Enhanced cuckoo search algorithm for industrial winding process modeling
Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industri...
Gespeichert in:
| Veröffentlicht in: | Journal of intelligent manufacturing Jg. 34; H. 4; S. 1911 - 1940 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0956-5515, 1572-8145 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industrial systems to represent experimental data sets. The data collected for many industrial systems may be subject to the existence of high non-linearity and multiple constraints. Meanwhile, creating a thoroughgoing model for an industrial process is essential for model-based control systems. In this work, we explore the use of a proposed Enhanced version of the Cuckoo Search (ECS) algorithm to address a parameter estimation problem for both linear and nonlinear model structures of a real winding process. The performance of the developed models was compared with other mainstream meta-heuristics when they were targeted to model the same process. Moreover, these models were compared with other models developed based on some conventional modeling methods. Several evaluation tests were performed to judge the efficiency of the developed models based on ECS, which showed superior performance in both training and testing cases over that achieved by other modeling methods. |
|---|---|
| AbstractList | Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm to estimate the parameter list values. Thus, there is a need to develop a sufficiently adequate model to characterize the behavior of industrial systems to represent experimental data sets. The data collected for many industrial systems may be subject to the existence of high non-linearity and multiple constraints. Meanwhile, creating a thoroughgoing model for an industrial process is essential for model-based control systems. In this work, we explore the use of a proposed Enhanced version of the Cuckoo Search (ECS) algorithm to address a parameter estimation problem for both linear and nonlinear model structures of a real winding process. The performance of the developed models was compared with other mainstream meta-heuristics when they were targeted to model the same process. Moreover, these models were compared with other models developed based on some conventional modeling methods. Several evaluation tests were performed to judge the efficiency of the developed models based on ECS, which showed superior performance in both training and testing cases over that achieved by other modeling methods. |
| Author | Aljahdali, Sultan Sheta, Alaa Braik, Malik Al-Hiary, Heba |
| Author_xml | – sequence: 1 givenname: Malik surname: Braik fullname: Braik, Malik organization: Al-Balqa Applied University – sequence: 2 givenname: Alaa orcidid: 0000-0002-3727-6276 surname: Sheta fullname: Sheta, Alaa email: shetaa1@southernct.edu organization: Southern Connecticut State University – sequence: 3 givenname: Heba surname: Al-Hiary fullname: Al-Hiary, Heba organization: Al-Balqa Applied University – sequence: 4 givenname: Sultan surname: Aljahdali fullname: Aljahdali, Sultan organization: Taif University |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8Bz6uZ7CabPUqpVih40XPIv223bpOabBG_vdEVBA89vWF4v5nHm6GJD94hdA3kFgip7xIQUbGCUCgINIQUcIamwGpaCKjYBE1Jw3jBGLALNEtpRwhpBIcpWi39VnnjLDZH8xYCTk5Fs8Wq34TYDds9bkPEnbfHNMRO9fgjz53f4EMMxqWE98G6Pi8u0Xmr-uSufnWOXh-WL4tVsX5-fFrcrwtTQjMUvAZlwFhHyxayaqdMyxqjubElp5V2lW6BCqDghBWtoFpXurZWi4pwbso5uhnv5gDvR5cGuQvH6PNLSWtRE86Y4NklRpeJIaXoWmm6QQ1d8ENUXS-ByO_e5NibzL3Jn94kZJT-Qw-x26v4eRoqRyhls9-4-JfqBPUFr6aDTw |
| CitedBy_id | crossref_primary_10_1007_s10586_024_04361_2 crossref_primary_10_1109_ACCESS_2024_3375886 crossref_primary_10_1111_exsy_13438 crossref_primary_10_1007_s00521_025_11228_z crossref_primary_10_1007_s00521_024_10806_x crossref_primary_10_1007_s10489_023_04732_z crossref_primary_10_1007_s11270_024_07378_w crossref_primary_10_1109_ACCESS_2024_3401705 crossref_primary_10_1007_s00500_024_09743_7 crossref_primary_10_1007_s11227_023_05215_1 crossref_primary_10_1007_s10462_024_10957_2 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1038_s41598_025_13247_1 |
| Cites_doi | 10.1243/09544054JEM1290 10.1371/journal.pone.0000354 10.1016/S1474-6670(17)58748-0 10.1007/978-1-4471-4866-1_13 10.1111/jiec.12540 10.1016/j.measurement.2018.01.032 10.1109/ACCESS.2020.2966712 10.1007/s40092-018-0295-1 10.1007/978-3-662-04323-3 10.1007/s00500-020-05130-0 10.1007/978-1-84882-653-3 10.3390/app11083325 10.1109/TCT.1956.1086328 10.1201/b18384 10.1007/s00170-019-03621-5 10.1080/01621459.1937.10503522 10.1109/ASCC.2017.8287399 10.1007/s00521-016-2473-7 10.1016/j.jcp.2007.06.008 10.3354/cr030079 10.1016/j.ijhydene.2020.02.069 10.1016/S1367-5788(03)00009-9 10.1016/j.renene.2014.05.035 10.1007/s40092-014-0094-2 10.1016/j.swevo.2018.02.013 10.1631/jzus.C11a0278 10.1109/FUZZY.2008.4630469 10.1093/oso/9780195076318.001.0001 10.1007/s40092-017-0222-x 10.1080/21642583.2015.1124032 10.1049/cp:19940169 10.1016/j.eswa.2017.10.028 10.1007/s00366-011-0241-y 10.1007/s40092-017-0227-5 10.1007/s00521-013-1367-1 10.1109/CEC.2000.870323 10.1038/443281a 10.7717/peerj-cs.623 10.1006/jmps.1999.1278 10.1007/s10845-015-1143-4 10.1006/jmps.1999.1276 10.1007/s11063-021-10530-w 10.1016/j.cmpb.2007.04.004 10.1007/s40092-017-0183-0 10.1080/0951192X.2013.766937 10.1109/TFUZZ.2016.2566810 10.1007/s00521-015-1920-1 10.5267/j.ijiec.2016.2.004 10.1109/9.1247 10.1142/S021968671850004X 10.1504/IJMMNO.2010.035430 10.1007/s00500-020-05464-9 10.1109/NABIC.2009.5393690 |
| ContentType | Journal Article |
| Copyright | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022. |
| Copyright_xml | – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022 – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88E 8AL 8AO 8FD 8FE 8FG 8FJ 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. L.- L6V L7M L~C L~D M0C M0N M0S M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10845-021-01900-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1572-8145 |
| EndPage | 1940 |
| ExternalDocumentID | 10_1007_s10845_021_01900_1 |
| GrantInformation_xml | – fundername: Taif University grantid: TURSP-2020/73 funderid: http://dx.doi.org/10.13039/501100006261 |
| GroupedDBID | -4X -57 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 8AO 8FE 8FG 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCF SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7V Z7X Z7Z Z81 Z83 Z88 Z8N Z92 ZMTXR ZYFGU ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-671ac1cde23f11cdbeacf59cb6cd3624be4bf128121e8d8f82bb4b7ddb84066c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0956-5515 |
| IngestDate | Wed Nov 05 04:20:59 EST 2025 Sat Nov 29 04:20:09 EST 2025 Tue Nov 18 22:46:25 EST 2025 Fri Feb 21 02:44:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Industrial winding process Cuckoo search algorithm Nonlinear model Linear model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-671ac1cde23f11cdbeacf59cb6cd3624be4bf128121e8d8f82bb4b7ddb84066c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3727-6276 |
| PQID | 2787065586 |
| PQPubID | 32407 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2787065586 crossref_citationtrail_10_1007_s10845_021_01900_1 crossref_primary_10_1007_s10845_021_01900_1 springer_journals_10_1007_s10845_021_01900_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230400 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 4 year: 2023 text: 20230400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: London |
| PublicationTitle | Journal of intelligent manufacturing |
| PublicationTitleAbbrev | J Intell Manuf |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | OgunjuyigbeASOAyodeleTRAdetokunBBModelling and analysis of dual stator-winding induction machine using complex vector approachInternational Journal Engineering Science and Technology2018213351363 AzizMAEHassanienAEModified cuckoo search algorithm with rough sets for feature selectionNeural Computing and Applications201829492593410.1007/s00521-016-2473-7 Kamrani, E. (2010). Modeling and forecasting long-term natural gas (ng) consumption in Iran, using particle swarm optimization (pso). MirjaliliSDragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications20162741053107310.1007/s00521-015-1920-1 Nelles, O. (2002). Nonlinear system identification. NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInternational Journal of Industrial Engineering Computations20167468170210.5267/j.ijiec.2016.2.004 Al-Hiary, H., Braik, M., Sheta, A., & Ayesh, A. (2008). Identification of a chemical process reactor using soft computing techniques. In IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence) (pp. 845–853). IEEE. İnciMCaliskanAPerformance enhancement of energy extraction capability for fuel cell implementations with improved cuckoo search algorithmInternational Journal of Hydrogen Energy20204519113091132010.1016/j.ijhydene.2020.02.069 Sheta, A.F., Braik, M., Öznergiz, E., Ayesh, A., & Masud, M. (2013). Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. In Business intelligence and performance management (pp. 191–208). Springer. MelloRGTOliveiraLFNadalJDigital butterworth filter for subtracting noise from low magnitude surface electromyogramComputer Methods and Programs in Biomedicine2007871283510.1016/j.cmpb.2007.04.004 GandomiAHYangX-SAlaviAHCuckoo search algorithm: A metaheuristic approach to solve structural optimization problemsEngineering with Computers2013291173510.1007/s00366-011-0241-y FarisHShetaAIdentification of the tennessee eastman chemical process reactor using genetic programmingInternational Journal of Advanced Science and Technology201350121140 FarisHShetaAÖznergizEModelling hot rolling manufacturing process using soft computing techniquesInternational Journal of Computer Integrated Manufacturing201326876277110.1080/0951192X.2013.766937 FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJournal of the American Statistical Association19373220067570110.1080/01621459.1937.10503522 WassermanLBayesian model selection and model averagingJournal of Mathematical Psychology20004419210710.1006/jmps.1999.1278 Sheta, A., Braik, M., & Al-Hiary, H. (2019). Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). The International Journal of Advanced Manufacturing Technology, 1–22. Yıldız, A. R. (2008) Hybrid taguchi-harmony search algorithm for solving engineering optimization problems. International Journal of Industrial Engineering, 15(3), 286–293. PascualDGArtificial intelligence tools: Decision support systems in condition monitoring and diagnosis2015New YorkCRC Press10.1201/b18384 JainMSinghVRaniAA novel nature-inspired algorithm for optimization: Squirrel search algorithmSwarm and Evolutionary Computation20194414817510.1016/j.swevo.2018.02.013 ParantFCoeffierCIungCModeling of web tension in a continuous annealing lineIron and Steel Engineer (USA)199269114649 MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJournal of Industrial Engineering International201814242944210.1007/s40092-017-0222-x DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJournal of Industrial Engineering International201915233334910.1007/s40092-018-0295-1 WillmottCJMatsuuraKAdvantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performanceClimate Research2005301798210.3354/cr030079 QuinnTJDerisoRBQuantitative fish dynamics1999OxfordOxford university Press BraikMShetaATurabiehHAlhiaryHA novel lifetime scheme for enhancing the convergence performance of salp swarm algorithmSoft Computing202125118120610.1007/s00500-020-05130-0 Braik, M., Sheta, A., & Arieqat, A. (2008). A comparison between GAs and PSO in training ANN to model the TE chemical process reactor. In Proceedings of the AISB 2008 convention in communication, interaction and social intelligence (Vol. 1, pp. 24). KarthikGVSKDebSA methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithmJournal of Advanced Manufacturing Systems20181701475910.1142/S021968671850004X CrossPMaXNonlinear system identification for model-based condition monitoring of wind turbinesRenewable Energy20147116617510.1016/j.renene.2014.05.035 Chu, X., Nian, X., Liu, J., & Liao, Y. (2017). Robust fault detection for multi-motor winding system based on disturbance observer and sliding-mode observer. In 2017 11th Asian control conference (ASCC) (pp. 1519–1524). IEEE. FarisHShetaAFÖznergizEMgp-cc: A hybrid multigene gp-cuckoo search method for hot rolling manufacture process modellingSystems Science and Control Engineering201641394910.1080/21642583.2015.1124032 LjungLTheory for the user1987New YorkPrentice Hall ZadehLOn the identification problemIRE Transactions on Circuit Theory19563427728110.1109/TCT.1956.1086328 ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEuropean Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique2008171–2103126 Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. world congress on (pp. 210–214). IEEE. ÖznergizEÖzsoyCDeliceIIKuralAComparison of empirical and neural network hot-rolling process modelsProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2009223330531210.1243/09544054JEM1290 Braik, M. (2021). A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Processing Letters, 1–44. ChangY-WHsiehC-JChangK-WRinggaardMLinC-JTraining and testing low-degree polynomial data mappings via linear svmJournal of Machine Learning Research201011Apr14711490 Hussian, A., Sheta, A., Kamel, M., Telbaney, M., & Abdelwahab, A. (2000). Modeling of a winding machine using genetic programming. In Proceedings of the 2000 congress on evolutionary computation, 2000 (Vol. 1, pp. 398–402). IEEE. Van Welden, D. (2000). Induction of predictive models for dynamical systems via data mining. Ph.d thesis, Ghent University. ShlesingerMFMathematical physics: Search researchNature2006443710928110.1038/443281a MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJournal of Industrial Engineering International2015111597210.1007/s40092-014-0094-2 SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Systems with Applications20189345646410.1016/j.eswa.2017.10.028 AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJournal of Industrial Engineering and Management20191211326 Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory. Sheta, A.F., Braik, M., & Al-Hiary, H. (2009). Identification and model predictive controller design of the Tennessee Eastman Chemical Process using ANN. In Proceedings of the international conference on artificial intelligence (ICAI’09), July 13–16, USA, (Vol. 1, pp. 25–31). WeiYQiuJLamH-KLigangWApproaches to t-s fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systemsIEEE Transactions on fuzzy systems201725356958310.1109/TFUZZ.2016.2566810 BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case studySoft Computing20212564545456910.1007/s00500-020-05464-9 ChiccoDWarrensMJJurmanGThe coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluationPeerJ Computer Science20217e62310.7717/peerj-cs.623 DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJournal of Industrial Engineering International201713327529610.1007/s40092-017-0183-0 SieversLBalasMJvon FlotowAModeling of web conveyance systems for multivariable controlIEEE Transactions on Automatic Control198833652453110.1109/9.1247 ZhangZHongW-CLiJElectric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithmIEEE Access20208146421465810.1109/ACCESS.2020.2966712 Schlei-PetersIWichmannMGMatthesI-GGundlachF-WSpenglerTSIntegrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systemsJournal of Industrial Ecology2008221415410.1111/jiec.12540 Pereira, I., Madureira, A., & e Silva, E.C., & Abraham, A. (2021). A hybrid metaheuristics parameter tuning approach for scheduling through racing and case-based reasoning. Applied Sciences,11(8), 3325. Babuska, R. (1998). Fuzzy modeling and identification toolbox, 204. Delft University of Technology, The Netherland. http://lcewww.et.tudelft.nl/bubuska YangX-SDebSCuckoo search: Recent advances and applicationsNeural Computing and Applications201424116917410.1007/s00521-013-1367-1 ZucchiniWAn introduction to model selectionJournal of Mathematical Psychology2000441416110.1006/jmps.1999.1276 PavlyukevichILévy flights, non-local search a 1900_CR24 1900_CR25 1900_CR8 1900_CR28 L Zadeh (1900_CR66) 1956; 3 PJR Torres (1900_CR57) 2018; 29 1900_CR62 SH Mousavi (1900_CR35) 2015; 11 H Faris (1900_CR19) 2013; 26 A Tahmassebi (1900_CR56) 2018; 118 1900_CR65 MAE Aziz (1900_CR4) 2018; 29 H Noura (1900_CR38) 2009 E Öznergiz (1900_CR41) 2009; 223 1900_CR5 1900_CR2 1900_CR1 H Faris (1900_CR18) 2013; 50 G Moslemipour (1900_CR34) 2018; 14 SR Dixit (1900_CR17) 2019; 15 RD Braatz (1900_CR7) 1996; 29 MF Shlesinger (1900_CR54) 2006; 443 1900_CR14 1900_CR58 L Ljung (1900_CR31) 1987 M Jain (1900_CR27) 2019; 44 1900_CR51 1900_CR52 M Braik (1900_CR9) 2021; 25 X-S Yang (1900_CR63) 2010; 1 DW Zingg (1900_CR68) 2008; 17 M Nikabadi (1900_CR37) 2016; 7 1900_CR53 A Ayough (1900_CR3) 2019; 12 1900_CR10 AM Reynolds (1900_CR47) 2007; 2 D Chicco (1900_CR13) 2021; 7 M İnci (1900_CR26) 2020; 45 Y-W Chang (1900_CR12) 2010; 11 R Babuška (1900_CR6) 2003; 27 ASO Ogunjuyigbe (1900_CR40) 2018; 21 TJ Quinn (1900_CR46) 1999 AH Gandomi (1900_CR22) 2013; 29 F Parant (1900_CR42) 1992; 69 L Sievers (1900_CR55) 1988; 33 HA Nozari (1900_CR39) 2012; 13 1900_CR45 I Pavlyukevich (1900_CR44) 2007; 226 M Friedman (1900_CR21) 1937; 32 S Mirjalili (1900_CR33) 2016; 27 W Zucchini (1900_CR69) 2000; 44 I Schlei-Peters (1900_CR50) 2008; 22 CJ Willmott (1900_CR61) 2005; 30 Y Wei (1900_CR60) 2017; 25 L Wasserman (1900_CR59) 2000; 44 X-S Yang (1900_CR64) 2014; 24 P Cross (1900_CR15) 2014; 71 1900_CR36 RGT Mello (1900_CR32) 2007; 87 Z Zhang (1900_CR67) 2020; 8 GVSK Karthik (1900_CR29) 2018; 17 1900_CR30 JH Santillan (1900_CR49) 2018; 14 N Sadati (1900_CR48) 2018; 93 H Faris (1900_CR20) 2016; 4 DG Pascual (1900_CR43) 2015 SD Dao (1900_CR16) 2017; 13 M Braik (1900_CR11) 2021; 25 R Guidorzi (1900_CR23) 2003 |
| References_xml | – reference: BraikMShetaATurabiehHAlhiaryHA novel lifetime scheme for enhancing the convergence performance of salp swarm algorithmSoft Computing202125118120610.1007/s00500-020-05130-0 – reference: Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In Nature and biologically inspired computing, 2009. NaBIC 2009. world congress on (pp. 210–214). IEEE. – reference: ZadehLOn the identification problemIRE Transactions on Circuit Theory19563427728110.1109/TCT.1956.1086328 – reference: BabuškaRVerbruggenHNeuro-fuzzy methods for nonlinear system identificationAnnual Reviews in Control2003271738510.1016/S1367-5788(03)00009-9 – reference: BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: Modelling industrial winding process, case studySoft Computing20212564545456910.1007/s00500-020-05464-9 – reference: MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJournal of Industrial Engineering International201814242944210.1007/s40092-017-0222-x – reference: Van Welden, D. (2000). Induction of predictive models for dynamical systems via data mining. Ph.d thesis, Ghent University. – reference: AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJournal of Industrial Engineering and Management20191211326 – reference: Lennart, L. (1994). From data to model: A guided tour of system identification. – reference: ZucchiniWAn introduction to model selectionJournal of Mathematical Psychology2000441416110.1006/jmps.1999.1276 – reference: ÖznergizEÖzsoyCDeliceIIKuralAComparison of empirical and neural network hot-rolling process modelsProceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture2009223330531210.1243/09544054JEM1290 – reference: FarisHShetaAIdentification of the tennessee eastman chemical process reactor using genetic programmingInternational Journal of Advanced Science and Technology201350121140 – reference: Chu, X., Nian, X., Liu, J., & Liao, Y. (2017). Robust fault detection for multi-motor winding system based on disturbance observer and sliding-mode observer. In 2017 11th Asian control conference (ASCC) (pp. 1519–1524). IEEE. – reference: MelloRGTOliveiraLFNadalJDigital butterworth filter for subtracting noise from low magnitude surface electromyogramComputer Methods and Programs in Biomedicine2007871283510.1016/j.cmpb.2007.04.004 – reference: TorresPJRMercadoESRifónLAProbabilistic Boolean network modeling of an industrial machineJournal of Intelligent Manufacturing201829487589010.1007/s10845-015-1143-4 – reference: NozariHABanadakiHDMokhtareMVahedSHIntelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networksJournal of Zhejiang University SCIENCE C201213640341210.1631/jzus.C11a0278 – reference: SieversLBalasMJvon FlotowAModeling of web conveyance systems for multivariable controlIEEE Transactions on Automatic Control198833652453110.1109/9.1247 – reference: PavlyukevichILévy flights, non-local search and simulated annealingJournal of Computational Physics200722621830184410.1016/j.jcp.2007.06.008 – reference: Kamrani, E. (2010). Modeling and forecasting long-term natural gas (ng) consumption in Iran, using particle swarm optimization (pso). – reference: SantillanJHTapucarSManliguezCCalagVCuckoo search via lévy flights for the capacitated vehicle routing problemJournal of Industrial Engineering International201814229330410.1007/s40092-017-0227-5 – reference: ChangY-WHsiehC-JChangK-WRinggaardMLinC-JTraining and testing low-degree polynomial data mappings via linear svmJournal of Machine Learning Research201011Apr14711490 – reference: ParantFCoeffierCIungCModeling of web tension in a continuous annealing lineIron and Steel Engineer (USA)199269114649 – reference: BraatzRDOgunnaikeBAFeatherstoneAPIdentification, estimation, and control of sheet and film processesIFAC Proceedings Volumes19962916638664310.1016/S1474-6670(17)58748-0 – reference: WillmottCJMatsuuraKAdvantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performanceClimate Research2005301798210.3354/cr030079 – reference: ReynoldsAMFryeMAFree-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free searchPLOS ONE200724e35410.1371/journal.pone.0000354 – reference: DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJournal of Industrial Engineering International201915233334910.1007/s40092-018-0295-1 – reference: Sheta, A., Braik, M., & Al-Hiary, H. (2019). Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). The International Journal of Advanced Manufacturing Technology, 1–22. – reference: ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEuropean Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique2008171–2103126 – reference: Braik, M., Sheta, A., & Arieqat, A. (2008). A comparison between GAs and PSO in training ANN to model the TE chemical process reactor. In Proceedings of the AISB 2008 convention in communication, interaction and social intelligence (Vol. 1, pp. 24). – reference: NouraHTheilliolDPonsartJ-CChamseddineAFault-tolerant control systems: Design and practical applications2009BerlinSpringer10.1007/978-1-84882-653-3 – reference: QuinnTJDerisoRBQuantitative fish dynamics1999OxfordOxford university Press – reference: Sheta, A.F., Braik, M., & Al-Hiary, H. (2009). Identification and model predictive controller design of the Tennessee Eastman Chemical Process using ANN. In Proceedings of the international conference on artificial intelligence (ICAI’09), July 13–16, USA, (Vol. 1, pp. 25–31). – reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJournal of the American Statistical Association19373220067570110.1080/01621459.1937.10503522 – reference: ShlesingerMFMathematical physics: Search researchNature2006443710928110.1038/443281a – reference: Sheta, A.F., Braik, M., Öznergiz, E., Ayesh, A., & Masud, M. (2013). Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. In Business intelligence and performance management (pp. 191–208). Springer. – reference: Yıldız, A. R. (2008) Hybrid taguchi-harmony search algorithm for solving engineering optimization problems. International Journal of Industrial Engineering, 15(3), 286–293. – reference: ChiccoDWarrensMJJurmanGThe coefficient of determination r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis evaluationPeerJ Computer Science20217e62310.7717/peerj-cs.623 – reference: Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70. – reference: Braik, M. (2021). A hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case study. Neural Processing Letters, 1–44. – reference: DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJournal of Industrial Engineering International201713327529610.1007/s40092-017-0183-0 – reference: Pereira, I., Madureira, A., & e Silva, E.C., & Abraham, A. (2021). A hybrid metaheuristics parameter tuning approach for scheduling through racing and case-based reasoning. Applied Sciences,11(8), 3325. – reference: MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJournal of Industrial Engineering International2015111597210.1007/s40092-014-0094-2 – reference: YangX-SDebSEngineering optimisation by cuckoo searchInternational Journal of Mathematical Modelling and Numerical Optimisation20101433034310.1504/IJMMNO.2010.035430 – reference: LjungLTheory for the user1987New YorkPrentice Hall – reference: YangX-SDebSCuckoo search: Recent advances and applicationsNeural Computing and Applications201424116917410.1007/s00521-013-1367-1 – reference: FarisHShetaAFÖznergizEMgp-cc: A hybrid multigene gp-cuckoo search method for hot rolling manufacture process modellingSystems Science and Control Engineering201641394910.1080/21642583.2015.1124032 – reference: JainMSinghVRaniAA novel nature-inspired algorithm for optimization: Squirrel search algorithmSwarm and Evolutionary Computation20194414817510.1016/j.swevo.2018.02.013 – reference: NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInternational Journal of Industrial Engineering Computations20167468170210.5267/j.ijiec.2016.2.004 – reference: Nelles, O. (2002). Nonlinear system identification. – reference: FarisHShetaAÖznergizEModelling hot rolling manufacturing process using soft computing techniquesInternational Journal of Computer Integrated Manufacturing201326876277110.1080/0951192X.2013.766937 – reference: WeiYQiuJLamH-KLigangWApproaches to t-s fuzzy-affine-model-based reliable output feedback control for nonlinear ito stochastic systemsIEEE Transactions on fuzzy systems201725356958310.1109/TFUZZ.2016.2566810 – reference: GuidorziRMultivariable system identification: From observations to models2003BolognaBononia University Press – reference: Babuska, R. (1998). Fuzzy modeling and identification toolbox, 204. Delft University of Technology, The Netherland. http://lcewww.et.tudelft.nl/bubuska – reference: MirjaliliSDragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Computing and Applications20162741053107310.1007/s00521-015-1920-1 – reference: OgunjuyigbeASOAyodeleTRAdetokunBBModelling and analysis of dual stator-winding induction machine using complex vector approachInternational Journal Engineering Science and Technology2018213351363 – reference: İnciMCaliskanAPerformance enhancement of energy extraction capability for fuel cell implementations with improved cuckoo search algorithmInternational Journal of Hydrogen Energy20204519113091132010.1016/j.ijhydene.2020.02.069 – reference: PascualDGArtificial intelligence tools: Decision support systems in condition monitoring and diagnosis2015New YorkCRC Press10.1201/b18384 – reference: TahmassebiAGandomiAHBuilding energy consumption forecast using multi-objective genetic programmingMeasurement201811816417110.1016/j.measurement.2018.01.032 – reference: Hussian, A., Sheta, A., Kamel, M., Telbaney, M., & Abdelwahab, A. (2000). Modeling of a winding machine using genetic programming. In Proceedings of the 2000 congress on evolutionary computation, 2000 (Vol. 1, pp. 398–402). IEEE. – reference: Akaike, H., Petrov, B. N., & Csaki, F. (1973). Second international symposium on information theory. – reference: CrossPMaXNonlinear system identification for model-based condition monitoring of wind turbinesRenewable Energy20147116617510.1016/j.renene.2014.05.035 – reference: ZhangZHongW-CLiJElectric load forecasting by hybrid self-recurrent support vector regression model with variational mode decomposition and improved cuckoo search algorithmIEEE Access20208146421465810.1109/ACCESS.2020.2966712 – reference: AzizMAEHassanienAEModified cuckoo search algorithm with rough sets for feature selectionNeural Computing and Applications201829492593410.1007/s00521-016-2473-7 – reference: Schlei-PetersIWichmannMGMatthesI-GGundlachF-WSpenglerTSIntegrated material flow analysis and process modeling to increase energy and water efficiency of industrial cooling water systemsJournal of Industrial Ecology2008221415410.1111/jiec.12540 – reference: KarthikGVSKDebSA methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithmJournal of Advanced Manufacturing Systems20181701475910.1142/S021968671850004X – reference: Al-Hiary, H., Braik, M., Sheta, A., & Ayesh, A. (2008). Identification of a chemical process reactor using soft computing techniques. In IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008. (IEEE world congress on computational intelligence) (pp. 845–853). IEEE. – reference: SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Systems with Applications20189345646410.1016/j.eswa.2017.10.028 – reference: GandomiAHYangX-SAlaviAHCuckoo search algorithm: A metaheuristic approach to solve structural optimization problemsEngineering with Computers2013291173510.1007/s00366-011-0241-y – reference: WassermanLBayesian model selection and model averagingJournal of Mathematical Psychology20004419210710.1006/jmps.1999.1278 – volume: 223 start-page: 305 issue: 3 year: 2009 ident: 1900_CR41 publication-title: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture doi: 10.1243/09544054JEM1290 – volume: 2 start-page: e354 issue: 4 year: 2007 ident: 1900_CR47 publication-title: PLOS ONE doi: 10.1371/journal.pone.0000354 – volume: 29 start-page: 6638 issue: 1 year: 1996 ident: 1900_CR7 publication-title: IFAC Proceedings Volumes doi: 10.1016/S1474-6670(17)58748-0 – ident: 1900_CR58 – ident: 1900_CR53 doi: 10.1007/978-1-4471-4866-1_13 – volume: 22 start-page: 41 issue: 1 year: 2008 ident: 1900_CR50 publication-title: Journal of Industrial Ecology doi: 10.1111/jiec.12540 – volume: 118 start-page: 164 year: 2018 ident: 1900_CR56 publication-title: Measurement doi: 10.1016/j.measurement.2018.01.032 – volume: 8 start-page: 14642 year: 2020 ident: 1900_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966712 – volume: 15 start-page: 333 issue: 2 year: 2019 ident: 1900_CR17 publication-title: Journal of Industrial Engineering International doi: 10.1007/s40092-018-0295-1 – volume: 17 start-page: 103 issue: 1–2 year: 2008 ident: 1900_CR68 publication-title: European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique – ident: 1900_CR1 – ident: 1900_CR36 doi: 10.1007/978-3-662-04323-3 – volume: 25 start-page: 181 issue: 1 year: 2021 ident: 1900_CR11 publication-title: Soft Computing doi: 10.1007/s00500-020-05130-0 – volume-title: Fault-tolerant control systems: Design and practical applications year: 2009 ident: 1900_CR38 doi: 10.1007/978-1-84882-653-3 – ident: 1900_CR45 doi: 10.3390/app11083325 – volume: 3 start-page: 277 issue: 4 year: 1956 ident: 1900_CR66 publication-title: IRE Transactions on Circuit Theory doi: 10.1109/TCT.1956.1086328 – volume-title: Artificial intelligence tools: Decision support systems in condition monitoring and diagnosis year: 2015 ident: 1900_CR43 doi: 10.1201/b18384 – ident: 1900_CR51 doi: 10.1007/s00170-019-03621-5 – volume: 50 start-page: 121 year: 2013 ident: 1900_CR18 publication-title: International Journal of Advanced Science and Technology – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 1900_CR21 publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 69 start-page: 46 issue: 11 year: 1992 ident: 1900_CR42 publication-title: Iron and Steel Engineer (USA) – ident: 1900_CR14 doi: 10.1109/ASCC.2017.8287399 – volume: 29 start-page: 925 issue: 4 year: 2018 ident: 1900_CR4 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2473-7 – volume: 226 start-page: 1830 issue: 2 year: 2007 ident: 1900_CR44 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2007.06.008 – volume: 12 start-page: 13 issue: 1 year: 2019 ident: 1900_CR3 publication-title: Journal of Industrial Engineering and Management – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 1900_CR61 publication-title: Climate Research doi: 10.3354/cr030079 – volume: 45 start-page: 11309 issue: 19 year: 2020 ident: 1900_CR26 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.069 – volume-title: Theory for the user year: 1987 ident: 1900_CR31 – volume: 27 start-page: 73 issue: 1 year: 2003 ident: 1900_CR6 publication-title: Annual Reviews in Control doi: 10.1016/S1367-5788(03)00009-9 – volume: 71 start-page: 166 year: 2014 ident: 1900_CR15 publication-title: Renewable Energy doi: 10.1016/j.renene.2014.05.035 – volume: 11 start-page: 59 issue: 1 year: 2015 ident: 1900_CR35 publication-title: Journal of Industrial Engineering International doi: 10.1007/s40092-014-0094-2 – volume: 44 start-page: 148 year: 2019 ident: 1900_CR27 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2018.02.013 – ident: 1900_CR10 – volume: 13 start-page: 403 issue: 6 year: 2012 ident: 1900_CR39 publication-title: Journal of Zhejiang University SCIENCE C doi: 10.1631/jzus.C11a0278 – ident: 1900_CR2 doi: 10.1109/FUZZY.2008.4630469 – volume-title: Quantitative fish dynamics year: 1999 ident: 1900_CR46 doi: 10.1093/oso/9780195076318.001.0001 – volume: 14 start-page: 429 issue: 2 year: 2018 ident: 1900_CR34 publication-title: Journal of Industrial Engineering International doi: 10.1007/s40092-017-0222-x – volume: 4 start-page: 39 issue: 1 year: 2016 ident: 1900_CR20 publication-title: Systems Science and Control Engineering doi: 10.1080/21642583.2015.1124032 – ident: 1900_CR30 doi: 10.1049/cp:19940169 – volume: 93 start-page: 456 year: 2018 ident: 1900_CR48 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.10.028 – volume: 11 start-page: 1471 issue: Apr year: 2010 ident: 1900_CR12 publication-title: Journal of Machine Learning Research – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 1900_CR22 publication-title: Engineering with Computers doi: 10.1007/s00366-011-0241-y – volume: 14 start-page: 293 issue: 2 year: 2018 ident: 1900_CR49 publication-title: Journal of Industrial Engineering International doi: 10.1007/s40092-017-0227-5 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 1900_CR64 publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1367-1 – ident: 1900_CR25 doi: 10.1109/CEC.2000.870323 – volume: 443 start-page: 281 issue: 7109 year: 2006 ident: 1900_CR54 publication-title: Nature doi: 10.1038/443281a – volume: 7 start-page: e623 year: 2021 ident: 1900_CR13 publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.623 – volume: 44 start-page: 92 issue: 1 year: 2000 ident: 1900_CR59 publication-title: Journal of Mathematical Psychology doi: 10.1006/jmps.1999.1278 – ident: 1900_CR52 – volume: 29 start-page: 875 issue: 4 year: 2018 ident: 1900_CR57 publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-015-1143-4 – volume: 44 start-page: 41 issue: 1 year: 2000 ident: 1900_CR69 publication-title: Journal of Mathematical Psychology doi: 10.1006/jmps.1999.1276 – ident: 1900_CR5 – ident: 1900_CR8 doi: 10.1007/s11063-021-10530-w – volume: 87 start-page: 28 issue: 1 year: 2007 ident: 1900_CR32 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2007.04.004 – volume-title: Multivariable system identification: From observations to models year: 2003 ident: 1900_CR23 – volume: 13 start-page: 275 issue: 3 year: 2017 ident: 1900_CR16 publication-title: Journal of Industrial Engineering International doi: 10.1007/s40092-017-0183-0 – volume: 26 start-page: 762 issue: 8 year: 2013 ident: 1900_CR19 publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2013.766937 – ident: 1900_CR65 – ident: 1900_CR28 – ident: 1900_CR24 – volume: 25 start-page: 569 issue: 3 year: 2017 ident: 1900_CR60 publication-title: IEEE Transactions on fuzzy systems doi: 10.1109/TFUZZ.2016.2566810 – volume: 21 start-page: 351 issue: 3 year: 2018 ident: 1900_CR40 publication-title: International Journal Engineering Science and Technology – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 1900_CR33 publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 7 start-page: 681 issue: 4 year: 2016 ident: 1900_CR37 publication-title: International Journal of Industrial Engineering Computations doi: 10.5267/j.ijiec.2016.2.004 – volume: 33 start-page: 524 issue: 6 year: 1988 ident: 1900_CR55 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.1247 – volume: 17 start-page: 47 issue: 01 year: 2018 ident: 1900_CR29 publication-title: Journal of Advanced Manufacturing Systems doi: 10.1142/S021968671850004X – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 1900_CR63 publication-title: International Journal of Mathematical Modelling and Numerical Optimisation doi: 10.1504/IJMMNO.2010.035430 – volume: 25 start-page: 4545 issue: 6 year: 2021 ident: 1900_CR9 publication-title: Soft Computing doi: 10.1007/s00500-020-05464-9 – ident: 1900_CR62 doi: 10.1109/NABIC.2009.5393690 |
| SSID | ssj0009861 |
| Score | 2.4156888 |
| Snippet | Modeling of nonlinear industrial systems embraces two key stages: selection of a model structure with a compact parameter list, and selection of an algorithm... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1911 |
| SubjectTerms | Advanced manufacturing technologies Algorithms Business and Management Constraint modelling Control Control systems Machines Manufacturing Mechatronics Nonlinear systems Parameter estimation Processes Production Robotics Search algorithms Winding |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R9KAHUdSIounBmy7SsbXlZIyBkGiIBzXcFvoxIeKGMPTft-06piZy8bRkH92y9177Pvp-P4BzKgShVGoJMGJSNzpg5QqHHgvipsSEtYQFMH2-p_0-GwzaDy7hNnfbKos50U7UMhUmR37lU1uRCxm5nr57hjXKVFcdhcY6bGDfx0bP76hXgu4yi5dqsfa0ZxC6phnXOscC05tsgul2s-nhnwtT6W3-KpDadadb_e8X78KO8zjRTa4ie7CmkhpUCzYH5Iy7BtvfoAn3oddJRnZzABIL8ZqmKDcJNJy86HdkozekvV00XhJ_oM-x7Y9B07zzAFmKHX3iAJ66ncfbnudYFzyhzTHzCMVDgYVUfivG-sj11ByHbcGJkHq1C7gKeGzqbz5WTLKY-ZwHnErJdaxIiGgdQiVJE3UEKA59HusATnEWB1S7YqESAQ-1T8m04rRoHXDxyyPhIMkNM8YkKsGUjZgiLabIiinCdbhYPjPNATlW3t0oZBM545xHpWDqcFlIt7z892jHq0c7gS1DRp_v62lAJZst1Clsio9sPJ-dWdX8Ag4p6HA priority: 102 providerName: ProQuest |
| Title | Enhanced cuckoo search algorithm for industrial winding process modeling |
| URI | https://link.springer.com/article/10.1007/s10845-021-01900-1 https://www.proquest.com/docview/2787065586 |
| Volume | 34 |
| WOSCitedRecordID | wos000744768900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-8145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009861 issn: 0956-5515 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8o-KAPoqgRRdIH33QJG9taHpVASFRCQBF9WWzXySIOwof--167DdCoib502dY1y_Wud9fr_Q7glArhUurjDDBXbd2gw8ql6RjMDsq-6bKK0ACmvWvaarF-v9pOksKm6Wn3NCSpV-qVZDdmq2xi5f5Wy2UDfZ4sqjumxLHT7S2hdplGSdUIe2gPOEmqzPdjfFZHSxvzS1hUa5tG7n__uQPbiXVJLmJ22IU1GeUhl1ZuIIkg52FrBYZwD5r1aKAPAhAxFy-jEYnZnzwNn0eTcDZ4JWjZknBR5IO8hzoXhozjLAOiy-ngg324a9Rva00jqbBgCBS9meFS80mYwpdWJTDxynEZDpyq4K7wUbPZXNo8ULE2y5TMZwGzOLc59X2OfqHrisoBZKJRJA-BBI7FA3TWJGeBTdHscqSwuYP2I0MmqdACmCmhPZHAj6sqGENvCZysCOch4TxNOM8swNnim3EMvvFr72I6f14iiFPPojqQ6zC3AOfpfC1f_zza0d-6H8OmKkQfn-kpQmY2mcsT2BBvs3A6KcE6vX8oQfay3mp38O6KGtjelGuqpV1s285jSbPxB86X5Ls |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZ4ScCBN2I8c4ATVCxd2mQHhBAMbdqYOADarZA0hQlYBysg_hS_ESdtKSDBjQOnSn1ETfPZtWP7M8AmV8rnPMQVEL7ZukGHVWrqOYJF5ZD6oqIsgelFi7fbotOpng7BW14LY9Iqc51oFXUYK7NHvutyG5HzhL_ff3BM1ygTXc1baKSwaOrXF3TZBnuNI1zfLdc9rp0d1p2sq4CjEG6J43N6pagKtVuJKB4lqp7IqyrpqxC1OZOaycjEl1yqRSgi4UrJJA9Dib6Q76sKjjsMo4yhOJhUwfJhQfIrLD-r5fZDS8TLinSyUj3BTC20cd6r5bJDv_4IC-v2W0DW_ueOp__bF5qBqcyiJgepCMzCkO7NwXTerYJkymsOJj9RL85Dvda7sckPRD2p2zgm6ZuTq7trnFNyc0_Qmifdj8Ym5KVr639IP62sILaFEJ5YgPM_md0ijPTinl4CEnmujNBB1VJEjKOp6WnFpIc2s0DBqPAS0HyJA5VRrpvOH3dBQRZtYBEgLAILi4CWYPvjmX5KOPLr3as5FoJM-QyCAggl2MnRVFz-ebTl30fbgPH62UkraDXazRWYcNHcS3OYVmEkeXzSazCmnpPu4HHdigWBy79G2TsW2kj9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLZgIAQHHgPEeOYAJ6i2dG2THRBCsAk0NHEAtFshaQITsI09mPhr_DqctKWAxG4cOFXqI2qbz44d258BdpmUAWMRzgAPzNYNOqxCUd_hni5FNOBlaQlMby5Yo8GbzcrlBLyntTAmrTLViVZRRx1p9siLLrMROZ8HRZ2kRVye1o66L47pIGUirWk7jRgidfU2Qvetf3h-inO957q16tXJmZN0GHAkQm_gBIzeSSoj5ZY1xaNANaT9ihSBjFCze0J5QptYk0sVj7jmrhCeYFEk0C8KAlnGcSdhCldh38hYnTkZ4S-3XK2W5w-tEj8p2EnK9rhn6qKNI18plRz6fVHMLN0fwVm75tUW_vPfWoT5xNImx7FoLMGEaudhIe1iQRKlloe5L5SMy3BWbT_YpAgih_Kx0yHxm5O7p3v8psHDM0Ern7Q-G56QUcvWBZFuXHFBbGshPLEC13_ydauQa3faag2I9l2h0XFVgmuPoQnqK-kJH21pjgJTZgWg6XSHMqFiNx1BnsKMRNpAJESIhBYiIS3A_ucz3ZiIZOzdmykuwkQp9cMMFAU4SJGVXf59tPXxo-3ADIIrvDhv1Ddg1kUrME5t2oTcoDdUWzAtXwetfm_bSgiB278G2Qf3HVGj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cuckoo+search+algorithm+for+industrial+winding+process+modeling&rft.jtitle=Journal+of+intelligent+manufacturing&rft.au=Braik%2C+Malik&rft.au=Sheta%2C+Alaa&rft.au=Al-Hiary%2C+Heba&rft.au=Aljahdali%2C+Sultan&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=0956-5515&rft.eissn=1572-8145&rft.volume=34&rft.issue=4&rft.spage=1911&rft.epage=1940&rft_id=info:doi/10.1007%2Fs10845-021-01900-1&rft.externalDocID=10_1007_s10845_021_01900_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5515&client=summon |