Optimal exact designs of experiments via Mixed Integer Nonlinear Programming

Optimal exact designs are problematic to find and study because there is no unified theory for determining them and studying their properties. Each has its own challenges and when a method exists to confirm the design optimality, it is invariably applicable to the particular problem only. We propose...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics and computing Ročník 30; číslo 1; s. 93 - 112
Hlavní autoři: Duarte, Belmiro P. M., Granjo, José F. O., Wong, Weng Kee
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2020
Springer Nature B.V
Témata:
ISSN:0960-3174, 1573-1375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Optimal exact designs are problematic to find and study because there is no unified theory for determining them and studying their properties. Each has its own challenges and when a method exists to confirm the design optimality, it is invariably applicable to the particular problem only. We propose a systematic approach to construct optimal exact designs by incorporating the Cholesky decomposition of the Fisher Information Matrix in a Mixed Integer Nonlinear Programming formulation. As examples, we apply the methodology to find D - and A -optimal exact designs for linear and nonlinear models using global or local optimizers. Our examples include design problems with constraints on the locations or the number of replicates at the optimal design points.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-019-09867-z