A Rigorous Condition Number Estimate of an Immersed Finite Element Method
It is known that the convergence rate of the traditional iteration methods like the conjugate gradient method depends on the condition number of the stiffness matrix. Moreover the construction of fast solvers like multigrid and domain decomposition methods also need to estimate the condition number...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 83; číslo 2; s. 29 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | It is known that the convergence rate of the traditional iteration methods like the conjugate gradient method depends on the condition number of the stiffness matrix. Moreover the construction of fast solvers like multigrid and domain decomposition methods also need to estimate the condition number of the stiffness matrix. The main purpose of this paper is to give a rigorous condition number estimate of the stiffness matrix resulting from the linear and bilinear immersed finite element approximations of the high-contrast interface problem. It is shown that the condition number is
C
ρ
h
-
2
, where
ρ
is the jump of the discontinuous coefficients,
h
is the mesh size, and the constant
C
is independent of
ρ
and the location of the interface on the triangulation. Numerical results are also given to verify our theoretical findings. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-020-01212-1 |