Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification
The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 9; číslo 1; s. 135 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.01.2020
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats due to varying types of artifacts and interference. To address this problem, some previous studies propose a computerized technique based on machine learning (ML) to distinguish between normal and abnormal heartbeats. Unfortunately, ML works on a handcrafted, feature-based approach and lacks feature representation. To overcome such drawbacks, deep learning (DL) is proposed in the pre-training and fine-tuning phases to produce an automated feature representation for multi-class classification of arrhythmia conditions. In the pre-training phase, stacked denoising autoencoders (DAEs) and autoencoders (AEs) are used for feature learning; in the fine-tuning phase, deep neural networks (DNNs) are implemented as a classifier. To the best of our knowledge, this research is the first to implement stacked autoencoders by using DAEs and AEs for feature learning in DL. Physionet’s well-known MIT-BIH Arrhythmia Database, as well as the MIT-BIH Noise Stress Test Database (NSTDB). Only four records are used from the NSTDB dataset: 118 24 dB, 118 −6 dB, 119 24 dB, and 119 −6 dB, with two levels of signal-to-noise ratio (SNRs) at 24 dB and −6 dB. In the validation process, six models are compared to select the best DL model. For all fine-tuned hyperparameters, the best model of ECG heartbeat classification achieves an accuracy, sensitivity, specificity, precision, and F1-score of 99.34%, 93.83%, 99.57%, 89.81%, and 91.44%, respectively. As the results demonstrate, the proposed DL model can extract high-level features not only from the training data but also from unseen data. Such a model has good application prospects in clinical practice. |
|---|---|
| AbstractList | The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats due to varying types of artifacts and interference. To address this problem, some previous studies propose a computerized technique based on machine learning (ML) to distinguish between normal and abnormal heartbeats. Unfortunately, ML works on a handcrafted, feature-based approach and lacks feature representation. To overcome such drawbacks, deep learning (DL) is proposed in the pre-training and fine-tuning phases to produce an automated feature representation for multi-class classification of arrhythmia conditions. In the pre-training phase, stacked denoising autoencoders (DAEs) and autoencoders (AEs) are used for feature learning; in the fine-tuning phase, deep neural networks (DNNs) are implemented as a classifier. To the best of our knowledge, this research is the first to implement stacked autoencoders by using DAEs and AEs for feature learning in DL. Physionet’s well-known MIT-BIH Arrhythmia Database, as well as the MIT-BIH Noise Stress Test Database (NSTDB). Only four records are used from the NSTDB dataset: 118 24 dB, 118 −6 dB, 119 24 dB, and 119 −6 dB, with two levels of signal-to-noise ratio (SNRs) at 24 dB and −6 dB. In the validation process, six models are compared to select the best DL model. For all fine-tuned hyperparameters, the best model of ECG heartbeat classification achieves an accuracy, sensitivity, specificity, precision, and F1-score of 99.34%, 93.83%, 99.57%, 89.81%, and 91.44%, respectively. As the results demonstrate, the proposed DL model can extract high-level features not only from the training data but also from unseen data. Such a model has good application prospects in clinical practice. |
| Author | Nurmaini, Siti Firdaus, Firdaus Darmawahyuni, Annisa Rachmatullah, Muhammad Naufal Sakti Mukti, Akhmad Noviar Tutuko, Bambang |
| Author_xml | – sequence: 1 givenname: Siti orcidid: 0000-0002-8024-2952 surname: Nurmaini fullname: Nurmaini, Siti – sequence: 2 givenname: Annisa orcidid: 0000-0002-0229-5717 surname: Darmawahyuni fullname: Darmawahyuni, Annisa – sequence: 3 givenname: Akhmad Noviar surname: Sakti Mukti fullname: Sakti Mukti, Akhmad Noviar – sequence: 4 givenname: Muhammad Naufal surname: Rachmatullah fullname: Rachmatullah, Muhammad Naufal – sequence: 5 givenname: Firdaus orcidid: 0000-0003-2791-3486 surname: Firdaus fullname: Firdaus, Firdaus – sequence: 6 givenname: Bambang surname: Tutuko fullname: Tutuko, Bambang |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6v52K851ra2QsGDH9clm52V1DWpSXrw3xutB1FwLu8wvM_M8J6SkXUWCTnn7FJKYFc4oI7eWaMDMM64LI7IWLAKMhAgRj_6EzINYctSAZe1ZGPytEDc0Q0qb419zq5VwI7eR6Vfki7QOhPSnCrb0dk-OrTadehp7zxdzld0ncDYoop0PqgQTG-0isbZM3LcqyHg9Fsn5PFm-TBfZ5u71e18tsm05BCzEkoBULUt1DXmoAUwxYGJlrG20FCxsuhLLqu6FCpvy6oqeCW1wK5LBhRaTsjFYe_Ou7c9hths3d7bdLIRRV7nhaiLPLnqg0t7F4LHvtEmfv0ZvTJDw1nzGWTzN8iEil_ozptX5d__gz4Al_F7HQ |
| CitedBy_id | crossref_primary_10_1007_s13748_021_00243_5 crossref_primary_10_1016_j_future_2020_07_021 crossref_primary_10_3390_rs14071552 crossref_primary_10_1155_2021_3468479 crossref_primary_10_3389_fphys_2022_982537 crossref_primary_10_1109_ACCESS_2025_3584735 crossref_primary_10_3390_app12146957 crossref_primary_10_1007_s13369_022_06667_y crossref_primary_10_1088_1361_6579_ac96cd crossref_primary_10_3390_app122312408 crossref_primary_10_3390_electronics10010081 crossref_primary_10_1002_mp_16831 crossref_primary_10_1080_03772063_2025_2508330 crossref_primary_10_1088_2057_1976_acd257 crossref_primary_10_1186_s44147_024_00551_2 crossref_primary_10_1007_s11063_022_10949_9 crossref_primary_10_3390_electronics9030445 crossref_primary_10_1016_j_bspc_2023_105437 crossref_primary_10_3389_fphys_2023_1246746 crossref_primary_10_1016_j_bspc_2023_105714 crossref_primary_10_3233_JIFS_233442 crossref_primary_10_1155_2022_7401175 crossref_primary_10_1016_j_knosys_2024_111396 crossref_primary_10_1109_ACCESS_2023_3244651 crossref_primary_10_3390_electronics9122140 crossref_primary_10_1038_s41746_025_01692_1 crossref_primary_10_1155_2021_2788161 crossref_primary_10_1109_ACCESS_2020_3034367 crossref_primary_10_1016_j_bspc_2025_108142 crossref_primary_10_3389_fcvm_2021_699145 crossref_primary_10_3390_app13084964 crossref_primary_10_1109_TGRS_2024_3379567 crossref_primary_10_1007_s11042_023_17997_w crossref_primary_10_1007_s12530_022_09429_1 crossref_primary_10_1109_TCBB_2022_3176905 crossref_primary_10_3390_electronics10010070 crossref_primary_10_1016_j_eswa_2023_119561 crossref_primary_10_1016_j_bspc_2024_106544 crossref_primary_10_1109_TIM_2022_3194906 crossref_primary_10_3390_app13148273 crossref_primary_10_3390_nu14040885 crossref_primary_10_1002_jemt_24805 crossref_primary_10_1016_j_heliyon_2024_e36751 crossref_primary_10_1109_ACCESS_2022_3206620 crossref_primary_10_1109_ACCESS_2022_3225899 crossref_primary_10_1007_s11760_022_02300_5 crossref_primary_10_1002_hfm_21056 crossref_primary_10_1016_j_compbiomed_2025_109653 crossref_primary_10_1016_j_measurement_2022_111412 crossref_primary_10_1109_TCE_2025_3540875 crossref_primary_10_1016_j_knosys_2021_107187 crossref_primary_10_1109_ACCESS_2020_3026968 crossref_primary_10_1016_j_imu_2020_100507 crossref_primary_10_1109_ACCESS_2024_3390008 crossref_primary_10_3390_s22062329 crossref_primary_10_3390_app10165510 crossref_primary_10_3390_electronics9030427 crossref_primary_10_3390_jcdd10040175 crossref_primary_10_3390_electronics9111954 crossref_primary_10_1155_2021_5527904 crossref_primary_10_1007_s11704_023_2441_1 crossref_primary_10_3390_electronics9111837 crossref_primary_10_1109_ACCESS_2024_3518776 crossref_primary_10_1007_s10489_024_05881_5 crossref_primary_10_3390_s22155606 crossref_primary_10_1016_j_eswa_2025_126714 crossref_primary_10_1109_ACCESS_2024_3447096 crossref_primary_10_1016_j_compbiomed_2024_109422 crossref_primary_10_1080_21681163_2022_2162439 crossref_primary_10_1371_journal_pone_0277932 crossref_primary_10_3390_electronics14153149 crossref_primary_10_1109_ACCESS_2020_3026615 crossref_primary_10_1007_s44258_024_00043_1 crossref_primary_10_1016_j_bspc_2023_104954 crossref_primary_10_3390_electronics10151805 crossref_primary_10_1007_s00521_025_11092_x crossref_primary_10_1155_2021_6592562 crossref_primary_10_1007_s11760_022_02155_w crossref_primary_10_1186_s12911_024_02822_7 |
| Cites_doi | 10.1155/2016/3632943 10.1088/1742-6596/1246/1/012030 10.1016/j.ijleo.2018.02.023 10.4258/hir.2019.25.3.201 10.1109/ACCESS.2019.2912036 10.1016/j.cmpb.2014.09.002 10.1016/j.procs.2015.07.354 10.3390/app9142921 10.1109/ICRITO.2015.7359333 10.1109/GCCE.2014.7031302 10.1016/j.procs.2016.06.106 10.1016/j.knosys.2019.04.023 10.1038/s41598-017-06596-z 10.1088/0967-3334/37/12/2214 10.1080/08839514.2015.1051887 10.3390/electronics8060667 10.1016/j.bspc.2013.01.005 10.1166/jmihi.2015.1649 10.1016/j.dsp.2006.11.009 10.1016/j.ins.2016.09.033 10.1016/j.artmed.2008.11.004 10.3991/ijoe.v13i09.7159 10.1109/ACCESS.2016.2587581 10.1155/2013/763903 10.3390/electronics8091000 10.1145/1390156.1390294 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics9010135 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics9010135 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-6962997bb988e49c290a1902b00b5c97065f6137862a4b6775173c2edd00be2c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516827000135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 06:47:04 EST 2025 Sat Nov 29 07:12:00 EST 2025 Tue Nov 18 22:13:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-6962997bb988e49c290a1902b00b5c97065f6137862a4b6775173c2edd00be2c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2791-3486 0000-0002-0229-5717 0000-0002-8024-2952 |
| OpenAccessLink | https://www.proquest.com/docview/2548452854?pq-origsite=%requestingapplication% |
| PQID | 2548452854 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2548452854 crossref_citationtrail_10_3390_electronics9010135 crossref_primary_10_3390_electronics9010135 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2020 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_13 ref_31 ref_30 Hermans (ref_23) 2018; 20 ref_19 Yoon (ref_12) 2019; 25 ref_18 ref_17 Martis (ref_21) 2013; 8 Sugimoto (ref_29) 2019; 178 Faziludeen (ref_24) 2016; 89 Joshi (ref_6) 2015; 57 Qin (ref_22) 2017; 7 Yu (ref_26) 2009; 46 (ref_28) 2007; 17 Nguyen (ref_11) 2016; 373 Li (ref_27) 2014; 117 ref_20 Kong (ref_10) 2018; 160 Xiong (ref_15) 2015; 5 ref_1 ref_3 Xiong (ref_16) 2016; 37 ref_2 Chiang (ref_14) 2019; 7 Hejazi (ref_25) 2015; 29 ref_8 ref_5 ref_4 Srivastava (ref_9) 2016; 4 ref_7 |
| References_xml | – ident: ref_5 – ident: ref_17 doi: 10.1155/2016/3632943 – ident: ref_20 doi: 10.1088/1742-6596/1246/1/012030 – ident: ref_3 – volume: 160 start-page: 402 year: 2018 ident: ref_10 article-title: Denoising signals for photoacoustic imaging in frequency domain based on empirical mode decomposition publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.02.023 – volume: 25 start-page: 201 year: 2019 ident: ref_12 article-title: Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2019.25.3.201 – volume: 7 start-page: 60806 year: 2019 ident: ref_14 article-title: Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2912036 – volume: 117 start-page: 435 year: 2014 ident: ref_27 article-title: A machine learning approach to multi-level ECG signal quality classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.002 – volume: 57 start-page: 395 year: 2015 ident: ref_6 article-title: De-noising of ECG signal using Adaptive Filter based on MPSO publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.07.354 – ident: ref_30 doi: 10.3390/app9142921 – ident: ref_7 doi: 10.1109/ICRITO.2015.7359333 – ident: ref_18 – ident: ref_19 doi: 10.1109/GCCE.2014.7031302 – volume: 89 start-page: 499 year: 2016 ident: ref_24 article-title: ECG beat classification using evidential K-nearest neighbours publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.06.106 – volume: 178 start-page: 123 year: 2019 ident: ref_29 article-title: Detection and localization of myocardial infarction based on a convolutional autoencoder publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.04.023 – volume: 7 start-page: 6067 year: 2017 ident: ref_22 article-title: Combining low-dimensional wavelet features and support vector machine for arrhythmia beat classification publication-title: Sci. Rep. doi: 10.1038/s41598-017-06596-z – volume: 37 start-page: 2214 year: 2016 ident: ref_16 article-title: A stacked contractive denoising auto-encoder for ECG signal denoising publication-title: Physiol. Meas. doi: 10.1088/0967-3334/37/12/2214 – volume: 29 start-page: 660 year: 2015 ident: ref_25 article-title: Multiclass support vector machines for classification of ECG data with missing values publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2015.1051887 – ident: ref_31 – volume: 20 start-page: iii113 year: 2018 ident: ref_23 article-title: Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis publication-title: EP Eur. – ident: ref_4 doi: 10.3390/electronics8060667 – volume: 8 start-page: 437 year: 2013 ident: ref_21 article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.01.005 – volume: 5 start-page: 1804 year: 2015 ident: ref_15 article-title: Denoising autoencoder for eletrocardiogram signal enhancement publication-title: J. Med. Imaging Heal. Inform. doi: 10.1166/jmihi.2015.1649 – volume: 17 start-page: 675 year: 2007 ident: ref_28 article-title: ECG beats classification using multiclass support vector machines with error correcting output codes publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2006.11.009 – volume: 373 start-page: 499 year: 2016 ident: ref_11 article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition publication-title: Inf. Sci. (N. Y.) doi: 10.1016/j.ins.2016.09.033 – volume: 46 start-page: 165 year: 2009 ident: ref_26 article-title: Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.11.004 – ident: ref_8 doi: 10.3991/ijoe.v13i09.7159 – volume: 4 start-page: 3862 year: 2016 ident: ref_9 article-title: A new wavelet denoising method for selecting decomposition levels and noise thresholds publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2587581 – ident: ref_2 doi: 10.1155/2013/763903 – ident: ref_1 doi: 10.3390/electronics8091000 – ident: ref_13 doi: 10.1145/1390156.1390294 |
| SSID | ssj0000913830 |
| Score | 2.5024035 |
| Snippet | The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 135 |
| SubjectTerms | Arrhythmia Artificial neural networks Automation Bias Classification Deep learning Discriminant analysis Electrocardiography Feature extraction Machine learning Neural networks Noise reduction Principal components analysis Representations Signal processing Signal to noise ratio Training Waveforms Wavelet transforms |
| Title | Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification |
| URI | https://www.proquest.com/docview/2548452854 |
| Volume | 9 |
| WOSCitedRecordID | wos000516827000135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9KAHv8WPKTl4k7K1SdbmJJtuKugoojK9lDRJZSDd3KpH_3ZfusxNBC9eekgTKH15n3n5_QBOIpU1OJPC0xnjHtNGeMJkmKwYv55RX_tyApl_E3a7Ua8nYldwG7u2yqlNLA21HihbI69hIhMxbu_7nQ3fPMsaZU9XHYXGIixZpDJWgaVWuxvffVdZLOplROuT2zIU8_vajF1mbDsT_JLnbc4j_TTIpZfprP_3-zZgzcWXpDnZEJuwYPItWJ1DHdyGxwtjhsQBq754LfRjmmDQifqsyYXJB31bPyAy16T5Xgws0qU2I4LRLWmfX5IrXFikaMJJSahpW41K6e7AQ6d9f37lOXoFT6HeFV5DNNAXhWkqosgwoQJRlxgeBKiIKVfCnn9m6OxDzHkkSxthyP2QqsBojRNMoOguVPJBbvaAcJmKTFFFGZNM0iDCOIYanoZRFmRS8n3wp784UQ573FJgvCaYg1ixJL_Fsg-n32uGE-SNP2dXp2JJnBaOk5lMDv5-fQgrgc2jy9JKFSrF6N0cwbL6KPrj0bHbVMewePvZxmfMn3Esvr6Nn74ANIvcxA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1BUon20FJoBS0fPrQntCJre7P2ASEghESEKAdAcFq8treKhDZpsoD6p_iNjPcjBFXixoHz2ivt-mnezNh-D-CX0Ekz4Ep6JuGBx42VnrQJFivWbyTMN74qJPN7Yb8vrq7kYAEeq7sw7lhlFRPzQG1G2vXId7GQETxw9_32x3895xrldlcrC40CFqf23wOWbNO9bgvX9zel7ePzo45Xugp4GuGWeU3ZxBAcxrEUwnKpqWwoZEWK-IsDLd22X4IcF2Kqr3jcDMPAD5mm1hgcYKlm-N5FqHMEu6hBfdA9G1zPujpOZVOwRnE7hzHZ2H12s5m6kxB-7is3x4AvCSBntfaX9_Y_luFzmT-TgwLwX2HBpivwaU5VcRUuW9aOSSkc-8c7RJ42BJNqjFeGtGw6Grr-CFGpIQd32cgpeRo7IZi9k-OjE9LBiVmMFEVyw1B3lCpH7ze4eJMP-w61dJTaNSCBimWimWacK64YFZinMRvEoUhoolSwDn61pJEutdWdxcdthDWWg0H0PwzWYWc2Z1woi7w6eqOCQVRGmWn0jIEfrz_ehqXO-Vkv6nX7pz_hI3U9g7yNtAG1bHJnN-GDvs-G08lWCWgCN2-NmSdALjKG |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttAFL0KFKGyoOVRQQt0FrBCVuJ5xJ4FqiAhBIGiLAAhNmY8jwqpckJiqPpr_Tru-BFAldix6Nozluw5c19z5xyA3Vi7tuBKBsZxEXBjZSCtw2TFhi3HQhOqkjL_PBoM4utrOWzA3_oujG-rrG1iYajNSPsaeRMTmZgLf9-v6aq2iGG392N8H3gFKX_SWstplBA5s39-Y_o2PTjt4lrvUdo7vuj0g0phINAIvTxoyzaa4yhNZRxbLjWVLYUekiIWU6GlPwJ06O8iDPsVT9tRJMKIaWqNwQGWaobvnYMPEeaYfncNxc2svuP5NmPWKu_pMCZbzWddm6nviQgLhbkXvvC1Kyj8W-_T__xnPsNyFVWTw3IbrEDDZquw9IJrcQ2uutaOSUUn-zM4Qu9tCIbaaMUM6dpsdOerJkRlhhw-5CPP72nshGBMT447J6SPE_MUHRcpZER9g1WB6XW4fJcP-wLz2SizG0CESqXTTDPOFVeMxhi9MSvSKHbUKSU2IayXN9EV47oX_viVYOblIZH8C4lN2J_NGZd8I2-O3qohkVS2Z5o84-Hr24-_wyICJTk_HZx9g4_UFxKK2tIWzOeTB7sNC_oxv5tOdgpkE7h9b8A8AeE9Oek |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Stacked+Denoising+and+Autoencoder+for+ECG+Heartbeat+Classification&rft.jtitle=Electronics+%28Basel%29&rft.au=Nurmaini%2C+Siti&rft.au=Darmawahyuni%2C+Annisa&rft.au=Sakti+Mukti%2C+Akhmad+Noviar&rft.au=Rachmatullah%2C+Muhammad+Naufal&rft.date=2020-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=1&rft.spage=135&rft_id=info:doi/10.3390%2Felectronics9010135&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9010135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |