Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification

The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 9; číslo 1; s. 135
Hlavní autori: Nurmaini, Siti, Darmawahyuni, Annisa, Sakti Mukti, Akhmad Noviar, Rachmatullah, Muhammad Naufal, Firdaus, Firdaus, Tutuko, Bambang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.01.2020
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats due to varying types of artifacts and interference. To address this problem, some previous studies propose a computerized technique based on machine learning (ML) to distinguish between normal and abnormal heartbeats. Unfortunately, ML works on a handcrafted, feature-based approach and lacks feature representation. To overcome such drawbacks, deep learning (DL) is proposed in the pre-training and fine-tuning phases to produce an automated feature representation for multi-class classification of arrhythmia conditions. In the pre-training phase, stacked denoising autoencoders (DAEs) and autoencoders (AEs) are used for feature learning; in the fine-tuning phase, deep neural networks (DNNs) are implemented as a classifier. To the best of our knowledge, this research is the first to implement stacked autoencoders by using DAEs and AEs for feature learning in DL. Physionet’s well-known MIT-BIH Arrhythmia Database, as well as the MIT-BIH Noise Stress Test Database (NSTDB). Only four records are used from the NSTDB dataset: 118 24 dB, 118 −6 dB, 119 24 dB, and 119 −6 dB, with two levels of signal-to-noise ratio (SNRs) at 24 dB and −6 dB. In the validation process, six models are compared to select the best DL model. For all fine-tuned hyperparameters, the best model of ECG heartbeat classification achieves an accuracy, sensitivity, specificity, precision, and F1-score of 99.34%, 93.83%, 99.57%, 89.81%, and 91.44%, respectively. As the results demonstrate, the proposed DL model can extract high-level features not only from the training data but also from unseen data. Such a model has good application prospects in clinical practice.
AbstractList The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds of noise. Such noise may cause deformation on the ECG heartbeat waveform, leading to cardiologists’ mislabeling or misinterpreting heartbeats due to varying types of artifacts and interference. To address this problem, some previous studies propose a computerized technique based on machine learning (ML) to distinguish between normal and abnormal heartbeats. Unfortunately, ML works on a handcrafted, feature-based approach and lacks feature representation. To overcome such drawbacks, deep learning (DL) is proposed in the pre-training and fine-tuning phases to produce an automated feature representation for multi-class classification of arrhythmia conditions. In the pre-training phase, stacked denoising autoencoders (DAEs) and autoencoders (AEs) are used for feature learning; in the fine-tuning phase, deep neural networks (DNNs) are implemented as a classifier. To the best of our knowledge, this research is the first to implement stacked autoencoders by using DAEs and AEs for feature learning in DL. Physionet’s well-known MIT-BIH Arrhythmia Database, as well as the MIT-BIH Noise Stress Test Database (NSTDB). Only four records are used from the NSTDB dataset: 118 24 dB, 118 −6 dB, 119 24 dB, and 119 −6 dB, with two levels of signal-to-noise ratio (SNRs) at 24 dB and −6 dB. In the validation process, six models are compared to select the best DL model. For all fine-tuned hyperparameters, the best model of ECG heartbeat classification achieves an accuracy, sensitivity, specificity, precision, and F1-score of 99.34%, 93.83%, 99.57%, 89.81%, and 91.44%, respectively. As the results demonstrate, the proposed DL model can extract high-level features not only from the training data but also from unseen data. Such a model has good application prospects in clinical practice.
Author Nurmaini, Siti
Firdaus, Firdaus
Darmawahyuni, Annisa
Rachmatullah, Muhammad Naufal
Sakti Mukti, Akhmad Noviar
Tutuko, Bambang
Author_xml – sequence: 1
  givenname: Siti
  orcidid: 0000-0002-8024-2952
  surname: Nurmaini
  fullname: Nurmaini, Siti
– sequence: 2
  givenname: Annisa
  orcidid: 0000-0002-0229-5717
  surname: Darmawahyuni
  fullname: Darmawahyuni, Annisa
– sequence: 3
  givenname: Akhmad Noviar
  surname: Sakti Mukti
  fullname: Sakti Mukti, Akhmad Noviar
– sequence: 4
  givenname: Muhammad Naufal
  surname: Rachmatullah
  fullname: Rachmatullah, Muhammad Naufal
– sequence: 5
  givenname: Firdaus
  orcidid: 0000-0003-2791-3486
  surname: Firdaus
  fullname: Firdaus, Firdaus
– sequence: 6
  givenname: Bambang
  surname: Tutuko
  fullname: Tutuko, Bambang
BookMark eNp9kE1LAzEQhoNUsNb-AU8Bz6v52K851ra2QsGDH9clm52V1DWpSXrw3xutB1FwLu8wvM_M8J6SkXUWCTnn7FJKYFc4oI7eWaMDMM64LI7IWLAKMhAgRj_6EzINYctSAZe1ZGPytEDc0Q0qb419zq5VwI7eR6Vfki7QOhPSnCrb0dk-OrTadehp7zxdzld0ncDYoop0PqgQTG-0isbZM3LcqyHg9Fsn5PFm-TBfZ5u71e18tsm05BCzEkoBULUt1DXmoAUwxYGJlrG20FCxsuhLLqu6FCpvy6oqeCW1wK5LBhRaTsjFYe_Ou7c9hths3d7bdLIRRV7nhaiLPLnqg0t7F4LHvtEmfv0ZvTJDw1nzGWTzN8iEil_ozptX5d__gz4Al_F7HQ
CitedBy_id crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_1016_j_future_2020_07_021
crossref_primary_10_3390_rs14071552
crossref_primary_10_1155_2021_3468479
crossref_primary_10_3389_fphys_2022_982537
crossref_primary_10_1109_ACCESS_2025_3584735
crossref_primary_10_3390_app12146957
crossref_primary_10_1007_s13369_022_06667_y
crossref_primary_10_1088_1361_6579_ac96cd
crossref_primary_10_3390_app122312408
crossref_primary_10_3390_electronics10010081
crossref_primary_10_1002_mp_16831
crossref_primary_10_1080_03772063_2025_2508330
crossref_primary_10_1088_2057_1976_acd257
crossref_primary_10_1186_s44147_024_00551_2
crossref_primary_10_1007_s11063_022_10949_9
crossref_primary_10_3390_electronics9030445
crossref_primary_10_1016_j_bspc_2023_105437
crossref_primary_10_3389_fphys_2023_1246746
crossref_primary_10_1016_j_bspc_2023_105714
crossref_primary_10_3233_JIFS_233442
crossref_primary_10_1155_2022_7401175
crossref_primary_10_1016_j_knosys_2024_111396
crossref_primary_10_1109_ACCESS_2023_3244651
crossref_primary_10_3390_electronics9122140
crossref_primary_10_1038_s41746_025_01692_1
crossref_primary_10_1155_2021_2788161
crossref_primary_10_1109_ACCESS_2020_3034367
crossref_primary_10_1016_j_bspc_2025_108142
crossref_primary_10_3389_fcvm_2021_699145
crossref_primary_10_3390_app13084964
crossref_primary_10_1109_TGRS_2024_3379567
crossref_primary_10_1007_s11042_023_17997_w
crossref_primary_10_1007_s12530_022_09429_1
crossref_primary_10_1109_TCBB_2022_3176905
crossref_primary_10_3390_electronics10010070
crossref_primary_10_1016_j_eswa_2023_119561
crossref_primary_10_1016_j_bspc_2024_106544
crossref_primary_10_1109_TIM_2022_3194906
crossref_primary_10_3390_app13148273
crossref_primary_10_3390_nu14040885
crossref_primary_10_1002_jemt_24805
crossref_primary_10_1016_j_heliyon_2024_e36751
crossref_primary_10_1109_ACCESS_2022_3206620
crossref_primary_10_1109_ACCESS_2022_3225899
crossref_primary_10_1007_s11760_022_02300_5
crossref_primary_10_1002_hfm_21056
crossref_primary_10_1016_j_compbiomed_2025_109653
crossref_primary_10_1016_j_measurement_2022_111412
crossref_primary_10_1109_TCE_2025_3540875
crossref_primary_10_1016_j_knosys_2021_107187
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_1016_j_imu_2020_100507
crossref_primary_10_1109_ACCESS_2024_3390008
crossref_primary_10_3390_s22062329
crossref_primary_10_3390_app10165510
crossref_primary_10_3390_electronics9030427
crossref_primary_10_3390_jcdd10040175
crossref_primary_10_3390_electronics9111954
crossref_primary_10_1155_2021_5527904
crossref_primary_10_1007_s11704_023_2441_1
crossref_primary_10_3390_electronics9111837
crossref_primary_10_1109_ACCESS_2024_3518776
crossref_primary_10_1007_s10489_024_05881_5
crossref_primary_10_3390_s22155606
crossref_primary_10_1016_j_eswa_2025_126714
crossref_primary_10_1109_ACCESS_2024_3447096
crossref_primary_10_1016_j_compbiomed_2024_109422
crossref_primary_10_1080_21681163_2022_2162439
crossref_primary_10_1371_journal_pone_0277932
crossref_primary_10_3390_electronics14153149
crossref_primary_10_1109_ACCESS_2020_3026615
crossref_primary_10_1007_s44258_024_00043_1
crossref_primary_10_1016_j_bspc_2023_104954
crossref_primary_10_3390_electronics10151805
crossref_primary_10_1007_s00521_025_11092_x
crossref_primary_10_1155_2021_6592562
crossref_primary_10_1007_s11760_022_02155_w
crossref_primary_10_1186_s12911_024_02822_7
Cites_doi 10.1155/2016/3632943
10.1088/1742-6596/1246/1/012030
10.1016/j.ijleo.2018.02.023
10.4258/hir.2019.25.3.201
10.1109/ACCESS.2019.2912036
10.1016/j.cmpb.2014.09.002
10.1016/j.procs.2015.07.354
10.3390/app9142921
10.1109/ICRITO.2015.7359333
10.1109/GCCE.2014.7031302
10.1016/j.procs.2016.06.106
10.1016/j.knosys.2019.04.023
10.1038/s41598-017-06596-z
10.1088/0967-3334/37/12/2214
10.1080/08839514.2015.1051887
10.3390/electronics8060667
10.1016/j.bspc.2013.01.005
10.1166/jmihi.2015.1649
10.1016/j.dsp.2006.11.009
10.1016/j.ins.2016.09.033
10.1016/j.artmed.2008.11.004
10.3991/ijoe.v13i09.7159
10.1109/ACCESS.2016.2587581
10.1155/2013/763903
10.3390/electronics8091000
10.1145/1390156.1390294
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics9010135
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics9010135
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-6962997bb988e49c290a1902b00b5c97065f6137862a4b6775173c2edd00be2c3
IEDL.DBID BENPR
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516827000135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 06:47:04 EST 2025
Sat Nov 29 07:12:00 EST 2025
Tue Nov 18 22:13:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6962997bb988e49c290a1902b00b5c97065f6137862a4b6775173c2edd00be2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2791-3486
0000-0002-0229-5717
0000-0002-8024-2952
OpenAccessLink https://www.proquest.com/docview/2548452854?pq-origsite=%requestingapplication%
PQID 2548452854
PQPubID 2032404
ParticipantIDs proquest_journals_2548452854
crossref_citationtrail_10_3390_electronics9010135
crossref_primary_10_3390_electronics9010135
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
ref_31
ref_30
Hermans (ref_23) 2018; 20
ref_19
Yoon (ref_12) 2019; 25
ref_18
ref_17
Martis (ref_21) 2013; 8
Sugimoto (ref_29) 2019; 178
Faziludeen (ref_24) 2016; 89
Joshi (ref_6) 2015; 57
Qin (ref_22) 2017; 7
Yu (ref_26) 2009; 46
(ref_28) 2007; 17
Nguyen (ref_11) 2016; 373
Li (ref_27) 2014; 117
ref_20
Kong (ref_10) 2018; 160
Xiong (ref_15) 2015; 5
ref_1
ref_3
Xiong (ref_16) 2016; 37
ref_2
Chiang (ref_14) 2019; 7
Hejazi (ref_25) 2015; 29
ref_8
ref_5
ref_4
Srivastava (ref_9) 2016; 4
ref_7
References_xml – ident: ref_5
– ident: ref_17
  doi: 10.1155/2016/3632943
– ident: ref_20
  doi: 10.1088/1742-6596/1246/1/012030
– ident: ref_3
– volume: 160
  start-page: 402
  year: 2018
  ident: ref_10
  article-title: Denoising signals for photoacoustic imaging in frequency domain based on empirical mode decomposition
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.02.023
– volume: 25
  start-page: 201
  year: 2019
  ident: ref_12
  article-title: Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2019.25.3.201
– volume: 7
  start-page: 60806
  year: 2019
  ident: ref_14
  article-title: Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912036
– volume: 117
  start-page: 435
  year: 2014
  ident: ref_27
  article-title: A machine learning approach to multi-level ECG signal quality classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.002
– volume: 57
  start-page: 395
  year: 2015
  ident: ref_6
  article-title: De-noising of ECG signal using Adaptive Filter based on MPSO
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.354
– ident: ref_30
  doi: 10.3390/app9142921
– ident: ref_7
  doi: 10.1109/ICRITO.2015.7359333
– ident: ref_18
– ident: ref_19
  doi: 10.1109/GCCE.2014.7031302
– volume: 89
  start-page: 499
  year: 2016
  ident: ref_24
  article-title: ECG beat classification using evidential K-nearest neighbours
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.06.106
– volume: 178
  start-page: 123
  year: 2019
  ident: ref_29
  article-title: Detection and localization of myocardial infarction based on a convolutional autoencoder
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.04.023
– volume: 7
  start-page: 6067
  year: 2017
  ident: ref_22
  article-title: Combining low-dimensional wavelet features and support vector machine for arrhythmia beat classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06596-z
– volume: 37
  start-page: 2214
  year: 2016
  ident: ref_16
  article-title: A stacked contractive denoising auto-encoder for ECG signal denoising
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2214
– volume: 29
  start-page: 660
  year: 2015
  ident: ref_25
  article-title: Multiclass support vector machines for classification of ECG data with missing values
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2015.1051887
– ident: ref_31
– volume: 20
  start-page: iii113
  year: 2018
  ident: ref_23
  article-title: Support vector machine-based assessment of the T-wave morphology improves long QT syndrome diagnosis
  publication-title: EP Eur.
– ident: ref_4
  doi: 10.3390/electronics8060667
– volume: 8
  start-page: 437
  year: 2013
  ident: ref_21
  article-title: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.01.005
– volume: 5
  start-page: 1804
  year: 2015
  ident: ref_15
  article-title: Denoising autoencoder for eletrocardiogram signal enhancement
  publication-title: J. Med. Imaging Heal. Inform.
  doi: 10.1166/jmihi.2015.1649
– volume: 17
  start-page: 675
  year: 2007
  ident: ref_28
  article-title: ECG beats classification using multiclass support vector machines with error correcting output codes
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2006.11.009
– volume: 373
  start-page: 499
  year: 2016
  ident: ref_11
  article-title: Adaptive ECG denoising using genetic algorithm-based thresholding and ensemble empirical mode decomposition
  publication-title: Inf. Sci. (N. Y.)
  doi: 10.1016/j.ins.2016.09.033
– volume: 46
  start-page: 165
  year: 2009
  ident: ref_26
  article-title: Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.11.004
– ident: ref_8
  doi: 10.3991/ijoe.v13i09.7159
– volume: 4
  start-page: 3862
  year: 2016
  ident: ref_9
  article-title: A new wavelet denoising method for selecting decomposition levels and noise thresholds
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2587581
– ident: ref_2
  doi: 10.1155/2013/763903
– ident: ref_1
  doi: 10.3390/electronics8091000
– ident: ref_13
  doi: 10.1145/1390156.1390294
SSID ssj0000913830
Score 2.5024035
Snippet The electrocardiogram (ECG) is a widely used, noninvasive test for analyzing arrhythmia. However, the ECG signal is prone to contamination by different kinds...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 135
SubjectTerms Arrhythmia
Artificial neural networks
Automation
Bias
Classification
Deep learning
Discriminant analysis
Electrocardiography
Feature extraction
Machine learning
Neural networks
Noise reduction
Principal components analysis
Representations
Signal processing
Signal to noise ratio
Training
Waveforms
Wavelet transforms
Title Deep Learning-Based Stacked Denoising and Autoencoder for ECG Heartbeat Classification
URI https://www.proquest.com/docview/2548452854
Volume 9
WOSCitedRecordID wos000516827000135&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9KAHv8WPKTl4k7K1SdbmJJtuKugoojK9lDRJZSDd3KpH_3ZfusxNBC9eekgTKH15n3n5_QBOIpU1OJPC0xnjHtNGeMJkmKwYv55RX_tyApl_E3a7Ua8nYldwG7u2yqlNLA21HihbI69hIhMxbu_7nQ3fPMsaZU9XHYXGIixZpDJWgaVWuxvffVdZLOplROuT2zIU8_vajF1mbDsT_JLnbc4j_TTIpZfprP_3-zZgzcWXpDnZEJuwYPItWJ1DHdyGxwtjhsQBq754LfRjmmDQifqsyYXJB31bPyAy16T5Xgws0qU2I4LRLWmfX5IrXFikaMJJSahpW41K6e7AQ6d9f37lOXoFT6HeFV5DNNAXhWkqosgwoQJRlxgeBKiIKVfCnn9m6OxDzHkkSxthyP2QqsBojRNMoOguVPJBbvaAcJmKTFFFGZNM0iDCOIYanoZRFmRS8n3wp784UQ573FJgvCaYg1ixJL_Fsg-n32uGE-SNP2dXp2JJnBaOk5lMDv5-fQgrgc2jy9JKFSrF6N0cwbL6KPrj0bHbVMewePvZxmfMn3Esvr6Nn74ANIvcxA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1BUon20FJoBS0fPrQntCJre7P2ASEghESEKAdAcFq8treKhDZpsoD6p_iNjPcjBFXixoHz2ivt-mnezNh-D-CX0Ekz4Ep6JuGBx42VnrQJFivWbyTMN74qJPN7Yb8vrq7kYAEeq7sw7lhlFRPzQG1G2vXId7GQETxw9_32x3895xrldlcrC40CFqf23wOWbNO9bgvX9zel7ePzo45Xugp4GuGWeU3ZxBAcxrEUwnKpqWwoZEWK-IsDLd22X4IcF2Kqr3jcDMPAD5mm1hgcYKlm-N5FqHMEu6hBfdA9G1zPujpOZVOwRnE7hzHZ2H12s5m6kxB-7is3x4AvCSBntfaX9_Y_luFzmT-TgwLwX2HBpivwaU5VcRUuW9aOSSkc-8c7RJ42BJNqjFeGtGw6Grr-CFGpIQd32cgpeRo7IZi9k-OjE9LBiVmMFEVyw1B3lCpH7ze4eJMP-w61dJTaNSCBimWimWacK64YFZinMRvEoUhoolSwDn61pJEutdWdxcdthDWWg0H0PwzWYWc2Z1woi7w6eqOCQVRGmWn0jIEfrz_ehqXO-Vkv6nX7pz_hI3U9g7yNtAG1bHJnN-GDvs-G08lWCWgCN2-NmSdALjKG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTttAFL0KFKGyoOVRQQt0FrBCVuJ5xJ4FqiAhBIGiLAAhNmY8jwqpckJiqPpr_Tru-BFAldix6Nozluw5c19z5xyA3Vi7tuBKBsZxEXBjZSCtw2TFhi3HQhOqkjL_PBoM4utrOWzA3_oujG-rrG1iYajNSPsaeRMTmZgLf9-v6aq2iGG392N8H3gFKX_SWstplBA5s39-Y_o2PTjt4lrvUdo7vuj0g0phINAIvTxoyzaa4yhNZRxbLjWVLYUekiIWU6GlPwJ06O8iDPsVT9tRJMKIaWqNwQGWaobvnYMPEeaYfncNxc2svuP5NmPWKu_pMCZbzWddm6nviQgLhbkXvvC1Kyj8W-_T__xnPsNyFVWTw3IbrEDDZquw9IJrcQ2uutaOSUUn-zM4Qu9tCIbaaMUM6dpsdOerJkRlhhw-5CPP72nshGBMT447J6SPE_MUHRcpZER9g1WB6XW4fJcP-wLz2SizG0CESqXTTDPOFVeMxhi9MSvSKHbUKSU2IayXN9EV47oX_viVYOblIZH8C4lN2J_NGZd8I2-O3qohkVS2Z5o84-Hr24-_wyICJTk_HZx9g4_UFxKK2tIWzOeTB7sNC_oxv5tOdgpkE7h9b8A8AeE9Oek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Stacked+Denoising+and+Autoencoder+for+ECG+Heartbeat+Classification&rft.jtitle=Electronics+%28Basel%29&rft.au=Nurmaini%2C+Siti&rft.au=Darmawahyuni%2C+Annisa&rft.au=Sakti+Mukti%2C+Akhmad+Noviar&rft.au=Rachmatullah%2C+Muhammad+Naufal&rft.date=2020-01-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=9&rft.issue=1&rft.spage=135&rft_id=info:doi/10.3390%2Felectronics9010135&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics9010135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon