DSSAE-BBOA: deep learning-based weather big data analysis and visualization

The weather forecasting process is used to predict the future atmospheric condition of a specified location. The evolution of the big data era gives the chances to significantly increase the prediction accuracy of weather conditions. In this paper, a deep learning-based stacked sparse autoencoder (D...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 80; číslo 18; s. 27471 - 27493
Hlavní autoři: G, Madhukar Rao, Dharavath, Ramesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2021
Springer Nature B.V
Témata:
ISSN:1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The weather forecasting process is used to predict the future atmospheric condition of a specified location. The evolution of the big data era gives the chances to significantly increase the prediction accuracy of weather conditions. In this paper, a deep learning-based stacked sparse autoencoder (DSSAE) has been proposed for predicting the weather condition of a particular area. This model requires a pre-processing approach to obtain essential data from big weather data and increase the prediction model’s speed. For this, the principal component analysis (PCA) is utilized to reduce dimensionality and extraction of features with more significant variance. Also, it integrates the feature selection algorithm based on Binary Butterfly Optimization Algorithm (BBOA) along with a deep stack autoencoder to improve prediction accuracy. The proposed model is validated using the weather data taken from the division of weather underground for short term and long term weather prediction. The simulation consequences illustrate that the proposed model overtakes the existing models in terms of computation time, accuracy and error rate.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-021-11059-9