On parameterized approximation algorithms for balanced clustering

Balanced clustering is a frequently encountered problem in applications requiring balanced class distributions, which generalizes the standard clustering problem in that the number of clients connected to each facility is constrained by the given lower and upper bounds. It was known that both the pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 45; no. 1; p. 49
Main Authors: Kong, Xiangyan, Zhang, Zhen, Feng, Qilong
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2023
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Balanced clustering is a frequently encountered problem in applications requiring balanced class distributions, which generalizes the standard clustering problem in that the number of clients connected to each facility is constrained by the given lower and upper bounds. It was known that both the problems of balanced k -means and k -median are W[2]-hard if parameterized by k , implying that the existences of FPT( k )-time exact algorithms for these problems are unlikely. In this paper, we give FPT( k )-time ( 9 + ϵ ) -approximation and ( 3 + ϵ ) -approximation algorithms for balanced k -means and k -median respectively, improving upon the previous best approximation ratios of 86.9 + ϵ and 7.2 + ϵ obtained in the same time. Our main technical contribution and the crucial step in getting the improved ratios is a different random sampling method for selecting opened facilities.
AbstractList Balanced clustering is a frequently encountered problem in applications requiring balanced class distributions, which generalizes the standard clustering problem in that the number of clients connected to each facility is constrained by the given lower and upper bounds. It was known that both the problems of balanced k -means and k -median are W[2]-hard if parameterized by k , implying that the existences of FPT( k )-time exact algorithms for these problems are unlikely. In this paper, we give FPT( k )-time ( 9 + ϵ ) -approximation and ( 3 + ϵ ) -approximation algorithms for balanced k -means and k -median respectively, improving upon the previous best approximation ratios of 86.9 + ϵ and 7.2 + ϵ obtained in the same time. Our main technical contribution and the crucial step in getting the improved ratios is a different random sampling method for selecting opened facilities.
Balanced clustering is a frequently encountered problem in applications requiring balanced class distributions, which generalizes the standard clustering problem in that the number of clients connected to each facility is constrained by the given lower and upper bounds. It was known that both the problems of balanced k-means and k-median are W[2]-hard if parameterized by k, implying that the existences of FPT(k)-time exact algorithms for these problems are unlikely. In this paper, we give FPT(k)-time (9+ϵ)-approximation and (3+ϵ)-approximation algorithms for balanced k-means and k-median respectively, improving upon the previous best approximation ratios of 86.9+ϵ and 7.2+ϵ obtained in the same time. Our main technical contribution and the crucial step in getting the improved ratios is a different random sampling method for selecting opened facilities.
ArticleNumber 49
Author Kong, Xiangyan
Feng, Qilong
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Xiangyan
  surname: Kong
  fullname: Kong, Xiangyan
  organization: School of Computer Science and Engineering, Central South University
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-2974-5781
  surname: Zhang
  fullname: Zhang, Zhen
  email: csuzz@foxmail.com
  organization: School of Frontier Crossover Studies, Hunan University of Technology and Business
– sequence: 3
  givenname: Qilong
  surname: Feng
  fullname: Feng, Qilong
  organization: School of Computer Science and Engineering, Central South University
BookMark eNp9kD1PwzAQhi1UJErhDzBFYjac4yRnj1XFl1SpC8zW1XFKqjQJdqoCvx63RUJi6HQe3sd373PJRm3XOsZuBNwJALwPAhQqDmnKAbQCvjtjY5Gj5KlSxSi-pUp5oSG_YJchrCGmIM_GbLpok548bdzgfP3tyoT63nef9YaGumsTaladr4f3TUiqzidLaqi1MWWbbdgT7eqKnVfUBHf9Oyfs7fHhdfbM54unl9l0zq0UeuCFJUQlwGosHQGSzQmFQ9JLLCtQ1pEtM60t2tTpLK-wylxRoqyQhKRCTtjt8d943sfWhcGsu61v40oj0zzDWEmKmEqPKeu7ELyrTO9jF_9lBJi9KnNUZaIqc1BldhFS_yBbD4f-g6e6OY3KIxr6vQzn_646Qf0APeSCCA
CitedBy_id crossref_primary_10_1016_j_tcs_2025_115426
crossref_primary_10_1360_SSI_2024_0108
Cites_doi 10.1006/jagm.1998.0993
10.1145/2981561
10.1109/JIOT.2018.2842766
10.1145/2983633
10.1016/j.ejor.2017.04.054
10.1016/j.ins.2018.10.058
10.1007/s11081-020-09503-0
10.1137/1.9781611974331.ch56
10.1007/s11432-021-3411-7
10.24963/ijcai.2019/414
10.1049/iet-wss.2015.0069
10.1137/070699007
10.1137/18M1171321
10.1016/j.ins.2018.11.030
10.1145/2835776.2835829
10.1007/978-3-030-58150-3_51
10.1016/j.tcs.2020.07.022
10.1137/130938645
10.1145/3519935.3520011
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10878-022-00980-w
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_022_00980_w
GrantInformation_xml – fundername: National Key R &D Program of China
  grantid: 2021YFC3300603
– fundername: National Natural Science Foundation of China
  grantid: 62202161; 62172446
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-6ca77810c97dea07ac5a71e7a9b7df08ceacd499c7c2e945f7f4e6d73f7a13a63
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000910981000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Sat Sep 27 04:21:01 EDT 2025
Sat Nov 29 04:54:39 EST 2025
Tue Nov 18 21:40:14 EST 2025
Fri Feb 21 02:45:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Approximation algorithm
Clustering
Parameterized algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6ca77810c97dea07ac5a71e7a9b7df08ceacd499c7c2e945f7f4e6d73f7a13a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2974-5781
PQID 3254700031
PQPubID 2043856
ParticipantIDs proquest_journals_3254700031
crossref_primary_10_1007_s10878_022_00980_w
crossref_citationtrail_10_1007_s10878_022_00980_w
springer_journals_10_1007_s10878_022_00980_w
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References SiavoshiSKavianYSSharifHLoad-balanced energy efficient clustering protocol for wireless sensor networksIET Wirel Sens Syst201663677310.1049/iet-wss.2015.0069
Bateni M, Bhaskara A, Lattanzi S, Mirrokni VS (2014) Distributed balanced clustering via mapping coresets. In: Proceedings of 27th annual conference on neural information processing systems (NeurIPS), pp 2591–2599
Dick T, Li M, Pillutla VK, White C, Balcan N, Smola AJ (2017) Data driven resource allocation for distributed learning. In: Proceedings of 20th international conference on artificial intelligence and statistics (AISTATS), pp 662–671
ByrkaJPensylTRybickiBSrinivasanATrinhKAn improved approximation for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and positive correlation in budgeted optimizationACM Trans Algorithms201713223:123:31365924510.1145/29815611454.90069
Demirci HG, Li S (2016) Constant approximation for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-capacity violation. In: Proceedings of 43rd international colloquium on automata, languages, and programming (ICALP), pp 73:1–73:14
Feng Q, Zhang Z, Huang Z, Xu J, Wang J (2020) A unified framework of FPT approximation algorithms for clustering problems. In: Proceedings of 31st international symposium on algorithms and computation (ISAAC), pp 5:1–5:17
Cohen-Addad V, Esfandiari H, Mirrokni VS, Narayanan S (2022) Improved approximations for Euclidean k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median, via nested quasi-independent sets. In: Proceedings of 54th annual ACM SIGACT symposium on theory of computing (STOC). ACM, pp 1621–1628
Cohen-Addad V, Gupta A, Kumar A, Lee E, Li J (2019) Tight FPT approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means. In: Proceedings of 46th international colloquium on automata, languages, and programming (ICALP), pp 42:1–42:14
Wu X, Shi F, Guo Y, Zhang Z, Huang J, Wang J (2022) An approximation algorithm for lower-bounded k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with constant factor. Sci China Inf Sci 65(4):140601:1–140601:9
QiLWangRHuCLiSHeQXuXTime-aware distributed service recommendation with privacy-preservationInf Sci201948035436410.1016/j.ins.2018.11.030
DingHFaster balanced clusterings in high dimensionTheor Comput Sci20208422840415616310.1016/j.tcs.2020.07.0221455.68274
LiSOn uniform capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median beyond the natural LP relaxationACM Trans Algorithms201713222:122:18365924410.1145/29836331451.90089
Han L, Hao C, Wu C, Zhang Z (2020) Approximation algorithms for the lower-bounded k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and its generalizations. In: Proceedings of 26th international conference on computing and combinatorics (COCOON), pp 627–639
Lin W, He Z, Xiao M (2019) Balanced clustering: A uniform model and fast algorithm. In: Proceedings of 28th international joint conference on artificial intelligence (IJCAI), pp 2987–2993
Li S (2016) Approximating capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with (1+ϵ)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )k$$\end{document} open facilities. In: Proceedings of 27th annual ACM-SIAM symposium on discrete algorithms (SODA), pp 786–796
Cohen-Addad V, Li J (2019) On the fixed-parameter tractability of capacitated clustering. In: Proceedings of 46th international colloquium on automata, languages, and programming (ICALP), pp 41:1–41:14
Aydin K, Bateni M, Mirrokni VS (2016) Distributed balanced partitioning via linear embedding. In: Proceedings of 9th ACM international conference on web search and data mining (WSDM), pp 387–396
XuXDuZChenXCaiCConfidence consensus-based model for large-scale group decision making: a novel approach to managing non-cooperative behaviorsInf Sci201947741042710.1016/j.ins.2018.10.058
Ahmadian S, Norouzi-Fard A, Svensson O, Ward J (2020) Better guarantees for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means and Euclidean k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median by primal-dual algorithms. SIAM J Comput 49(4)
Adamczyk M, Byrka J, Marcinkowski J, Meesum SM, Wlodarczyk M (2019) Constant-factor FPT approximation for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median. In: Proceedings of of 27th annual European symposium on algorithms (ESA), pp 1:1–1:14
Manurangsi P, Raghavendra P (2017) A birthday repetition theorem and complexity of approximating dense CSPs. In: Proceedings of 44th international colloquium on automata, languages, and programming (ICALP), pp 78:1–78:15
ChenKOn coresets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means clustering in metric and Euclidean spaces and their applicationsSIAM J Comput2009393923947253884410.1137/0706990071192.68880
LiSSvenssonOApproximating k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median via pseudo-approximationSIAM J Comput2016452530547349089510.1137/1309386451338.90346
Bandyapadhyay S, Fomin FV, Simonov K (2021) On coresets for fair clustering in metric and Euclidean spaces and their applications. In: Proceedings of 48th international colloquium on automata, languages, and programming (ICALP), pp 23:1–23:15
BorgwardtSBriedenAGritzmannPAn LP-based k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means algorithm for balancing weighted point setsEur J Oper Res20172632349355366903610.1016/j.ejor.2017.04.0541381.62154
XuYMöhringRHXuDZhangYZouYA constant FPT approximation algorithm for hard-capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-meansOptim Eng2020213709722412571210.1007/s11081-020-09503-01457.90138
ZhangDQiaoYSheLShenRRenJZhangYTwo time-scale resource management for green internet of things networksIEEE Internet Things J20196154555610.1109/JIOT.2018.2842766
GuhaSKhullerSGreedy strikes bac
980_CR25
L Qi (980_CR23) 2019; 480
S Li (980_CR19) 2017; 13
980_CR12
980_CR13
980_CR10
980_CR11
X Xu (980_CR26) 2019; 477
980_CR17
980_CR15
S Li (980_CR20) 2016; 45
980_CR18
Y Xu (980_CR27) 2020; 21
S Borgwardt (980_CR6) 2017; 263
J Byrka (980_CR7) 2017; 13
D Zhang (980_CR28) 2019; 6
980_CR4
980_CR3
980_CR2
980_CR1
S Siavoshi (980_CR24) 2016; 6
S Guha (980_CR16) 1999; 31
980_CR5
K Chen (980_CR8) 2009; 39
H Ding (980_CR14) 2020; 842
980_CR21
980_CR9
980_CR22
References_xml – reference: SiavoshiSKavianYSSharifHLoad-balanced energy efficient clustering protocol for wireless sensor networksIET Wirel Sens Syst201663677310.1049/iet-wss.2015.0069
– reference: DingHFaster balanced clusterings in high dimensionTheor Comput Sci20208422840415616310.1016/j.tcs.2020.07.0221455.68274
– reference: QiLWangRHuCLiSHeQXuXTime-aware distributed service recommendation with privacy-preservationInf Sci201948035436410.1016/j.ins.2018.11.030
– reference: Wu X, Shi F, Guo Y, Zhang Z, Huang J, Wang J (2022) An approximation algorithm for lower-bounded k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with constant factor. Sci China Inf Sci 65(4):140601:1–140601:9
– reference: Manurangsi P, Raghavendra P (2017) A birthday repetition theorem and complexity of approximating dense CSPs. In: Proceedings of 44th international colloquium on automata, languages, and programming (ICALP), pp 78:1–78:15
– reference: XuXDuZChenXCaiCConfidence consensus-based model for large-scale group decision making: a novel approach to managing non-cooperative behaviorsInf Sci201947741042710.1016/j.ins.2018.10.058
– reference: Lin W, He Z, Xiao M (2019) Balanced clustering: A uniform model and fast algorithm. In: Proceedings of 28th international joint conference on artificial intelligence (IJCAI), pp 2987–2993
– reference: Adamczyk M, Byrka J, Marcinkowski J, Meesum SM, Wlodarczyk M (2019) Constant-factor FPT approximation for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median. In: Proceedings of of 27th annual European symposium on algorithms (ESA), pp 1:1–1:14
– reference: Cohen-Addad V, Li J (2019) On the fixed-parameter tractability of capacitated clustering. In: Proceedings of 46th international colloquium on automata, languages, and programming (ICALP), pp 41:1–41:14
– reference: Ahmadian S, Norouzi-Fard A, Svensson O, Ward J (2020) Better guarantees for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means and Euclidean k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median by primal-dual algorithms. SIAM J Comput 49(4)
– reference: Li S (2016) Approximating capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with (1+ϵ)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )k$$\end{document} open facilities. In: Proceedings of 27th annual ACM-SIAM symposium on discrete algorithms (SODA), pp 786–796
– reference: Dick T, Li M, Pillutla VK, White C, Balcan N, Smola AJ (2017) Data driven resource allocation for distributed learning. In: Proceedings of 20th international conference on artificial intelligence and statistics (AISTATS), pp 662–671
– reference: GuhaSKhullerSGreedy strikes back: improved facility location algorithmsJ Algorithms1999311228248168244010.1006/jagm.1998.09930928.68137
– reference: Cohen-Addad V, Gupta A, Kumar A, Lee E, Li J (2019) Tight FPT approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means. In: Proceedings of 46th international colloquium on automata, languages, and programming (ICALP), pp 42:1–42:14
– reference: Demirci HG, Li S (2016) Constant approximation for capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median with (1+ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\epsilon )$$\end{document}-capacity violation. In: Proceedings of 43rd international colloquium on automata, languages, and programming (ICALP), pp 73:1–73:14
– reference: Feng Q, Zhang Z, Huang Z, Xu J, Wang J (2020) A unified framework of FPT approximation algorithms for clustering problems. In: Proceedings of 31st international symposium on algorithms and computation (ISAAC), pp 5:1–5:17
– reference: Bateni M, Bhaskara A, Lattanzi S, Mirrokni VS (2014) Distributed balanced clustering via mapping coresets. In: Proceedings of 27th annual conference on neural information processing systems (NeurIPS), pp 2591–2599
– reference: ByrkaJPensylTRybickiBSrinivasanATrinhKAn improved approximation for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and positive correlation in budgeted optimizationACM Trans Algorithms201713223:123:31365924510.1145/29815611454.90069
– reference: Bandyapadhyay S, Fomin FV, Simonov K (2021) On coresets for fair clustering in metric and Euclidean spaces and their applications. In: Proceedings of 48th international colloquium on automata, languages, and programming (ICALP), pp 23:1–23:15
– reference: Han L, Hao C, Wu C, Zhang Z (2020) Approximation algorithms for the lower-bounded k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and its generalizations. In: Proceedings of 26th international conference on computing and combinatorics (COCOON), pp 627–639
– reference: BorgwardtSBriedenAGritzmannPAn LP-based k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means algorithm for balancing weighted point setsEur J Oper Res20172632349355366903610.1016/j.ejor.2017.04.0541381.62154
– reference: ChenKOn coresets for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means clustering in metric and Euclidean spaces and their applicationsSIAM J Comput2009393923947253884410.1137/0706990071192.68880
– reference: XuYMöhringRHXuDZhangYZouYA constant FPT approximation algorithm for hard-capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-meansOptim Eng2020213709722412571210.1007/s11081-020-09503-01457.90138
– reference: LiSSvenssonOApproximating k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median via pseudo-approximationSIAM J Comput2016452530547349089510.1137/1309386451338.90346
– reference: Aydin K, Bateni M, Mirrokni VS (2016) Distributed balanced partitioning via linear embedding. In: Proceedings of 9th ACM international conference on web search and data mining (WSDM), pp 387–396
– reference: Cohen-Addad V, Esfandiari H, Mirrokni VS, Narayanan S (2022) Improved approximations for Euclidean k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-means and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median, via nested quasi-independent sets. In: Proceedings of 54th annual ACM SIGACT symposium on theory of computing (STOC). ACM, pp 1621–1628
– reference: LiSOn uniform capacitated k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-median beyond the natural LP relaxationACM Trans Algorithms201713222:122:18365924410.1145/29836331451.90089
– reference: ZhangDQiaoYSheLShenRRenJZhangYTwo time-scale resource management for green internet of things networksIEEE Internet Things J20196154555610.1109/JIOT.2018.2842766
– volume: 31
  start-page: 228
  issue: 1
  year: 1999
  ident: 980_CR16
  publication-title: J Algorithms
  doi: 10.1006/jagm.1998.0993
– volume: 13
  start-page: 23:1
  issue: 2
  year: 2017
  ident: 980_CR7
  publication-title: ACM Trans Algorithms
  doi: 10.1145/2981561
– ident: 980_CR15
– ident: 980_CR13
– ident: 980_CR5
– volume: 6
  start-page: 545
  issue: 1
  year: 2019
  ident: 980_CR28
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2842766
– volume: 13
  start-page: 22:1
  issue: 2
  year: 2017
  ident: 980_CR19
  publication-title: ACM Trans Algorithms
  doi: 10.1145/2983633
– volume: 263
  start-page: 349
  issue: 2
  year: 2017
  ident: 980_CR6
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.04.054
– ident: 980_CR11
– volume: 477
  start-page: 410
  year: 2019
  ident: 980_CR26
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.10.058
– volume: 21
  start-page: 709
  issue: 3
  year: 2020
  ident: 980_CR27
  publication-title: Optim Eng
  doi: 10.1007/s11081-020-09503-0
– ident: 980_CR18
  doi: 10.1137/1.9781611974331.ch56
– ident: 980_CR25
  doi: 10.1007/s11432-021-3411-7
– ident: 980_CR21
  doi: 10.24963/ijcai.2019/414
– ident: 980_CR22
– volume: 6
  start-page: 67
  issue: 3
  year: 2016
  ident: 980_CR24
  publication-title: IET Wirel Sens Syst
  doi: 10.1049/iet-wss.2015.0069
– volume: 39
  start-page: 923
  issue: 3
  year: 2009
  ident: 980_CR8
  publication-title: SIAM J Comput
  doi: 10.1137/070699007
– ident: 980_CR2
  doi: 10.1137/18M1171321
– ident: 980_CR12
– volume: 480
  start-page: 354
  year: 2019
  ident: 980_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.11.030
– ident: 980_CR1
– ident: 980_CR4
– ident: 980_CR10
– ident: 980_CR3
  doi: 10.1145/2835776.2835829
– ident: 980_CR17
  doi: 10.1007/978-3-030-58150-3_51
– volume: 842
  start-page: 28
  year: 2020
  ident: 980_CR14
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2020.07.022
– volume: 45
  start-page: 530
  issue: 2
  year: 2016
  ident: 980_CR20
  publication-title: SIAM J Comput
  doi: 10.1137/130938645
– ident: 980_CR9
  doi: 10.1145/3519935.3520011
SSID ssj0009054
Score 2.2943757
Snippet Balanced clustering is a frequently encountered problem in applications requiring balanced class distributions, which generalizes the standard clustering...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Algorithms
Approximation
Clustering
Combinatorics
Convex and Discrete Geometry
Energy consumption
Euclidean space
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Parameterization
Random sampling
Theory of Computation
Upper bounds
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkShoBy4QaSkiTPOsUJUHNjEUvUWObYDkdoUNSlFfD12lqYgQIJjFHsUjbd58cx7AMdEEpuKdmi6hCuAErmhST1BzZAy9AWjws5F-3qXeH1N-33_tiwKS6ts9-pKMt-p54rdqGaDVeBJk2Ba5nQRljR5idYtuLvv1VS7FimkbFXsqLAfKUtlvrfx-TiqY8wv16L5adNd_993bsBaGV0anWI6bMKCTLZgdY5zUD1dzYha023o3CSGZv8e6qyY-F0KIycZf4uLikaDDZ5G4zh7HqaGim6NUCdCctWKDyaaYUFZ3IHH7vnD2YVZqiqYXC23zPQ4Q6S2xX0UklnIOGFoS2R-iCKyKFdbsVA4iCNvS98lEUau9AQ6ETLbYZ6zC41klMg9MIhCsZEKgGzmSpf4VogOouBhZHlCth1sgl05N-Al5bhWvhgENVmydlagnBXkzgqmTTiZ9XkpCDd-bd2qxiwoF18aOAr0ogZ7dhNOqzGqX_9sbf9vzQ9gRYvPFz9kWtDIxhN5CMv8NYvT8VE-KT8AZ2Lcrg
  priority: 102
  providerName: Springer Nature
Title On parameterized approximation algorithms for balanced clustering
URI https://link.springer.com/article/10.1007/s10878-022-00980-w
https://www.proquest.com/docview/3254700031
Volume 45
WOSCitedRecordID wos000910981000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOsCB5SnKslUO3CAiTuKMc1qxK9AeoFS8hLhEju1ApbY8UmDFr2ecuASQ4MLFUhRnEmXG9jd-fB_AJjecCR3mfswVJShFnPsi0cLPhcRUS6FZJdp3foCdjri4SLtuwq102yrHfWLVUesbZefIdyLKZNAiePb79s63qlF2ddVJaEzCNAsJ61M8d_llQ7ob8FrUllAkZYHcHZpxR-eE5ZalVMxSagb-0_uBqUGbHxZIq3Fn_8d3v3gB5h3i9HbrEFmECTNcgrk3PIR0dfhK3louw-7R0LOM4AO7U6b3bLRXEY__79WnHD3Zv6LXjK4HpUeI18vt5khFtVT_wbIukMUVONvfO_37z3dKC76iJjjyEyURBQtUitrIAKXiEplBmeaoi0Ao6p415UYKVWjSmBdYxCbRGBUoWSSTaBWmhjdDswYep8y2IFDEZGxingY5Roha5UWQaBNG2AI2_s2ZcjTkVg2jnzUEytY1Gbkmq1yTPbVg6_WZ25qE48vaG2N_ZK5BllnjjBZsjz3a3P7c2vrX1n7CrBWgrydlNmBqdP9gfsGMehz1yvs2TP_Z63SP2zB5GHZtiSftKkSpPD45fwG3yepi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgER7KG-RthQf4AQWfq1nfahQ1RI1ahJyCCji4q531zRSkpY4bdr-qP5GZv2oCxK55cDR8nqk9czOfrM78w3AO6aZy5WX2AGTFKCkQWLzUHE74QIjJbhy86Z93zvY6_HhMOqvwW1VC2PSKiufmDtqdSbNGfknnyIZNAje_Xz-yzZdo8ztatVCozCLY329oJAt22sfkn7fe17ry-DgyC67CtiSzG1uh1IgcteRESotHBSSCXQ1iihBlTpckitSFAdIlJ6OApZiGuhQoZ-icH0R-iT3ATwkGBEZR9BnP2qSX4cVTXQJtVLUycoinbJUjxsuWwr9DIWnYy_-3AhrdPvXhWy-z7We_G9_6Clsloja2i-WwDNY09PnsHGPZ5GeunfktNkL2P86tQzj-cRkAo1utLJyYvWrUVHFaYnxT5rW_HSSWYTorcQkf0oaJccXhlWCJL6EbyuZ0StoTM-m-jVYjCL3lECfKwIdsMhJ0EdUMkmdUGnPxya4lVpjWdKsm24f47gmiDamEJMpxLkpxIsmfLj75rwgGVk6eqfSf1w6nCyuld-Ej5UF1a__LW1rubS38Pho0O3EnXbveBvWPYJ4xQHUDjTmswv9Bh7Jy_kom-3mS8GCk1Vb1m_hMkWJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMcPnSL64G9x_uyDb1rWrk0vfRR1KM45UMfeSpqkOtg6WasT_3qTtvuhqCA-lqahXJLmvs3d5wCOiCQ2FdXQdAlXAiVyQ5N6gpohZegLRoWdFe1r1bHRoO2235zK4s-i3UdHknlOg6Y0xWnlWUSVqcQ3qsmwSkhpIKZlDmdhztU0NK3X71oT7K5F8rK2yo9UOpAUaTPf9_F5a5r4m1-OSLOdp7by_3deheXC6zRO82myBjMyXoelKRahuroZA1yTDTi9jQ1NBe_paJnOuxRGBh9_6-SZjgbrPvYHnfSplxjK6zVCHSDJVSvefdHkBdXjJjzULu7PLs2i2oLJ1TJMTY8zRGpb3EchmYWME4a2ROaHKCKLcvWJFkofceRV6bskwsiVnkAnQmY7zHO2oBT3Y7kNBlHqNlKOkc1c6RLfCtFBFDyMLE_IqoNlsEeGDniBItcVMbrBBKKsjRUoYwWZsYJhGY7HzzznII5fW--Nxi8oFmUSOEoMoxaBdhlORuM1uf1zbzt_a34IC83zWlC_alzvwqKuT5__s9mDUjp4kfswz1_TTjI4yObqBwN06HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+parameterized+approximation+algorithms+for+balanced+clustering&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Kong%2C+Xiangyan&rft.au=Zhang%2C+Zhen&rft.au=Feng%2C+Qilong&rft.date=2023-01-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs10878-022-00980-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_022_00980_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon