A Smoothing Method for a Mathematical Program with P-Matrix Linear Complementarity Constraints

We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 27; číslo 3; s. 223 - 246
Hlavní autoři: Chen, Xiaojun, Fukushima, Masao
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.03.2004
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a mathematical program whose constraints involve a parametric P-matrix linear complementarity problem with the design (upper level) variables as parameters. Solutions of this complementarity problem define a piecewise linear function of the parameters. We study a smoothing function of this function for solving the mathematical program. We investigate the limiting behaviour of optimal solutions, KKT points and B-stationary points of the smoothing problem. We show that a class of mathematical programs with P-matrix linear complementarity constraints can be reformulated as a piecewise convex program and solved through a sequence of continuously differentiable convex programs. Preliminary numerical results indicate that the method and convex reformulation are promising. [PUBLICATION ABSTRACT]
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0926-6003
1573-2894
DOI:10.1023/B:COAP.0000013057.54647.6d