A Smoothing Method for a Mathematical Program with P-Matrix Linear Complementarity Constraints
We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of th...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 27; číslo 3; s. 223 - 246 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer Nature B.V
01.03.2004
|
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of this function for solving the mathematical program. We investigate the limiting behaviour of optimal solutions, KKT points and B-stationary points of the smoothing problem. We show that a class of mathematical programs with P-matrix linear complementarity constraints can be reformulated as a piecewise convex program and solved through a sequence of continuously differentiable convex programs. Preliminary numerical results indicate that the method and convex reformulation are promising. [PUBLICATION ABSTRACT] |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1023/B:COAP.0000013057.54647.6d |