A Rigorous Condition Number Estimate of an Immersed Finite Element Method

It is known that the convergence rate of the traditional iteration methods like the conjugate gradient method depends on the condition number of the stiffness matrix. Moreover the construction of fast solvers like multigrid and domain decomposition methods also need to estimate the condition number...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 83; číslo 2; s. 29
Hlavní autoři: Wang, Saihua, Wang, Feng, Xu, Xuejun
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2020
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is known that the convergence rate of the traditional iteration methods like the conjugate gradient method depends on the condition number of the stiffness matrix. Moreover the construction of fast solvers like multigrid and domain decomposition methods also need to estimate the condition number of the stiffness matrix. The main purpose of this paper is to give a rigorous condition number estimate of the stiffness matrix resulting from the linear and bilinear immersed finite element approximations of the high-contrast interface problem. It is shown that the condition number is C ρ h - 2 , where ρ is the jump of the discontinuous coefficients, h is the mesh size, and the constant C is independent of ρ and the location of the interface on the triangulation. Numerical results are also given to verify our theoretical findings.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-020-01212-1