A coevolution algorithm based on two-staged strategy for constrained multi-objective problems

Constrained Multiobjective Problem (CMOP) is widely used in engineering applications, but the current constrained Multiobjective Optimization algorithms (CMOEA) often fails to effectively balance convergence and diversity. For this purpose, a two-stage co-evolution constrained multi-objective optimi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 52; číslo 15; s. 17954 - 17973
Hlavní autoři: Fan, Chaodong, Wang, Jiawei, Xiao, Leyi, Cheng, Fanyong, Ai, Zhaoyang, Zeng, Zhenhuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2022
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Constrained Multiobjective Problem (CMOP) is widely used in engineering applications, but the current constrained Multiobjective Optimization algorithms (CMOEA) often fails to effectively balance convergence and diversity. For this purpose, a two-stage co-evolution constrained multi-objective optimization evolutionary algorithm (TSC-CMOEA) is presented to solve constrained multi-objective optimization problems. This method divides the search process into two phases: in the first stage, the synchronous co-evolution is used, and the population corresponding to the help problem and the population corresponding to the raw problem cooperate with each other and share the offspring to produce better solutions, so as to quickly cross the infeasible region and approach the Pareto front; The second stage discards the help problem when it fails and maintains only the evolution of the main population to save computing resources and enhance convergence. The combination of synchronous co-evolution and staged strategy allows the population to traverse infeasible regions more efficiently and converge quickly to feasible and non-dominant regions. The test results on benchmark CMOPs show that the convergence and population distribution of TSC-CMOEA is significantly better than those of NSGA-II, NSGA-III, C-MOEA/D, PPS, ToP and CCMO.
AbstractList Constrained Multiobjective Problem (CMOP) is widely used in engineering applications, but the current constrained Multiobjective Optimization algorithms (CMOEA) often fails to effectively balance convergence and diversity. For this purpose, a two-stage co-evolution constrained multi-objective optimization evolutionary algorithm (TSC-CMOEA) is presented to solve constrained multi-objective optimization problems. This method divides the search process into two phases: in the first stage, the synchronous co-evolution is used, and the population corresponding to the help problem and the population corresponding to the raw problem cooperate with each other and share the offspring to produce better solutions, so as to quickly cross the infeasible region and approach the Pareto front; The second stage discards the help problem when it fails and maintains only the evolution of the main population to save computing resources and enhance convergence. The combination of synchronous co-evolution and staged strategy allows the population to traverse infeasible regions more efficiently and converge quickly to feasible and non-dominant regions. The test results on benchmark CMOPs show that the convergence and population distribution of TSC-CMOEA is significantly better than those of NSGA-II, NSGA-III, C-MOEA/D, PPS, ToP and CCMO.
Author Cheng, Fanyong
Zeng, Zhenhuan
Fan, Chaodong
Ai, Zhaoyang
Wang, Jiawei
Xiao, Leyi
Author_xml – sequence: 1
  givenname: Chaodong
  surname: Fan
  fullname: Fan, Chaodong
  organization: School of Computer Science, Xiangtan University, Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education, Anhui Polytechnic University, School of Information Technology and Management, Hunan University of Finance and Economics
– sequence: 2
  givenname: Jiawei
  surname: Wang
  fullname: Wang, Jiawei
  organization: School of Computer Science, Xiangtan University, Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University
– sequence: 3
  givenname: Leyi
  surname: Xiao
  fullname: Xiao, Leyi
  email: xiaolyttkx@163.com
  organization: Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education, Anhui Polytechnic University, School of Information Technology and Management, Hunan University of Finance and Economics, AnHui Key Laboratory of Detection Technology and Energy Saving Devices, AnHui Polytechnic University
– sequence: 4
  givenname: Fanyong
  surname: Cheng
  fullname: Cheng, Fanyong
  organization: Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education, Anhui Polytechnic University
– sequence: 5
  givenname: Zhaoyang
  surname: Ai
  fullname: Ai, Zhaoyang
  organization: College of Foreign Languages; Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University
– sequence: 6
  givenname: Zhenhuan
  surname: Zeng
  fullname: Zeng, Zhenhuan
  organization: School of Computer Science, Xiangtan University
BookMark eNp9kEtLxDAUhYOM4MzoH3BVcB3No9Mky2HwBYILXbiRkKZJ7dA2Y5KOzL83tYLgYsgi3Jvz3ZN7FmDWu94AcInRNUaI3QSMci4gIgQimhMM2QmY4xWjkOWCzcAcCZLDohBvZ2ARwhYhRCnCc_C-zrQze9cOsXF9ptra-SZ-dFmpgqmy1IpfDoao6lSF6FU09SGzziesH-umTw_d0MYGunJrdGz2Jtt5V7amC-fg1Ko2mIvfewle7m5fNw_w6fn-cbN-gppiEWGhOEO8rLClhCpFrOAqNxVeIcqU1QXhmlBcaEToeKziigq2IhXDlim6BFfT1GT7OZgQ5dYNvk-GkjDKOGIkF0nFJ5X2LgRvrNRNVOPW4xatxEiOUcopSpmilD9RSpZQ8g_d-aZT_nAcohMUkrivjf_71RHqG9b3iWs
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106004
crossref_primary_10_3390_math13091441
crossref_primary_10_1007_s40747_023_01181_6
crossref_primary_10_1007_s12293_024_00409_3
crossref_primary_10_1109_TEVC_2023_3345470
Cites_doi 10.1109/MCI.2017.2742868
10.1109/TEVC.2018.2855411
10.1016/j.asoc.2017.06.053
10.1109/TEVC.2019.2894743
10.1109/4235.996017
10.1109/TEVC.2020.2981949
10.1007/s00500-019-03794-x
10.1109/TEVC.2017.2690446
10.1007/s10845-020-01565-2
10.1109/TEVC.2019.2895860
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2019.2896967
10.1109/TSG.2016.2598678
10.1016/j.knosys.2016.07.001
10.1016/j.asoc.2016.04.030
10.1016/j.asoc.2018.10.028
10.1142/S0218001421590321
10.1109/TEVC.2008.2009032
10.1109/CEC.2018.8477730
10.1016/j.swevo.2020.100799
10.1109/4235.873238
10.1007/s10845-017-1294-6
10.1016/j.knosys.2021.107693
10.1016/j.ejor.2017.03.048
10.1016/j.swevo.2018.08.017
10.1016/j.ins.2021.04.050
10.1109/TEVC.2013.2281535
10.1109/TCYB.2018.2819208
10.1109/CEC.2016.7743830
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-03421-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 17973
ExternalDocumentID 10_1007_s10489_022_03421_7
GrantInformation_xml – fundername: Open Fund Project of Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment of Ministry of Education
  grantid: No. GDSC202020
– fundername: Natural Science Foundation of Hunan Province
  grantid: No. 2020JJ4587
  funderid: https://doi.org/10.13039/501100004735
– fundername: Open Fund Project of Fujian Provincial Key Laboratory of Data Intensive Computing
  grantid: No. BD202004
– fundername: Open Research Fund of AnHui Key Laboratory of Detection Technology and Energy Saving Devices
  grantid: No. JCKJ2021B05
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: No. 2019A1515110423
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-6a8708bd1f323aa2f98a4ed15037afc628c2316c0232323fa8a39752d71f7a3
IEDL.DBID K7-
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778916100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:54:08 EST 2025
Tue Nov 18 22:00:32 EST 2025
Sat Nov 29 05:33:29 EST 2025
Fri Feb 21 02:44:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Constrained multi-objective evolutionary algorithms
Coevolution
Multiobjective optimization
Constraint handling technique
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6a8708bd1f323aa2f98a4ed15037afc628c2316c0232323fa8a39752d71f7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2737807249
PQPubID 326365
PageCount 20
ParticipantIDs proquest_journals_2737807249
crossref_citationtrail_10_1007_s10489_022_03421_7
crossref_primary_10_1007_s10489_022_03421_7
springer_journals_10_1007_s10489_022_03421_7
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WoldesenbetYGYenGGTessemaBGConstraint handling in multiobjective evolutionary optimizationIEEE Trans Evol Comput200913351452510.1109/TEVC.2008.2009032
YiWGaoLPeiZLuJChenYε constrained differential evolution using halfspace partition for optimization problemsJ Intell Manuf202132115717810.1007/s10845-020-01565-2
Xia M, Dong M (2021) A novel two-archive evolutionary algorithm for constrained multi-objective optimization with small feasible regions. Knowl-Based Syst,, pp 107693
ZhuQZhangQLinQA constrained multiobjective evolutionary algorithm with detect-and-escape strategyIEEE Trans Evol Comput202024593894710.1109/TEVC.2020.2981949
WangJLiangGZhangJCooperative differential evolution framework for constrained multiobjective optimizationIEEE Trans Cybern20184962060207210.1109/TCYB.2018.2819208
LiKChenRFuGYaoXTwo-archive evolutionary algorithm for constrained multiobjective optimizationIEEE Trans Evol Comput201823230331510.1109/TEVC.2018.2855411
aJDbSGCDMAFHA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
GongMWangZZhuZJiaoLA similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication systemIEEE Trans Evol Comput201721687889710.1109/TEVC.2017.2690446
Zhou J, Zou J, Yang S, Zheng J, Pei T (2021) Niche-based and angle-based selection strategies for many-objective evolutionary optimization. Information Sciences
PengXLiuKJinYA dynamic optimization approach to the design of cooperative co-evolutionary algorithmsKnowl-Based Syst201610917418610.1016/j.knosys.2016.07.001
RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput20026218219710.1109/4235.996017
WangJLiYZhangQZhangZGaoSCooperative multiobjective evolutionary algorithm with propulsive population for constrained multiobjective optimizationIEEE Trans Syst Man Cybern: Syst2021PP99116
DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535
MaZWangYEvolutionary constrained multiobjective optimization: Test suite construction and performance comparisonsIEEE Trans Evol Comput2019236972986144142210.1109/TEVC.2019.2896967
TianYChengRZhangXJinYPlatemo: A matlab platform for evolutionary multi-objective optimization [educational forum]IEEE Comput Intell Mag2017124738710.1109/MCI.2017.2742868
GargHA hybrid pso-ga algorithm for constrained optimization problemsAppl Math Comput201627429230534331371410.90197
Tian Y, Zhang T, Xiao J, Zhang X, Jin Y (2020) A coevolutionary framework for constrained multi-objective optimization problems. IEEE Transactions on systems, man, and cybernetics: systems
FarzinHFotuhi-FiruzabadMMoeini-AghtaieMA stochastic multi-objective framework for optimal scheduling of energy storage systems in microgridsIEEE Trans Smart Grid20168111712710.1109/TSG.2016.2598678
Wang B-C, Li H-X, Zhang Q, Wang Y (2018) Decomposition-based multiobjective optimization for constrained evolutionary optimization. IEEE Transactions on systems, man, and cybernetics: systems
Fan Z, Li W, Cai X, Hu K, Lin H, Li H (2016) Angle-based constrained dominance principle in moea/d for constrained multi-objective optimization problems. In: 2016 IEEE Congress on evolutionary computation (CEC), IEEE, pp 460–467
LiuRLiJMuCJiaoLA coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimizationEur J Oper Res2017261310281051364563010.1016/j.ejor.2017.03.0481403.90611
ZhangX-YGongY-JLinYZhangJKwongSZhangJDynamic cooperative coevolution for large scale optimizationIEEE Trans Evol Comput201923693594810.1109/TEVC.2019.2895860
FanZLiWCaiXHuangHFangYYouYMoJWeiCGoodmanEAn improved epsilon constraint-handling method in moea/d for cmops with large infeasible regionsSoft Comput20192323124911251010.1007/s00500-019-03794-x
Tian Y, Xiang X, Zhang X, Cheng R, Jin Y (2018) Sampling reference points on the pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–6 (2018). IEEE
LiuZZWangBCTangKHandling constrained multiobjective optimization problems via bidirectional coevolutionIEEE Trans Cybern2021PP99114
PandaAPaniSA symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problemsAppl Soft Comput201646C34436010.1016/j.asoc.2016.04.030
MohamedAWA novel differential evolution algorithm for solving constrained engineering optimization problemsJ Intell Manuf201829365969210.1007/s10845-017-1294-6
YuKLiangJQuBYueCPurpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimizationSwarm Evol Comput20216010079910.1016/j.swevo.2020.100799
QiaoJZhouHYangCYangSA decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penaltyAppl Soft Comput20197419020510.1016/j.asoc.2018.10.028
Tan B, Ma H, Mei Y, Zhang M (2018) Evolutionary multi-objective optimization for web service location allocation problem. IEEE Trans Serv Comput
PengCLiuHLGuFAn evolutionary algorithm with directed weights for constrained multi-objective optimizationAppl Soft Comput20176061362210.1016/j.asoc.2017.06.053https://doi.org/10.1016/j.asoc.2017.06.053, https://www.sciencedirect.com/science/article/pii/S1568494617303964
FanZLiWCaiXLiHWeiCZhangQDebKGoodmanEPush and pull search for solving constrained multi-objective optimization problemsSwarm Evol Comput20194466567910.1016/j.swevo.2018.08.017
Yang N, Liu HL (2021) Adaptively allocating constraint-handling techniques for constrained multi-objective optimization problems. Int J Pattern Recognit Artif Intell
LiuZZWangYHandling constrained multiobjective optimization problems with constraints in both the decision and objective spacesIEEE Trans Evol Comput201923587088410.1109/TEVC.2019.2894743
YG Woldesenbet (3421_CR8) 2009; 13
R Liu (3421_CR21) 2017; 261
K Deb (3421_CR4) 2014; 18
AW Mohamed (3421_CR24) 2018; 29
M Gong (3421_CR3) 2017; 21
Z Fan (3421_CR9) 2019; 44
J Wang (3421_CR27) 2018; 49
X Peng (3421_CR22) 2016; 109
X-Y Zhang (3421_CR23) 2019; 23
3421_CR1
ZZ Liu (3421_CR30) 2019; 23
H Farzin (3421_CR2) 2016; 8
Z Fan (3421_CR33) 2019; 23
K Yu (3421_CR18) 2021; 60
ZZ Liu (3421_CR15) 2021; PP
3421_CR17
3421_CR16
3421_CR13
3421_CR35
3421_CR14
J Wang (3421_CR29) 2021; PP
J Qiao (3421_CR7) 2019; 74
Y Tian (3421_CR31) 2017; 12
Z Ma (3421_CR32) 2019; 23
A Panda (3421_CR19) 2016; 46
K Deb (3421_CR11) 2002; 6
Q Zhu (3421_CR5) 2020; 24
K Li (3421_CR28) 2018; 23
C Peng (3421_CR20) 2017; 60
JD a (3421_CR34) 2011; 1
H Garg (3421_CR6) 2016; 274
3421_CR26
W Yi (3421_CR12) 2021; 32
TP Runarsson (3421_CR10) 2000; 4
3421_CR25
References_xml – reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: GongMWangZZhuZJiaoLA similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication systemIEEE Trans Evol Comput201721687889710.1109/TEVC.2017.2690446
– reference: Fan Z, Li W, Cai X, Hu K, Lin H, Li H (2016) Angle-based constrained dominance principle in moea/d for constrained multi-objective optimization problems. In: 2016 IEEE Congress on evolutionary computation (CEC), IEEE, pp 460–467
– reference: WoldesenbetYGYenGGTessemaBGConstraint handling in multiobjective evolutionary optimizationIEEE Trans Evol Comput200913351452510.1109/TEVC.2008.2009032
– reference: MohamedAWA novel differential evolution algorithm for solving constrained engineering optimization problemsJ Intell Manuf201829365969210.1007/s10845-017-1294-6
– reference: FanZLiWCaiXLiHWeiCZhangQDebKGoodmanEPush and pull search for solving constrained multi-objective optimization problemsSwarm Evol Comput20194466567910.1016/j.swevo.2018.08.017
– reference: PengXLiuKJinYA dynamic optimization approach to the design of cooperative co-evolutionary algorithmsKnowl-Based Syst201610917418610.1016/j.knosys.2016.07.001
– reference: aJDbSGCDMAFHA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evol Comput20111131810.1016/j.swevo.2011.02.002
– reference: DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraintsIEEE Trans Evol Comput201418457760110.1109/TEVC.2013.2281535
– reference: ZhuQZhangQLinQA constrained multiobjective evolutionary algorithm with detect-and-escape strategyIEEE Trans Evol Comput202024593894710.1109/TEVC.2020.2981949
– reference: PandaAPaniSA symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problemsAppl Soft Comput201646C34436010.1016/j.asoc.2016.04.030
– reference: Wang B-C, Li H-X, Zhang Q, Wang Y (2018) Decomposition-based multiobjective optimization for constrained evolutionary optimization. IEEE Transactions on systems, man, and cybernetics: systems
– reference: PengCLiuHLGuFAn evolutionary algorithm with directed weights for constrained multi-objective optimizationAppl Soft Comput20176061362210.1016/j.asoc.2017.06.053https://doi.org/10.1016/j.asoc.2017.06.053, https://www.sciencedirect.com/science/article/pii/S1568494617303964
– reference: WangJLiYZhangQZhangZGaoSCooperative multiobjective evolutionary algorithm with propulsive population for constrained multiobjective optimizationIEEE Trans Syst Man Cybern: Syst2021PP99116
– reference: RunarssonTPYaoXStochastic ranking for constrained evolutionary optimizationIEEE Trans Evol Comput20004328429410.1109/4235.873238
– reference: Tan B, Ma H, Mei Y, Zhang M (2018) Evolutionary multi-objective optimization for web service location allocation problem. IEEE Trans Serv Comput
– reference: WangJLiangGZhangJCooperative differential evolution framework for constrained multiobjective optimizationIEEE Trans Cybern20184962060207210.1109/TCYB.2018.2819208
– reference: Zhou J, Zou J, Yang S, Zheng J, Pei T (2021) Niche-based and angle-based selection strategies for many-objective evolutionary optimization. Information Sciences
– reference: FarzinHFotuhi-FiruzabadMMoeini-AghtaieMA stochastic multi-objective framework for optimal scheduling of energy storage systems in microgridsIEEE Trans Smart Grid20168111712710.1109/TSG.2016.2598678
– reference: GargHA hybrid pso-ga algorithm for constrained optimization problemsAppl Math Comput201627429230534331371410.90197
– reference: Xia M, Dong M (2021) A novel two-archive evolutionary algorithm for constrained multi-objective optimization with small feasible regions. Knowl-Based Syst,, pp 107693
– reference: Yang N, Liu HL (2021) Adaptively allocating constraint-handling techniques for constrained multi-objective optimization problems. Int J Pattern Recognit Artif Intell
– reference: LiuZZWangBCTangKHandling constrained multiobjective optimization problems via bidirectional coevolutionIEEE Trans Cybern2021PP99114
– reference: ZhangX-YGongY-JLinYZhangJKwongSZhangJDynamic cooperative coevolution for large scale optimizationIEEE Trans Evol Comput201923693594810.1109/TEVC.2019.2895860
– reference: Tian Y, Zhang T, Xiao J, Zhang X, Jin Y (2020) A coevolutionary framework for constrained multi-objective optimization problems. IEEE Transactions on systems, man, and cybernetics: systems
– reference: YiWGaoLPeiZLuJChenYε constrained differential evolution using halfspace partition for optimization problemsJ Intell Manuf202132115717810.1007/s10845-020-01565-2
– reference: QiaoJZhouHYangCYangSA decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penaltyAppl Soft Comput20197419020510.1016/j.asoc.2018.10.028
– reference: Tian Y, Xiang X, Zhang X, Cheng R, Jin Y (2018) Sampling reference points on the pareto fronts of benchmark multi-objective optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC), pp 1–6 (2018). IEEE
– reference: FanZLiWCaiXHuangHFangYYouYMoJWeiCGoodmanEAn improved epsilon constraint-handling method in moea/d for cmops with large infeasible regionsSoft Comput20192323124911251010.1007/s00500-019-03794-x
– reference: TianYChengRZhangXJinYPlatemo: A matlab platform for evolutionary multi-objective optimization [educational forum]IEEE Comput Intell Mag2017124738710.1109/MCI.2017.2742868
– reference: LiuRLiJMuCJiaoLA coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimizationEur J Oper Res2017261310281051364563010.1016/j.ejor.2017.03.0481403.90611
– reference: YuKLiangJQuBYueCPurpose-directed two-phase multiobjective differential evolution for constrained multiobjective optimizationSwarm Evol Comput20216010079910.1016/j.swevo.2020.100799
– reference: LiKChenRFuGYaoXTwo-archive evolutionary algorithm for constrained multiobjective optimizationIEEE Trans Evol Comput201823230331510.1109/TEVC.2018.2855411
– reference: MaZWangYEvolutionary constrained multiobjective optimization: Test suite construction and performance comparisonsIEEE Trans Evol Comput2019236972986144142210.1109/TEVC.2019.2896967
– reference: LiuZZWangYHandling constrained multiobjective optimization problems with constraints in both the decision and objective spacesIEEE Trans Evol Comput201923587088410.1109/TEVC.2019.2894743
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 3421_CR31
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– volume: 23
  start-page: 303
  issue: 2
  year: 2018
  ident: 3421_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2855411
– volume: 60
  start-page: 613
  year: 2017
  ident: 3421_CR20
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.06.053
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  ident: 3421_CR30
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2894743
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 3421_CR11
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 24
  start-page: 938
  issue: 5
  year: 2020
  ident: 3421_CR5
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2020.2981949
– volume: 23
  start-page: 12491
  issue: 23
  year: 2019
  ident: 3421_CR33
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03794-x
– volume: 21
  start-page: 878
  issue: 6
  year: 2017
  ident: 3421_CR3
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2690446
– volume: 32
  start-page: 157
  issue: 1
  year: 2021
  ident: 3421_CR12
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-020-01565-2
– volume: 23
  start-page: 935
  issue: 6
  year: 2019
  ident: 3421_CR23
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2895860
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 3421_CR34
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 3421_CR32
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2896967
– ident: 3421_CR1
– volume: 8
  start-page: 117
  issue: 1
  year: 2016
  ident: 3421_CR2
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2598678
– volume: 109
  start-page: 174
  year: 2016
  ident: 3421_CR22
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.07.001
– volume: 46
  start-page: 344
  issue: C
  year: 2016
  ident: 3421_CR19
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.04.030
– volume: 274
  start-page: 292
  year: 2016
  ident: 3421_CR6
  publication-title: Appl Math Comput
– volume: 74
  start-page: 190
  year: 2019
  ident: 3421_CR7
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.10.028
– ident: 3421_CR16
– ident: 3421_CR26
  doi: 10.1142/S0218001421590321
– volume: 13
  start-page: 514
  issue: 3
  year: 2009
  ident: 3421_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.2009032
– ident: 3421_CR35
  doi: 10.1109/CEC.2018.8477730
– volume: 60
  start-page: 100799
  year: 2021
  ident: 3421_CR18
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100799
– volume: 4
  start-page: 284
  issue: 3
  year: 2000
  ident: 3421_CR10
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.873238
– volume: 29
  start-page: 659
  issue: 3
  year: 2018
  ident: 3421_CR24
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-017-1294-6
– ident: 3421_CR14
  doi: 10.1016/j.knosys.2021.107693
– volume: 261
  start-page: 1028
  issue: 3
  year: 2017
  ident: 3421_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2017.03.048
– volume: 44
  start-page: 665
  year: 2019
  ident: 3421_CR9
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.08.017
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  ident: 3421_CR15
  publication-title: IEEE Trans Cybern
– ident: 3421_CR25
  doi: 10.1016/j.ins.2021.04.050
– volume: PP
  start-page: 1
  issue: 99
  year: 2021
  ident: 3421_CR29
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 3421_CR4
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2013.2281535
– volume: 49
  start-page: 2060
  issue: 6
  year: 2018
  ident: 3421_CR27
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2819208
– ident: 3421_CR17
– ident: 3421_CR13
  doi: 10.1109/CEC.2016.7743830
SSID ssj0003301
Score 2.3421915
Snippet Constrained Multiobjective Problem (CMOP) is widely used in engineering applications, but the current constrained Multiobjective Optimization algorithms...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17954
SubjectTerms Artificial Intelligence
Computer Science
Convergence
Evolutionary algorithms
Machines
Manufacturing
Mechanical Engineering
Multiple objective analysis
Optimization
Pareto optimization
Population distribution
Processes
Search process
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg7eNLC0WdMehzg8DXEiu0hJ8zEnc5W1TvzvfcnSTUUFpae2SQgv7-P3yPtA6FSACeYtDdpPR4owzWyyMpVEADO3E1AOVBjXbIL3evFgkFz7pLCiinavriSdpv6Q7MZseA84T7ZsHSV8Fa2BuYutON707xb6Fzx01ycPPAsSRcnAp8p8v8Znc7TEmF-uRZ216db_t88ttOnRJe7M2WEbrejJDqpXnRuwF-RddN_BMtczz3ZYjIf5dFQ-PGFr1BSGT-VrTgA4DuGtmBewfcOAb2GaLTkrAJsq7IIRSZ49zpUm9s1pij3U717eXlwR32iBSJDAkkQCpDbOFDVhEAoRmCQWTCvAiiEXRkZBLAEGRhLsu32MiAXAmHagODVchPuoNskn-gBhmWVMG2V0mDFmEprFJhRaU8UUwOO2aSBaUTuVvga53fM4XVZPttRLgXqpo17KG-hsMed5XoHj19HN6hBTL41FChCNxy0OnmYDnVeHtvz982qHfxt-hDYCe-4u2qWJauX0RR-jdTkrR8X0xHHpO5mm4d4
  priority: 102
  providerName: Springer Nature
Title A coevolution algorithm based on two-staged strategy for constrained multi-objective problems
URI https://link.springer.com/article/10.1007/s10489-022-03421-7
https://www.proquest.com/docview/2737807249
Volume 52
WOSCitedRecordID wos000778916100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8evDF-YnzY-TBNw0ubde0T6KiCOIYTnQKUtJ8TEVXXavif--lSx0K-iKFg34khN7l7nfJ5Q5gS6AJ5k2N2k-HigY6sIeVmaQChbkVo3JgwpTFJni7HfV6ccctuOUurLLSiaWiVpm0a-S7aGZ51OToLew9v1BbNcrurroSGpMwzTyPWTk_5fRLE6OvXlbMQx-DhmHcc4dm3NG5wAYLoStmk-Axyr8bpjHa_LFBWtqd49p_RzwPcw5xkv2RiCzAhB4sQq2q5kDc5F6C230iM_3mRJGIxz52Vtw9EWvoFMFHxXtGEUz28S4fJbX9IIh5sZlNQysQrypSBijSLH0YKVLiCtbky9A9Pro4PKGu-AKVOCsLGgqcyVGqmPE9XwjPxJEItEL86HNhZOhFEqFhKNHm28uISCC0aXmKM8OFvwJTg2ygV4HINA20UUb7aRCYmKWR8YXWTAUKIXPL1IFV_z2RLi-5HfNjMs6obHmVIK-SklcJr8P2V5vnUVaOP7_eqBiUuBmaJ2Pu1GGnYvH49e-9rf3d2zrMelaqyoiXDZgqhq96E2bkW3GfDxswya-uGzB9cNTunDdKaUV61jy0lHeRdlo3SM-7l5-ea_JF
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gV7cxXHNQU8anLaZpj2IiAuKOgh6mIuWNIsLOlVbFf-TP9KXNnVQ0JsH6alLQtp8ed97zVsAVgRSMG9qlH46VJRpZoOVPUkFgrkVo3DwhCmLTfB2O-p04tM-eK9jYaxbZS0TS0GtMmn_kW8gzfKoydFa2Hp4pLZqlN1drUtoVLA40m-vaLLlm4e7OL-rvr-_d75zQF1VASoRbgUNBUI0SpVnAj8QwjdxJJhWqBgFXBgZ-pFEnSeUSGb2MCISyNktX3HPcBFgr_0wyBguBuso2Nz5lPtBUBZbbqJFQ8Mw7rgQHReox6xrEhp-NuWeR_lXGuzptt-2Y0uW2x_7X99nHEadNk22K_hPQJ_uTsJYXamCOME1BRfbRGb6xS0zIu6ucOjF9T2xJK4IXipeM4qK8hWe5VXC3jeC-jw2syl2BeriipTOlzRLbyuSIK4YTz4NZ3_wijMw0M26ehaITFOmjTI6SBkzsZdGJhBae4opNAdapgFePcuJdDnX7Zjvkl62aIuMBJGRlMhIeAPWPts8VBlHfn16oYZD4qRPnvSw0ID1GlC92z_3Nvd7b8swfHB-cpwcH7aP5mHEt3guPXsWYKB4etaLMCRfipv8aalcGQQu_xZoH6X5RVo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYgLO6KsPsAJLJqlcXJACAEVqKhCgkMvEDleCggaaAKIP-PzGCcOFUhw44ByymLLiZ_nzcSzAGxypGDWUCj9VCCpr3wTrOwIyhHMzQiFg8N1UWyCdTphtxudj8B7FQtj3CormVgIapkK8498F2mWhQ2G1sKutm4R50et_ccnaipImZ3WqpxGCZG2entF8y3bOz3Cud5y3dbx5eEJtRUGqEDo5TTgCNcwkY72XI9zV0ch95VEJcljXIvADQXqP4FAYjOH5iFH_m66kjmacQ97HYUx5OCmWWFtRj85wPOKwssNtG5oEERdG65jg_Z846aERqBJv-dQ9pUSh3rut63ZgvFa0__3W83AlNWyyUG5LGZhRPXnYLqqYEGsQJuHqwMiUvVilx_h9z0cen7zQAy5S4KX8teUogLdw7OsTOT7RlDPx2Ym9S5HHV2SwimTpsldSR7EFunJFuDiD15xEWr9tK-WgIgk8ZWWWnmJ7-vISULtcaUc6Us0E5q6Dk4147GwudjNmO_jYRZpg5IYURIXKIlZHbY_2zyWmUh-fXq1gkZspVIWD3FRh50KXMPbP_e2_HtvGzCB-IrPTjvtFZh0DbQLh59VqOWDZ7UG4-Ilv80G68UiIXD9tzj7AHmkTgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+coevolution+algorithm+based+on+two-staged+strategy+for+constrained+multi-objective+problems&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Fan%2C+Chaodong&rft.au=Wang%2C+Jiawei&rft.au=Xiao%2C+Leyi&rft.au=Cheng%2C+Fanyong&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=15&rft.spage=17954&rft.epage=17973&rft_id=info:doi/10.1007%2Fs10489-022-03421-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon