Maximizing k-submodular functions under budget constraint: applications and streaming algorithms
Motivated by the practical applications in solving plenty of important combinatorial optimization problems, this paper investigates the Budgeted k -Submodular Maximization problem defined as follows: Given a finite set V , a budget B and a k -submodular function f : ( k + 1 ) V ↦ R + , the problem a...
Uloženo v:
| Vydáno v: | Journal of combinatorial optimization Ročník 44; číslo 1; s. 723 - 751 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Motivated by the practical applications in solving plenty of important combinatorial optimization problems, this paper investigates the Budgeted
k
-Submodular Maximization problem defined as follows: Given a finite set
V
, a budget
B
and a
k
-submodular function
f
:
(
k
+
1
)
V
↦
R
+
, the problem asks to find a solution
s
=
(
S
1
,
S
2
,
…
,
S
k
)
∈
(
k
+
1
)
V
, in which an element
e
∈
V
has a cost
c
i
(
e
)
when added into the
i
-th set
S
i
, with the total cost of
s
that does not exceed
B
so that
f
(
s
)
is maximized. To address this problem, we propose two single pass streaming algorithms with approximation guarantees: one for the case that an element
e
has only one cost value when added to all
i
-th sets and one for the general case with different values of
c
i
(
e
)
. We further investigate the performance of our algorithms in two applications of the problem, Influence Maximization with
k
topics and sensor placement of
k
types of measures. The experiment results indicate that our algorithms can return competitive results but require fewer the number of queries and running time than the state-of-the-art methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-022-00858-x |