Convergence Analysis of a New Forward-Reflected-Backward Algorithm for Four Operators Without Cocoercivity

In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting al...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of optimization theory and applications Ročník 203; číslo 1; s. 256 - 284
Hlavní autori: Cao, Yu, Wang, Yuanheng, ur Rehman, Habib, Shehu, Yekini, Yao, Jen-Chih
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.10.2024
Springer Nature B.V
Predmet:
ISSN:0022-3239, 1573-2878
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting algorithm converges weakly to the zero of the considered inclusion problem under mild conditions on the iterative parameters. Several splitting algorithms in the literature are recovered as special cases of our proposed algorithm. Another interesting feature of our algorithm is that one forward evaluation of the Lipschitz continuous monotone operator is utilized at each iteration. Numerical results are given to support the theoretical analysis.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-024-02501-7