Enhanced cuckoo search algorithm for industrial winding process modeling

Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing Jg. 34; H. 4; S. 1911 - 1940
Hauptverfasser: Braik, Malik, Sheta, Alaa, Al-Hiary, Heba, Aljahdali, Sultan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:0956-5515, 1572-8145
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industrial systems to represent experimental data sets. The data collected for many industrial systems may be subject to the existence of high non-linearity and multiple constraints. Meanwhile, creating a thoroughgoing model for an industrial process is essential for model-based control systems. In this work, we explore the use of a proposed Enhanced version of the Cuckoo Search (ECS) algorithm to address a parameter estimation problem for both linear and nonlinear model structures of a real winding process. The performance of the developed models was compared with other mainstream meta-heuristics when they were targeted to model the same process. Moreover, these models were compared with other models developed based on some conventional modeling methods. Several evaluation tests were performed to judge the efficiency of the developed models based on ECS, which showed superior performance in both training and testing cases over that achieved by other modeling methods.
AbstractList Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industrial systems to represent experimental data sets. The data collected for many industrial systems may be subject to the existence of high non-linearity and multiple constraints. Meanwhile, creating a thoroughgoing model for an industrial process is essential for model-based control systems. In this work, we explore the use of a proposed Enhanced version of the Cuckoo Search (ECS) algorithm to address a parameter estimation problem for both linear and nonlinear model structures of a real winding process. The performance of the developed models was compared with other mainstream meta-heuristics when they were targeted to model the same process. Moreover, these models were compared with other models developed based on some conventional modeling methods. Several evaluation tests were performed to judge the efficiency of the developed models based on ECS, which showed superior performance in both training and testing cases over that achieved by other modeling methods.
Author Aljahdali, Sultan
Sheta, Alaa
Braik, Malik
Al-Hiary, Heba
Author_xml – sequence: 1
  givenname: Malik
  surname: Braik
  fullname: Braik, Malik
  organization: Al-Balqa Applied University
– sequence: 2
  givenname: Alaa
  orcidid: 0000-0002-3727-6276
  surname: Sheta
  fullname: Sheta, Alaa
  email: shetaa1@southernct.edu
  organization: Southern Connecticut State University
– sequence: 3
  givenname: Heba
  surname: Al-Hiary
  fullname: Al-Hiary, Heba
  organization: Al-Balqa Applied University
– sequence: 4
  givenname: Sultan
  surname: Aljahdali
  fullname: Aljahdali, Sultan
  organization: Taif University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz6uZ7CabPUqpVih40XPIv223bpOabBG_vdEVBA89vWF4v5nHm6GJD94hdA3kFgip7xIQUbGCUCgINIQUcIamwGpaCKjYBE1Jw3jBGLALNEtpRwhpBIcpWi39VnnjLDZH8xYCTk5Fs8Wq34TYDds9bkPEnbfHNMRO9fgjz53f4EMMxqWE98G6Pi8u0Xmr-uSufnWOXh-WL4tVsX5-fFrcrwtTQjMUvAZlwFhHyxayaqdMyxqjubElp5V2lW6BCqDghBWtoFpXurZWi4pwbso5uhnv5gDvR5cGuQvH6PNLSWtRE86Y4NklRpeJIaXoWmm6QQ1d8ENUXS-ByO_e5NibzL3Jn94kZJT-Qw-x26v4eRoqRyhls9-4-JfqBPUFr6aDTw
CitedBy_id crossref_primary_10_1007_s10586_024_04361_2
crossref_primary_10_1109_ACCESS_2024_3375886
crossref_primary_10_1111_exsy_13438
crossref_primary_10_1007_s00521_025_11228_z
crossref_primary_10_1007_s00521_024_10806_x
crossref_primary_10_1007_s10489_023_04732_z
crossref_primary_10_1007_s11270_024_07378_w
crossref_primary_10_1109_ACCESS_2024_3401705
crossref_primary_10_1007_s00500_024_09743_7
crossref_primary_10_1007_s11227_023_05215_1
crossref_primary_10_1007_s10462_024_10957_2
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1038_s41598_025_13247_1
Cites_doi 10.1243/09544054JEM1290
10.1371/journal.pone.0000354
10.1016/S1474-6670(17)58748-0
10.1007/978-1-4471-4866-1_13
10.1111/jiec.12540
10.1016/j.measurement.2018.01.032
10.1109/ACCESS.2020.2966712
10.1007/s40092-018-0295-1
10.1007/978-3-662-04323-3
10.1007/s00500-020-05130-0
10.1007/978-1-84882-653-3
10.3390/app11083325
10.1109/TCT.1956.1086328
10.1201/b18384
10.1007/s00170-019-03621-5
10.1080/01621459.1937.10503522
10.1109/ASCC.2017.8287399
10.1007/s00521-016-2473-7
10.1016/j.jcp.2007.06.008
10.3354/cr030079
10.1016/j.ijhydene.2020.02.069
10.1016/S1367-5788(03)00009-9
10.1016/j.renene.2014.05.035
10.1007/s40092-014-0094-2
10.1016/j.swevo.2018.02.013
10.1631/jzus.C11a0278
10.1109/FUZZY.2008.4630469
10.1093/oso/9780195076318.001.0001
10.1007/s40092-017-0222-x
10.1080/21642583.2015.1124032
10.1049/cp:19940169
10.1016/j.eswa.2017.10.028
10.1007/s00366-011-0241-y
10.1007/s40092-017-0227-5
10.1007/s00521-013-1367-1
10.1109/CEC.2000.870323
10.1038/443281a
10.7717/peerj-cs.623
10.1006/jmps.1999.1278
10.1007/s10845-015-1143-4
10.1006/jmps.1999.1276
10.1007/s11063-021-10530-w
10.1016/j.cmpb.2007.04.004
10.1007/s40092-017-0183-0
10.1080/0951192X.2013.766937
10.1109/TFUZZ.2016.2566810
10.1007/s00521-015-1920-1
10.5267/j.ijiec.2016.2.004
10.1109/9.1247
10.1142/S021968671850004X
10.1504/IJMMNO.2010.035430
10.1007/s00500-020-05464-9
10.1109/NABIC.2009.5393690
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88E
8AL
8AO
8FD
8FE
8FG
8FJ
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M0S
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10845-021-01900-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1572-8145
EndPage 1940
ExternalDocumentID 10_1007_s10845_021_01900_1
GrantInformation_xml – fundername: Taif University
  grantid: TURSP-2020/73
  funderid: http://dx.doi.org/10.13039/501100006261
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
8AO
8FE
8FG
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZYFGU
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-671ac1cde23f11cdbeacf59cb6cd3624be4bf128121e8d8f82bb4b7ddb84066c3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-5515
IngestDate Wed Nov 05 04:20:59 EST 2025
Sat Nov 29 04:20:09 EST 2025
Tue Nov 18 22:46:25 EST 2025
Fri Feb 21 02:44:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Industrial winding process
Cuckoo search algorithm
Nonlinear model
Linear model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-671ac1cde23f11cdbeacf59cb6cd3624be4bf128121e8d8f82bb4b7ddb84066c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3727-6276
PQID 2787065586
PQPubID 32407
PageCount 30
ParticipantIDs proquest_journals_2787065586
crossref_citationtrail_10_1007_s10845_021_01900_1
crossref_primary_10_1007_s10845_021_01900_1
springer_journals_10_1007_s10845_021_01900_1
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: London
PublicationTitle Journal of intelligent manufacturing
PublicationTitleAbbrev J Intell Manuf
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References OgunjuyigbeASOAyodeleTRAdetokunBBModelling and analysis of dual stator-winding induction machine using complex vector approachInternational Journal Engineering Science and Technology2018213351363
AzizMAEHassanienAEModified cuckoo search algorithm with rough sets for feature selectionNeural Computing and Applications201829492593410.1007/s00521-016-2473-7
Kamrani, E. (2010). Modeling and forecasting long-term natural gas (ng) consumption in Iran, using particle swarm optimization (pso).
MirjaliliSDragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications20162741053107310.1007/s00521-015-1920-1
Nelles, O. (2002). Nonlinear system identification.
NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInternational Journal of Industrial Engineering Computations20167468170210.5267/j.ijiec.2016.2.004
Al-Hiary, H., Braik, M., Sheta, A., & Ayesh, A. (2008). Identification of a chemical process reactor using soft computing techniques. In IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence) (pp. 845–853). IEEE.
İnciMCaliskanAPerformance enhancement of energy extraction capability for fuel cell implementations with improved cuckoo search algorithmInternational Journal of Hydrogen Energy20204519113091132010.1016/j.ijhydene.2020.02.069
Sheta, A.F., Braik, M., Öznergiz, E., Ayesh, A., & Masud, M. (2013). Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. In Business intelligence and performance management (pp. 191–208). Springer.
MelloRGTOliveiraLFNadalJDigital butterworth filter for subtracting noise from low magnitude surface electromyogramComputer Methods and Programs in Biomedicine2007871283510.1016/j.cmpb.2007.04.004
GandomiAHYangX-SAlaviAHCuckoo search algorithm: A metaheuristic approach to solve structural optimization problemsEngineering with Computers2013291173510.1007/s00366-011-0241-y
FarisHShetaAIdentification of the tennessee eastman chemical process reactor using genetic programmingInternational Journal of Advanced Science and Technology201350121140
FarisHShetaAÖznergizEModelling hot rolling manufacturing process using soft computing techniquesInternational Journal of Computer Integrated Manufacturing201326876277110.1080/0951192X.2013.766937
FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJournal of the American Statistical Association19373220067570110.1080/01621459.1937.10503522
WassermanLBayesian model selection and model averagingJournal of Mathematical Psychology20004419210710.1006/jmps.1999.1278
Sheta, A., Braik, M., & Al-Hiary, H. (2019). Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). The International Journal of Advanced Manufacturing Technology, 1–22.
Yıldız, A. R. (2008) Hybrid taguchi-harmony search algorithm for solving engineering optimization problems. International Journal of Industrial Engineering, 15(3), 286–293.
PascualDGArtificial intelligence tools: Decision support systems in condition monitoring and diagnosis2015New YorkCRC Press10.1201/b18384
JainMSinghVRaniAA novel nature-inspired algorithm for optimization: Squirrel search algorithmSwarm and Evolutionary Computation20194414817510.1016/j.swevo.2018.02.013
ParantFCoeffierCIungCModeling of web tension in a continuous annealing lineIron and Steel Engineer (USA)199269114649
MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJournal of Industrial Engineering International201814242944210.1007/s40092-017-0222-x
DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJournal of Industrial Engineering International201915233334910.1007/s40092-018-0295-1
WillmottCJMatsuuraKAdvantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performanceClimate Research2005301798210.3354/cr030079
QuinnTJDerisoRBQuantitative fish dynamics1999OxfordOxford university Press
BraikMShetaATurabiehHAlhiaryHA novel lifetime scheme for enhancing the convergence performance of salp swarm algorithmSoft Computing202125118120610.1007/s00500-020-05130-0
Braik, M., Sheta, A., & Arieqat, A. (2008). A comparison between GAs and PSO in training ANN to model the TE chemical process reactor. In Proceedings of the AISB 2008 convention in communication, interaction and social intelligence (Vol. 1, pp. 24).
KarthikGVSKDebSA methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithmJournal of Advanced Manufacturing Systems20181701475910.1142/S021968671850004X
CrossPMaXNonlinear system identification for model-based condition monitoring of wind turbinesRenewable Energy20147116617510.1016/j.renene.2014.05.035
Chu, X., Nian, X., Liu, J., & Liao, Y. (2017). Robust fault detection for multi-motor winding system based on disturbance observer and sliding-mode observer. In 2017 11th Asian control conference (ASCC) (pp. 1519–1524). IEEE.
FarisHShetaAFÖznergizEMgp-cc: A hybrid multigene gp-cuckoo search method for hot rolling manufacture process modellingSystems Science and Control Engineering201641394910.1080/21642583.2015.1124032
LjungLTheory for the user1987New YorkPrentice Hall
ZadehLOn the identification problemIRE Transactions on Circuit Theory19563427728110.1109/TCT.1956.1086328
ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEuropean Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique2008171–2103126
Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. world congress on (pp. 210–214). IEEE.
ÖznergizEÖzsoyCDeliceIIKuralAComparison of empirical and neural network hot-rolling process modelsProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2009223330531210.1243/09544054JEM1290
Braik, M. (2021). A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Processing Letters, 1–44.
ChangY-WHsiehC-JChangK-WRinggaardMLinC-JTraining and testing low-degree polynomial data mappings via linear svmJournal of Machine Learning Research201011Apr14711490
Hussian, A., Sheta, A., Kamel, M., Telbaney, M., & Abdelwahab, A. (2000). Modeling of a winding machine using genetic programming. In Proceedings of the 2000 congress on evolutionary computation, 2000 (Vol. 1, pp. 398–402). IEEE.
Van Welden, D. (2000). Induction of predictive models for dynamical systems via data mining. Ph.d thesis, Ghent University.
ShlesingerMFMathematical physics: Search researchNature2006443710928110.1038/443281a
MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJournal of Industrial Engineering International2015111597210.1007/s40092-014-0094-2
SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Systems with Applications20189345646410.1016/j.eswa.2017.10.028
AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJournal of Industrial Engineering and Management20191211326
Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory.
Sheta, A.F., Braik, M., & Al-Hiary, H. (2009). Identification and model predictive controller design of the Tennessee Eastman Chemical Process using ANN. In Proceedings of the international conference on artificial intelligence (ICAI’09), July 13–16, USA, (Vol. 1, pp. 25–31).
WeiYQiuJLamH-KLigangWApproaches to t-s fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systemsIEEE Transactions on fuzzy systems201725356958310.1109/TFUZZ.2016.2566810
BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case studySoft Computing20212564545456910.1007/s00500-020-05464-9
ChiccoDWarrensMJJurmanGThe coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluationPeerJ Computer Science20217e62310.7717/peerj-cs.623
DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJournal of Industrial Engineering International201713327529610.1007/s40092-017-0183-0
SieversLBalasMJvon FlotowAModeling of web conveyance systems for multivariable controlIEEE Transactions on Automatic Control198833652453110.1109/9.1247
ZhangZHongW-CLiJElectric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithmIEEE Access20208146421465810.1109/ACCESS.2020.2966712
Schlei-PetersIWichmannMGMatthesI-GGundlachF-WSpenglerTSIntegrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systemsJournal of Industrial Ecology2008221415410.1111/jiec.12540
Pereira, I., Madureira, A., & e Silva, E.C., & Abraham, A. (2021). A hybrid metaheuristics parameter tuning approach for scheduling through racing and case-based reasoning. Applied Sciences,11(8), 3325.
Babuska, R. (1998). Fuzzy modeling and identification toolbox, 204. Delft University of Technology, The Netherland. http://lcewww.et.tudelft.nl/bubuska
YangX-SDebSCuckoo search: Recent advances and applicationsNeural Computing and Applications201424116917410.1007/s00521-013-1367-1
ZucchiniWAn introduction to model selectionJournal of Mathematical Psychology2000441416110.1006/jmps.1999.1276
PavlyukevichILévy flights, non-local search a
1900_CR24
1900_CR25
1900_CR8
1900_CR28
L Zadeh (1900_CR66) 1956; 3
PJR Torres (1900_CR57) 2018; 29
1900_CR62
SH Mousavi (1900_CR35) 2015; 11
H Faris (1900_CR19) 2013; 26
A Tahmassebi (1900_CR56) 2018; 118
1900_CR65
MAE Aziz (1900_CR4) 2018; 29
H Noura (1900_CR38) 2009
E Öznergiz (1900_CR41) 2009; 223
1900_CR5
1900_CR2
1900_CR1
H Faris (1900_CR18) 2013; 50
G Moslemipour (1900_CR34) 2018; 14
SR Dixit (1900_CR17) 2019; 15
RD Braatz (1900_CR7) 1996; 29
MF Shlesinger (1900_CR54) 2006; 443
1900_CR14
1900_CR58
L Ljung (1900_CR31) 1987
M Jain (1900_CR27) 2019; 44
1900_CR51
1900_CR52
M Braik (1900_CR9) 2021; 25
X-S Yang (1900_CR63) 2010; 1
DW Zingg (1900_CR68) 2008; 17
M Nikabadi (1900_CR37) 2016; 7
1900_CR53
A Ayough (1900_CR3) 2019; 12
1900_CR10
AM Reynolds (1900_CR47) 2007; 2
D Chicco (1900_CR13) 2021; 7
M İnci (1900_CR26) 2020; 45
Y-W Chang (1900_CR12) 2010; 11
R Babuška (1900_CR6) 2003; 27
ASO Ogunjuyigbe (1900_CR40) 2018; 21
TJ Quinn (1900_CR46) 1999
AH Gandomi (1900_CR22) 2013; 29
F Parant (1900_CR42) 1992; 69
L Sievers (1900_CR55) 1988; 33
HA Nozari (1900_CR39) 2012; 13
1900_CR45
I Pavlyukevich (1900_CR44) 2007; 226
M Friedman (1900_CR21) 1937; 32
S Mirjalili (1900_CR33) 2016; 27
W Zucchini (1900_CR69) 2000; 44
I Schlei-Peters (1900_CR50) 2008; 22
CJ Willmott (1900_CR61) 2005; 30
Y Wei (1900_CR60) 2017; 25
L Wasserman (1900_CR59) 2000; 44
X-S Yang (1900_CR64) 2014; 24
P Cross (1900_CR15) 2014; 71
1900_CR36
RGT Mello (1900_CR32) 2007; 87
Z Zhang (1900_CR67) 2020; 8
GVSK Karthik (1900_CR29) 2018; 17
1900_CR30
JH Santillan (1900_CR49) 2018; 14
N Sadati (1900_CR48) 2018; 93
H Faris (1900_CR20) 2016; 4
DG Pascual (1900_CR43) 2015
SD Dao (1900_CR16) 2017; 13
M Braik (1900_CR11) 2021; 25
R Guidorzi (1900_CR23) 2003
References_xml – reference: BraikMShetaATurabiehHAlhiaryHA novel lifetime scheme for enhancing the convergence performance of salp swarm algorithmSoft Computing202125118120610.1007/s00500-020-05130-0
– reference: Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. world congress on (pp. 210–214). IEEE.
– reference: ZadehLOn the identification problemIRE Transactions on Circuit Theory19563427728110.1109/TCT.1956.1086328
– reference: BabuškaRVerbruggenHNeuro-fuzzy methods for nonlinear system identificationAnnual Reviews in Control2003271738510.1016/S1367-5788(03)00009-9
– reference: BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case studySoft Computing20212564545456910.1007/s00500-020-05464-9
– reference: MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJournal of Industrial Engineering International201814242944210.1007/s40092-017-0222-x
– reference: Van Welden, D. (2000). Induction of predictive models for dynamical systems via data mining. Ph.d thesis, Ghent University.
– reference: AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJournal of Industrial Engineering and Management20191211326
– reference: Lennart, L. (1994). From data to model: A guided tour of system identification.
– reference: ZucchiniWAn introduction to model selectionJournal of Mathematical Psychology2000441416110.1006/jmps.1999.1276
– reference: ÖznergizEÖzsoyCDeliceIIKuralAComparison of empirical and neural network hot-rolling process modelsProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2009223330531210.1243/09544054JEM1290
– reference: FarisHShetaAIdentification of the tennessee eastman chemical process reactor using genetic programmingInternational Journal of Advanced Science and Technology201350121140
– reference: Chu, X., Nian, X., Liu, J., & Liao, Y. (2017). Robust fault detection for multi-motor winding system based on disturbance observer and sliding-mode observer. In 2017 11th Asian control conference (ASCC) (pp. 1519–1524). IEEE.
– reference: MelloRGTOliveiraLFNadalJDigital butterworth filter for subtracting noise from low magnitude surface electromyogramComputer Methods and Programs in Biomedicine2007871283510.1016/j.cmpb.2007.04.004
– reference: TorresPJRMercadoESRifónLAProbabilistic Boolean network modeling of an industrial machineJournal of Intelligent Manufacturing201829487589010.1007/s10845-015-1143-4
– reference: NozariHABanadakiHDMokhtareMVahedSHIntelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networksJournal of Zhejiang University SCIENCE C201213640341210.1631/jzus.C11a0278
– reference: SieversLBalasMJvon FlotowAModeling of web conveyance systems for multivariable controlIEEE Transactions on Automatic Control198833652453110.1109/9.1247
– reference: PavlyukevichILévy flights, non-local search and simulated annealingJournal of Computational Physics200722621830184410.1016/j.jcp.2007.06.008
– reference: Kamrani, E. (2010). Modeling and forecasting long-term natural gas (ng) consumption in Iran, using particle swarm optimization (pso).
– reference: SantillanJHTapucarSManliguezCCalagVCuckoo search via lévy flights for the capacitated vehicle routing problemJournal of Industrial Engineering International201814229330410.1007/s40092-017-0227-5
– reference: ChangY-WHsiehC-JChangK-WRinggaardMLinC-JTraining and testing low-degree polynomial data mappings via linear svmJournal of Machine Learning Research201011Apr14711490
– reference: ParantFCoeffierCIungCModeling of web tension in a continuous annealing lineIron and Steel Engineer (USA)199269114649
– reference: BraatzRDOgunnaikeBAFeatherstoneAPIdentification, estimation, and control of sheet and film processesIFAC Proceedings Volumes19962916638664310.1016/S1474-6670(17)58748-0
– reference: WillmottCJMatsuuraKAdvantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performanceClimate Research2005301798210.3354/cr030079
– reference: ReynoldsAMFryeMAFree-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free searchPLOS ONE200724e35410.1371/journal.pone.0000354
– reference: DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJournal of Industrial Engineering International201915233334910.1007/s40092-018-0295-1
– reference: Sheta, A., Braik, M., & Al-Hiary, H. (2019). Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). The International Journal of Advanced Manufacturing Technology, 1–22.
– reference: ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEuropean Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique2008171–2103126
– reference: Braik, M., Sheta, A., & Arieqat, A. (2008). A comparison between GAs and PSO in training ANN to model the TE chemical process reactor. In Proceedings of the AISB 2008 convention in communication, interaction and social intelligence (Vol. 1, pp. 24).
– reference: NouraHTheilliolDPonsartJ-CChamseddineAFault-tolerant control systems: Design and practical applications2009BerlinSpringer10.1007/978-1-84882-653-3
– reference: QuinnTJDerisoRBQuantitative fish dynamics1999OxfordOxford university Press
– reference: Sheta, A.F., Braik, M., & Al-Hiary, H. (2009). Identification and model predictive controller design of the Tennessee Eastman Chemical Process using ANN. In Proceedings of the international conference on artificial intelligence (ICAI’09), July 13–16, USA, (Vol. 1, pp. 25–31).
– reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJournal of the American Statistical Association19373220067570110.1080/01621459.1937.10503522
– reference: ShlesingerMFMathematical physics: Search researchNature2006443710928110.1038/443281a
– reference: Sheta, A.F., Braik, M., Öznergiz, E., Ayesh, A., & Masud, M. (2013). Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. In Business intelligence and performance management (pp. 191–208). Springer.
– reference: Yıldız, A. R. (2008) Hybrid taguchi-harmony search algorithm for solving engineering optimization problems. International Journal of Industrial Engineering, 15(3), 286–293.
– reference: ChiccoDWarrensMJJurmanGThe coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluationPeerJ Computer Science20217e62310.7717/peerj-cs.623
– reference: Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70.
– reference: Braik, M. (2021). A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Processing Letters, 1–44.
– reference: DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJournal of Industrial Engineering International201713327529610.1007/s40092-017-0183-0
– reference: Pereira, I., Madureira, A., & e Silva, E.C., & Abraham, A. (2021). A hybrid metaheuristics parameter tuning approach for scheduling through racing and case-based reasoning. Applied Sciences,11(8), 3325.
– reference: MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJournal of Industrial Engineering International2015111597210.1007/s40092-014-0094-2
– reference: YangX-SDebSEngineering optimisation by cuckoo searchInternational Journal of Mathematical Modelling and Numerical Optimisation20101433034310.1504/IJMMNO.2010.035430
– reference: LjungLTheory for the user1987New YorkPrentice Hall
– reference: YangX-SDebSCuckoo search: Recent advances and applicationsNeural Computing and Applications201424116917410.1007/s00521-013-1367-1
– reference: FarisHShetaAFÖznergizEMgp-cc: A hybrid multigene gp-cuckoo search method for hot rolling manufacture process modellingSystems Science and Control Engineering201641394910.1080/21642583.2015.1124032
– reference: JainMSinghVRaniAA novel nature-inspired algorithm for optimization: Squirrel search algorithmSwarm and Evolutionary Computation20194414817510.1016/j.swevo.2018.02.013
– reference: NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInternational Journal of Industrial Engineering Computations20167468170210.5267/j.ijiec.2016.2.004
– reference: Nelles, O. (2002). Nonlinear system identification.
– reference: FarisHShetaAÖznergizEModelling hot rolling manufacturing process using soft computing techniquesInternational Journal of Computer Integrated Manufacturing201326876277110.1080/0951192X.2013.766937
– reference: WeiYQiuJLamH-KLigangWApproaches to t-s fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systemsIEEE Transactions on fuzzy systems201725356958310.1109/TFUZZ.2016.2566810
– reference: GuidorziRMultivariable system identification: From observations to models2003BolognaBononia University Press
– reference: Babuska, R. (1998). Fuzzy modeling and identification toolbox, 204. Delft University of Technology, The Netherland. http://lcewww.et.tudelft.nl/bubuska
– reference: MirjaliliSDragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications20162741053107310.1007/s00521-015-1920-1
– reference: OgunjuyigbeASOAyodeleTRAdetokunBBModelling and analysis of dual stator-winding induction machine using complex vector approachInternational Journal Engineering Science and Technology2018213351363
– reference: İnciMCaliskanAPerformance enhancement of energy extraction capability for fuel cell implementations with improved cuckoo search algorithmInternational Journal of Hydrogen Energy20204519113091132010.1016/j.ijhydene.2020.02.069
– reference: PascualDGArtificial intelligence tools: Decision support systems in condition monitoring and diagnosis2015New YorkCRC Press10.1201/b18384
– reference: TahmassebiAGandomiAHBuilding energy consumption forecast using multi-objective genetic programmingMeasurement201811816417110.1016/j.measurement.2018.01.032
– reference: Hussian, A., Sheta, A., Kamel, M., Telbaney, M., & Abdelwahab, A. (2000). Modeling of a winding machine using genetic programming. In Proceedings of the 2000 congress on evolutionary computation, 2000 (Vol. 1, pp. 398–402). IEEE.
– reference: Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory.
– reference: CrossPMaXNonlinear system identification for model-based condition monitoring of wind turbinesRenewable Energy20147116617510.1016/j.renene.2014.05.035
– reference: ZhangZHongW-CLiJElectric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithmIEEE Access20208146421465810.1109/ACCESS.2020.2966712
– reference: AzizMAEHassanienAEModified cuckoo search algorithm with rough sets for feature selectionNeural Computing and Applications201829492593410.1007/s00521-016-2473-7
– reference: Schlei-PetersIWichmannMGMatthesI-GGundlachF-WSpenglerTSIntegrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systemsJournal of Industrial Ecology2008221415410.1111/jiec.12540
– reference: KarthikGVSKDebSA methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithmJournal of Advanced Manufacturing Systems20181701475910.1142/S021968671850004X
– reference: Al-Hiary, H., Braik, M., Sheta, A., & Ayesh, A. (2008). Identification of a chemical process reactor using soft computing techniques. In IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence) (pp. 845–853). IEEE.
– reference: SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Systems with Applications20189345646410.1016/j.eswa.2017.10.028
– reference: GandomiAHYangX-SAlaviAHCuckoo search algorithm: A metaheuristic approach to solve structural optimization problemsEngineering with Computers2013291173510.1007/s00366-011-0241-y
– reference: WassermanLBayesian model selection and model averagingJournal of Mathematical Psychology20004419210710.1006/jmps.1999.1278
– volume: 223
  start-page: 305
  issue: 3
  year: 2009
  ident: 1900_CR41
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
  doi: 10.1243/09544054JEM1290
– volume: 2
  start-page: e354
  issue: 4
  year: 2007
  ident: 1900_CR47
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0000354
– volume: 29
  start-page: 6638
  issue: 1
  year: 1996
  ident: 1900_CR7
  publication-title: IFAC Proceedings Volumes
  doi: 10.1016/S1474-6670(17)58748-0
– ident: 1900_CR58
– ident: 1900_CR53
  doi: 10.1007/978-1-4471-4866-1_13
– volume: 22
  start-page: 41
  issue: 1
  year: 2008
  ident: 1900_CR50
  publication-title: Journal of Industrial Ecology
  doi: 10.1111/jiec.12540
– volume: 118
  start-page: 164
  year: 2018
  ident: 1900_CR56
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.01.032
– volume: 8
  start-page: 14642
  year: 2020
  ident: 1900_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966712
– volume: 15
  start-page: 333
  issue: 2
  year: 2019
  ident: 1900_CR17
  publication-title: Journal of Industrial Engineering International
  doi: 10.1007/s40092-018-0295-1
– volume: 17
  start-page: 103
  issue: 1–2
  year: 2008
  ident: 1900_CR68
  publication-title: European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique
– ident: 1900_CR1
– ident: 1900_CR36
  doi: 10.1007/978-3-662-04323-3
– volume: 25
  start-page: 181
  issue: 1
  year: 2021
  ident: 1900_CR11
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05130-0
– volume-title: Fault-tolerant control systems: Design and practical applications
  year: 2009
  ident: 1900_CR38
  doi: 10.1007/978-1-84882-653-3
– ident: 1900_CR45
  doi: 10.3390/app11083325
– volume: 3
  start-page: 277
  issue: 4
  year: 1956
  ident: 1900_CR66
  publication-title: IRE Transactions on Circuit Theory
  doi: 10.1109/TCT.1956.1086328
– volume-title: Artificial intelligence tools: Decision support systems in condition monitoring and diagnosis
  year: 2015
  ident: 1900_CR43
  doi: 10.1201/b18384
– ident: 1900_CR51
  doi: 10.1007/s00170-019-03621-5
– volume: 50
  start-page: 121
  year: 2013
  ident: 1900_CR18
  publication-title: International Journal of Advanced Science and Technology
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 1900_CR21
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– volume: 69
  start-page: 46
  issue: 11
  year: 1992
  ident: 1900_CR42
  publication-title: Iron and Steel Engineer (USA)
– ident: 1900_CR14
  doi: 10.1109/ASCC.2017.8287399
– volume: 29
  start-page: 925
  issue: 4
  year: 2018
  ident: 1900_CR4
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2473-7
– volume: 226
  start-page: 1830
  issue: 2
  year: 2007
  ident: 1900_CR44
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2007.06.008
– volume: 12
  start-page: 13
  issue: 1
  year: 2019
  ident: 1900_CR3
  publication-title: Journal of Industrial Engineering and Management
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 1900_CR61
  publication-title: Climate Research
  doi: 10.3354/cr030079
– volume: 45
  start-page: 11309
  issue: 19
  year: 2020
  ident: 1900_CR26
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.069
– volume-title: Theory for the user
  year: 1987
  ident: 1900_CR31
– volume: 27
  start-page: 73
  issue: 1
  year: 2003
  ident: 1900_CR6
  publication-title: Annual Reviews in Control
  doi: 10.1016/S1367-5788(03)00009-9
– volume: 71
  start-page: 166
  year: 2014
  ident: 1900_CR15
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.05.035
– volume: 11
  start-page: 59
  issue: 1
  year: 2015
  ident: 1900_CR35
  publication-title: Journal of Industrial Engineering International
  doi: 10.1007/s40092-014-0094-2
– volume: 44
  start-page: 148
  year: 2019
  ident: 1900_CR27
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2018.02.013
– ident: 1900_CR10
– volume: 13
  start-page: 403
  issue: 6
  year: 2012
  ident: 1900_CR39
  publication-title: Journal of Zhejiang University SCIENCE C
  doi: 10.1631/jzus.C11a0278
– ident: 1900_CR2
  doi: 10.1109/FUZZY.2008.4630469
– volume-title: Quantitative fish dynamics
  year: 1999
  ident: 1900_CR46
  doi: 10.1093/oso/9780195076318.001.0001
– volume: 14
  start-page: 429
  issue: 2
  year: 2018
  ident: 1900_CR34
  publication-title: Journal of Industrial Engineering International
  doi: 10.1007/s40092-017-0222-x
– volume: 4
  start-page: 39
  issue: 1
  year: 2016
  ident: 1900_CR20
  publication-title: Systems Science and Control Engineering
  doi: 10.1080/21642583.2015.1124032
– ident: 1900_CR30
  doi: 10.1049/cp:19940169
– volume: 93
  start-page: 456
  year: 2018
  ident: 1900_CR48
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.028
– volume: 11
  start-page: 1471
  issue: Apr
  year: 2010
  ident: 1900_CR12
  publication-title: Journal of Machine Learning Research
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 1900_CR22
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 14
  start-page: 293
  issue: 2
  year: 2018
  ident: 1900_CR49
  publication-title: Journal of Industrial Engineering International
  doi: 10.1007/s40092-017-0227-5
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 1900_CR64
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1367-1
– ident: 1900_CR25
  doi: 10.1109/CEC.2000.870323
– volume: 443
  start-page: 281
  issue: 7109
  year: 2006
  ident: 1900_CR54
  publication-title: Nature
  doi: 10.1038/443281a
– volume: 7
  start-page: e623
  year: 2021
  ident: 1900_CR13
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.623
– volume: 44
  start-page: 92
  issue: 1
  year: 2000
  ident: 1900_CR59
  publication-title: Journal of Mathematical Psychology
  doi: 10.1006/jmps.1999.1278
– ident: 1900_CR52
– volume: 29
  start-page: 875
  issue: 4
  year: 2018
  ident: 1900_CR57
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-015-1143-4
– volume: 44
  start-page: 41
  issue: 1
  year: 2000
  ident: 1900_CR69
  publication-title: Journal of Mathematical Psychology
  doi: 10.1006/jmps.1999.1276
– ident: 1900_CR5
– ident: 1900_CR8
  doi: 10.1007/s11063-021-10530-w
– volume: 87
  start-page: 28
  issue: 1
  year: 2007
  ident: 1900_CR32
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2007.04.004
– volume-title: Multivariable system identification: From observations to models
  year: 2003
  ident: 1900_CR23
– volume: 13
  start-page: 275
  issue: 3
  year: 2017
  ident: 1900_CR16
  publication-title: Journal of Industrial Engineering International
  doi: 10.1007/s40092-017-0183-0
– volume: 26
  start-page: 762
  issue: 8
  year: 2013
  ident: 1900_CR19
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2013.766937
– ident: 1900_CR65
– ident: 1900_CR28
– ident: 1900_CR24
– volume: 25
  start-page: 569
  issue: 3
  year: 2017
  ident: 1900_CR60
  publication-title: IEEE Transactions on fuzzy systems
  doi: 10.1109/TFUZZ.2016.2566810
– volume: 21
  start-page: 351
  issue: 3
  year: 2018
  ident: 1900_CR40
  publication-title: International Journal Engineering Science and Technology
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 1900_CR33
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1920-1
– volume: 7
  start-page: 681
  issue: 4
  year: 2016
  ident: 1900_CR37
  publication-title: International Journal of Industrial Engineering Computations
  doi: 10.5267/j.ijiec.2016.2.004
– volume: 33
  start-page: 524
  issue: 6
  year: 1988
  ident: 1900_CR55
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.1247
– volume: 17
  start-page: 47
  issue: 01
  year: 2018
  ident: 1900_CR29
  publication-title: Journal of Advanced Manufacturing Systems
  doi: 10.1142/S021968671850004X
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 1900_CR63
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
  doi: 10.1504/IJMMNO.2010.035430
– volume: 25
  start-page: 4545
  issue: 6
  year: 2021
  ident: 1900_CR9
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05464-9
– ident: 1900_CR62
  doi: 10.1109/NABIC.2009.5393690
SSID ssj0009861
Score 2.4156888
Snippet Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1911
SubjectTerms Advanced manufacturing technologies
Algorithms
Business and Management
Constraint modelling
Control
Control systems
Machines
Manufacturing
Mechatronics
Nonlinear systems
Parameter estimation
Processes
Production
Robotics
Search algorithms
Winding
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R9KAHUdSIounBmy7SsbXlZIyBkGiIBzXcFvoxIeKGMPTft-06piZy8bRkH92y9177Pvp-P4BzKgShVGoJMGJSNzpg5QqHHgvipsSEtYQFMH2-p_0-GwzaDy7hNnfbKos50U7UMhUmR37lU1uRCxm5nr57hjXKVFcdhcY6bGDfx0bP76hXgu4yi5dqsfa0ZxC6phnXOscC05tsgul2s-nhnwtT6W3-KpDadadb_e8X78KO8zjRTa4ie7CmkhpUCzYH5Iy7BtvfoAn3oddJRnZzABIL8ZqmKDcJNJy86HdkozekvV00XhJ_oM-x7Y9B07zzAFmKHX3iAJ66ncfbnudYFzyhzTHzCMVDgYVUfivG-sj11ByHbcGJkHq1C7gKeGzqbz5WTLKY-ZwHnErJdaxIiGgdQiVJE3UEKA59HusATnEWB1S7YqESAQ-1T8m04rRoHXDxyyPhIMkNM8YkKsGUjZgiLabIiinCdbhYPjPNATlW3t0oZBM545xHpWDqcFlIt7z892jHq0c7gS1DRp_v62lAJZst1Clsio9sPJ-dWdX8Ag4p6HA
  priority: 102
  providerName: ProQuest
Title Enhanced cuckoo search algorithm for industrial winding process modeling
URI https://link.springer.com/article/10.1007/s10845-021-01900-1
https://www.proquest.com/docview/2787065586
Volume 34
WOSCitedRecordID wos000744768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-8145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009861
  issn: 0956-5515
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8o-KAPoqgRRdIH33QJG9taHpVASFRCQBF9WWzXySIOwof--167DdCoib502dY1y_Wud9fr_Q7glArhUurjDDBXbd2gw8ql6RjMDsq-6bKK0ACmvWvaarF-v9pOksKm6Wn3NCSpV-qVZDdmq2xi5f5Wy2UDfZ4sqjumxLHT7S2hdplGSdUIe2gPOEmqzPdjfFZHSxvzS1hUa5tG7n__uQPbiXVJLmJ22IU1GeUhl1ZuIIkg52FrBYZwD5r1aKAPAhAxFy-jEYnZnzwNn0eTcDZ4JWjZknBR5IO8hzoXhozjLAOiy-ngg324a9Rva00jqbBgCBS9meFS80mYwpdWJTDxynEZDpyq4K7wUbPZXNo8ULE2y5TMZwGzOLc59X2OfqHrisoBZKJRJA-BBI7FA3TWJGeBTdHscqSwuYP2I0MmqdACmCmhPZHAj6sqGENvCZysCOch4TxNOM8swNnim3EMvvFr72I6f14iiFPPojqQ6zC3AOfpfC1f_zza0d-6H8OmKkQfn-kpQmY2mcsT2BBvs3A6KcE6vX8oQfay3mp38O6KGtjelGuqpV1s285jSbPxB86X5Ls
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZ4ScCBN2I8c4ATVCxd2mQHhBAMbdqYOADarZA0hQlYBysg_hS_ESdtKSDBjQOnSn1ETfPZtWP7M8AmV8rnPMQVEL7ZukGHVWrqOYJF5ZD6oqIsgelFi7fbotOpng7BW14LY9Iqc51oFXUYK7NHvutyG5HzhL_ff3BM1ygTXc1baKSwaOrXF3TZBnuNI1zfLdc9rp0d1p2sq4CjEG6J43N6pagKtVuJKB4lqp7IqyrpqxC1OZOaycjEl1yqRSgi4UrJJA9Dib6Q76sKjjsMo4yhOJhUwfJhQfIrLD-r5fZDS8TLinSyUj3BTC20cd6r5bJDv_4IC-v2W0DW_ueOp__bF5qBqcyiJgepCMzCkO7NwXTerYJkymsOJj9RL85Dvda7sckPRD2p2zgm6ZuTq7trnFNyc0_Qmifdj8Ym5KVr639IP62sILaFEJ5YgPM_md0ijPTinl4CEnmujNBB1VJEjKOp6WnFpIc2s0DBqPAS0HyJA5VRrpvOH3dBQRZtYBEgLAILi4CWYPvjmX5KOPLr3as5FoJM-QyCAggl2MnRVFz-ebTl30fbgPH62UkraDXazRWYcNHcS3OYVmEkeXzSazCmnpPu4HHdigWBy79G2TsW2kj9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZgIAQHHgPEeOYAJ6i2dG2THRBCsAk0NHEAtFshaQITsI09mPhr_DqctKWAxG4cOFXqI2qbz44d258BdpmUAWMRzgAPzNYNOqxCUd_hni5FNOBlaQlMby5Yo8GbzcrlBLyntTAmrTLViVZRRx1p9siLLrMROZ8HRZ2kRVye1o66L47pIGUirWk7jRgidfU2Qvetf3h-inO957q16tXJmZN0GHAkQm_gBIzeSSoj5ZY1xaNANaT9ihSBjFCze0J5QptYk0sVj7jmrhCeYFEk0C8KAlnGcSdhCldh38hYnTkZ4S-3XK2W5w-tEj8p2EnK9rhn6qKNI18plRz6fVHMLN0fwVm75tUW_vPfWoT5xNImx7FoLMGEaudhIe1iQRKlloe5L5SMy3BWbT_YpAgih_Kx0yHxm5O7p3v8psHDM0Ern7Q-G56QUcvWBZFuXHFBbGshPLEC13_ydauQa3faag2I9l2h0XFVgmuPoQnqK-kJH21pjgJTZgWg6XSHMqFiNx1BnsKMRNpAJESIhBYiIS3A_ucz3ZiIZOzdmykuwkQp9cMMFAU4SJGVXf59tPXxo-3ADIIrvDhv1Ddg1kUrME5t2oTcoDdUWzAtXwetfm_bSgiB278G2Qf3HVGj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cuckoo+search+algorithm+for+industrial+winding+process+modeling&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Braik%2C+Malik&rft.au=Sheta%2C+Alaa&rft.au=Al-Hiary%2C+Heba&rft.au=Aljahdali%2C+Sultan&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=1911&rft.epage=1940&rft_id=info:doi/10.1007%2Fs10845-021-01900-1&rft.externalDocID=10_1007_s10845_021_01900_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon