUMDlHiqbDRzWNxmES3R03DRv6lzfv9tfgs1iUVPwwMuG2K5X5_h2f3dEoxvySFrXe5njhf3QuwryLLsn-UByWYEznDVioOzcQp8gNmPsAQ9iAGdcJ_e61AdMnttWvubOHQ2W5DNnFvcWmJr1B4SozMXbHkUnyGMYS8UrOHO6EGRYZOSzyFyfVhqDnqjCImQqJ6A4PnpM0V6SPl-KRmP6gZbUC18dHV4ennuvP4ElU3MpjioYqzPyYSgwTpOhon6o28lj7wtcs7YhASUpTXCNFKDhOqiyVQms_DbMOa6_CRF7keg0IZVnMolAEOBFizJUaIDnl67byUWJ40ISgZlMiHXi56aHxkIxgl822J7jtid32JGrCzvszT0Pojl9Xb9bcT5walwmN0eIhKZw1Ybfm9mj657et_235BsxSIzD2784mTFSDZ70FU_Klui8HLZg8OOr2-i0YPz_Ya1lhfwPucfY0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqoADpRTEAi0-0BNNSZyskxwQorSUFbBCCCRuIX5EQoIEdgNo_xS_kRknYaES3DhwiWTZcR7-PDP2eL4BWIuzCK3UtnbCNDZOILhypAiNg9rdqEgoL0ojm2wi7Hajs7P4aAQemlgYOlbZyEQrqHWhaI98g8cIPh9Fq9i6vnEoaxR5V5sUGhUs9s3gHpds_c3OHxzfH5zv_j3Z2XPqrAKOQriVjtA80EHmxlyhclOybVyufXwz40rXiLQtPa04T7GNkoGMsFJnqZLGuGmQtYWP_Y7CeOCjbUpO4N-_niQ_McNYflZckpGhXwfpVKF6aMiQx5Sj4HNRyIQvFeHQuv3PIWv13O7nj_aHZmGmtqjZdjUFvsCIyedg-hnP4hx8-mfzFw--QnZ4YWm22VGvqINMcRmCJfJXEUaZHLBOTaFBxSJjO0V-V09Qes5tWRD5pzY91q3O0LM01-wYL8UVo1Sn_XIeTt_lkxdgLC9yswiMiywWYSA9rAjQfEyJE0-7xtcugj_yWuA1456omoed0oFcJkMGacJKglhJLFaSsAXrT_dcVywkb7ZeaQCS1BKpnwzR0YKfDcSG1a_3tvR2b6swuXdyeJAcdLr7yzDFCeF2k2oFxsrerfkGE-quvOj3vtu5wuD8vaH3CBDMUhk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NDTb2QCFjolsBP_AGURM3dZJH1K2jAqqKL_Utij-iVRrJ1GaT-t9z5zptQTAJ7SWKZcc6-e7sc-7udwBv0iJBK7Wv_ThPjR8JrnwpYuPj6W5UIlSY5IktNhGPx8l0mk62svhttHvjklzlNBBKU1l3r3XR3SS-oVlA_keO20iAKhs_gL2IAunpvv71x3ovJqwWi5iKlyQyvV3azN_n-P1o2tibf7hI7ckzbN2f5qfwxFmd7P1KTJ7Bjik9aDUVHZhTcA8Ot-AJPThwFdIvlx48urAlgOnNBo2qxREUn2cWs5pN5pXL2ESbHlvk_CGGM7lkI4dHQc2qYIOqvHXSTgTd1BUhaWokYrwKSGd5qdkXfFQ_GdUNXdTP4fvw_Nvgg-_qNvgKFbr2heaRjoog5QrNByX7JuC6h7w3gQyMyPsy1IrzHMcoGckEO3WRK2lMkEdFX_SOYbesSvMCGBdFKuJIhtgRoS2WE8CcDkxPByhJSdiGsGFZphyoOdXWuMo2cMy07Bkue2aXPYvb8Hb9zfUK0uPO0Z1GEjKn3ouMp7gTIimJaMO7hvOb7n_PdvJ_w1_D_uRsmH0ajT-ewmNOsmN_AHVgt57fmJfwUN3Ws8X8lZX6X8O2_4Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mineral+Prospectivity+Prediction+by+Integration+of+Convolutional+Autoencoder+Network+and+Random+Forest&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Yang%2C+Na&rft.au=Zhang%2C+Zhenkai&rft.au=Yang%2C+Jianhua&rft.au=Hong%2C+Zenglin&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=31&rft.issue=3&rft.spage=1103&rft.epage=1119&rft_id=info:doi/10.1007%2Fs11053-022-10038-7&rft.externalDocID=10_1007_s11053_022_10038_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon