Convergence Analysis of a New Forward-Reflected-Backward Algorithm for Four Operators Without Cocoercivity
In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting al...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 203; číslo 1; s. 256 - 284 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a new splitting algorithm to find the zero of a monotone inclusion problem that features the sum of three maximal monotone operators and a Lipschitz continuous monotone operator in Hilbert spaces. We prove that the sequence of iterates generated by our proposed splitting algorithm converges weakly to the zero of the considered inclusion problem under mild conditions on the iterative parameters. Several splitting algorithms in the literature are recovered as special cases of our proposed algorithm. Another interesting feature of our algorithm is that one forward evaluation of the Lipschitz continuous monotone operator is utilized at each iteration. Numerical results are given to support the theoretical analysis. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-024-02501-7 |