Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees

Let G be an n -node and m -edge positively real-weighted undirected graph. For any given integer f ≥ 1 , we study the problem of designing a sparse f -edge-fault-tolerant ( f -EFT) σ -approximate single-source shortest-path tree ( σ -ASPT), namely a subgraph of G having as few edges as possible and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 84; H. 1; S. 37 - 59
Hauptverfasser: Bilò, Davide, Gualà, Luciano, Leucci, Stefano, Proietti, Guido
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2022
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let G be an n -node and m -edge positively real-weighted undirected graph. For any given integer f ≥ 1 , we study the problem of designing a sparse f -edge-fault-tolerant ( f -EFT) σ -approximate single-source shortest-path tree ( σ -ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G , contains paths from a fixed source that are stretched by a factor of at most σ . To this respect, we provide an algorithm that efficiently computes an f -EFT ( 2 | F | + 1 ) -ASPT of size O ( fn ). Our structure improves on a previous related construction designed for unweighted graphs, having the same size but guaranteeing a larger stretch factor of 3 ( f + 1 ) , plus an additive term of ( f + 1 ) log n . Then, we show how to convert our structure into an efficient f -EFT single-source distance oracle, that can be built in O ( f m α ( m , n ) + f n log 3 n ) time, has size O ( f n log 2 n ) , and in O ( | F | 2 log 2 n ) time is able to report a ( 2 | F | + 1 ) -approximate distance from the source to any node in G - F . Moreover, our oracle can return a corresponding approximate path in the same amount of time plus the path’s size. The oracle is obtained by tackling another fundamental problem, namely that of updating a minimum spanning forest (MSF) of G following a batch of k simultaneous modification (i.e., edge insertions, deletions and weight changes). For this problem, we build in O ( m log 3 n ) time an oracle of size O ( m log 2 n ) , that reports in O ( k 2 log 2 n ) time the (at most 2 k ) edges either exiting from or entering into the MSF. Finally, for any integer k ≥ 1 , we complement all our results with a lower bound of Ω n 1 + 1 k to the size of any f -EFT σ -ASPT with f ≥ log n and σ < 3 k + 1 k + 1 , that holds if the Erdős’ girth conjecture is true.
AbstractList Let G be an n -node and m -edge positively real-weighted undirected graph. For any given integer f ≥ 1 , we study the problem of designing a sparse f -edge-fault-tolerant ( f -EFT) σ -approximate single-source shortest-path tree ( σ -ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G , contains paths from a fixed source that are stretched by a factor of at most σ . To this respect, we provide an algorithm that efficiently computes an f -EFT ( 2 | F | + 1 ) -ASPT of size O ( fn ). Our structure improves on a previous related construction designed for unweighted graphs, having the same size but guaranteeing a larger stretch factor of 3 ( f + 1 ) , plus an additive term of ( f + 1 ) log n . Then, we show how to convert our structure into an efficient f -EFT single-source distance oracle, that can be built in O ( f m α ( m , n ) + f n log 3 n ) time, has size O ( f n log 2 n ) , and in O ( | F | 2 log 2 n ) time is able to report a ( 2 | F | + 1 ) -approximate distance from the source to any node in G - F . Moreover, our oracle can return a corresponding approximate path in the same amount of time plus the path’s size. The oracle is obtained by tackling another fundamental problem, namely that of updating a minimum spanning forest (MSF) of G following a batch of k simultaneous modification (i.e., edge insertions, deletions and weight changes). For this problem, we build in O ( m log 3 n ) time an oracle of size O ( m log 2 n ) , that reports in O ( k 2 log 2 n ) time the (at most 2 k ) edges either exiting from or entering into the MSF. Finally, for any integer k ≥ 1 , we complement all our results with a lower bound of Ω n 1 + 1 k to the size of any f -EFT σ -ASPT with f ≥ log n and σ < 3 k + 1 k + 1 , that holds if the Erdős’ girth conjecture is true.
Let G be an n-node and m-edge positively real-weighted undirected graph. For any given integer f≥1, we study the problem of designing a sparse f-edge-fault-tolerant (f-EFT) σ-approximate single-source shortest-path tree (σ-ASPT), namely a subgraph of G having as few edges as possible and which, following the failure of a set F of at most f edges in G, contains paths from a fixed source that are stretched by a factor of at most σ. To this respect, we provide an algorithm that efficiently computes an f-EFT (2|F|+1)-ASPT of size O(fn). Our structure improves on a previous related construction designed for unweighted graphs, having the same size but guaranteeing a larger stretch factor of 3(f+1), plus an additive term of (f+1)logn. Then, we show how to convert our structure into an efficient f-EFT single-source distance oracle, that can be built in O(fmα(m,n)+fnlog3n) time, has size O(fnlog2n), and in O(|F|2log2n) time is able to report a (2|F|+1)-approximate distance from the source to any node in G-F. Moreover, our oracle can return a corresponding approximate path in the same amount of time plus the path’s size. The oracle is obtained by tackling another fundamental problem, namely that of updating a minimum spanning forest (MSF) of G following a batch of k simultaneous modification (i.e., edge insertions, deletions and weight changes). For this problem, we build in O(mlog3n) time an oracle of size O(mlog2n), that reports in O(k2log2n) time the (at most 2k) edges either exiting from or entering into the MSF. Finally, for any integer k≥1, we complement all our results with a lower bound of Ωn1+1k to the size of any f-EFT σ-ASPT with f≥logn and σ<3k+1k+1, that holds if the Erdős’ girth conjecture is true.
Author Gualà, Luciano
Bilò, Davide
Leucci, Stefano
Proietti, Guido
Author_xml – sequence: 1
  givenname: Davide
  surname: Bilò
  fullname: Bilò, Davide
  organization: Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari
– sequence: 2
  givenname: Luciano
  surname: Gualà
  fullname: Gualà, Luciano
  organization: Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”
– sequence: 3
  givenname: Stefano
  orcidid: 0000-0002-8848-7006
  surname: Leucci
  fullname: Leucci, Stefano
  email: stefano.leucci@univaq.it
  organization: Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila
– sequence: 4
  givenname: Guido
  surname: Proietti
  fullname: Proietti, Guido
  organization: Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila, Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, CNR
BookMark eNp9kEFLAzEQhYNUsK3-AU8Fz9GZbDbJgpdSWhUqCtZzSHeTdsu6W5MU9N8bXUHwUBgYBt438-aNyKDtWkvIJcI1AsibAMDzjAJDCqBkQdUJGSLPGIWc44AMAaWiXKA8I6MQdgDIZCGG5Pbx0MR631g6rzaWLkwa6aprrDdtnEz3e9991G8m2snLtvPRhkifTdxOVt7acE5OnWmCvfjtY_K6mK9m93T5dPcwmy5pmWERqciFka5wQgmHUGGWF6VzlVonT7lRVWlydJkAXqCrnF2XiMxxlVtuJVfAsjG56vcmN--H5EHvuoNv00nNBEsFXOZJpXpV6bsQvHW6rKOJdddGb-pGI-jvrHSflU5Z6Z-stEoo-4fuffrafx6Hsh4KSdxurP9zdYT6ApZmfS0
CitedBy_id crossref_primary_10_1145_3623271
crossref_primary_10_1016_j_jcss_2023_103495
Cites_doi 10.1137/1.9781611973105.36
10.1006/jagm.2001.1171
10.4230/LIPIcs.ESA.2016.13
10.1007/s00453-015-0006-x
10.1145/1044731.1044732
10.1007/s00453-011-9543-0
10.1145/2888397
10.1145/2767386.2767408
10.1007/s00453-012-9621-y
10.1137/16M1087643
10.4230/LIPIcs.ICALP.2017.127
10.1137/0213024
10.1007/978-3-662-48350-3_15
10.1145/3293611.3331588
10.1137/1.9781611975482.127
10.1016/j.cosrev.2020.100253
10.1016/j.tcs.2015.02.036
10.1007/s00446-015-0252-9
10.1109/FOCS.2012.17
10.1145/502090.502095
10.1007/s00453-002-0988-z
10.4230/LIPIcs.ICALP.2018.72
10.1145/1103963.1103966
10.1145/2591796.2591801
10.1137/0214055
10.1145/2976741
10.1006/jagm.1994.1033
10.1515/crll.1869.70.185
10.4230/LIPIcs.STACS.2018.13
10.1007/BF02189308
10.1145/355541.355562
10.1137/S0097539797327209
10.1007/978-3-030-25209-0
10.1007/s00453-017-0396-z
10.1145/1536414.1536431
10.1145/265910.265914
10.1137/1.9781611973068.56
10.1145/3022730
10.1145/1868237.1868242
10.1007/978-3-319-25258-2_16
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-021-00879-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 59
ExternalDocumentID 10_1007_s00453_021_00879_8
GrantInformation_xml – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: PRIN 2010 “ARS TechnoMedia”
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: Fondazione di Sardegna
  grantid: Algorithms for (fault-tolerant) pairwise spanners and distance oracles
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-656a7f9f686f10d1359cffd8b1785a8dca51f360491fdfebc112f485e4e748023
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712938300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:53:13 EST 2025
Sat Nov 29 02:20:32 EST 2025
Tue Nov 18 21:28:19 EST 2025
Fri Feb 21 02:46:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 68P05
68W40
Fully-dynamic minimum spanning tree
Distance sensitivity oracle
Multiple-edge fault-tolerant shortest-path tree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-656a7f9f686f10d1359cffd8b1785a8dca51f360491fdfebc112f485e4e748023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8848-7006
PQID 2622620475
PQPubID 2043795
PageCount 23
ParticipantIDs proquest_journals_2622620475
crossref_citationtrail_10_1007_s00453_021_00879_8
crossref_primary_10_1007_s00453_021_00879_8
springer_journals_10_1007_s00453_021_00879_8
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bodwin, G., Patel, S.: A trivial yet optimal solution to vertex fault tolerant spanners. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019., pp. 541–543 (2019). 10.1145/3293611.3331588
ThorupMZwickUApproximate distance oraclesJ. ACM2005521124214368310.1145/1044731.10447321175.68303
NardelliEProiettiGWidmayerPSwapping a failing edge of a single source shortest paths tree is good and fastAlgorithmica20033515674193824310.1007/s00453-002-0988-z
Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Compact and Fast Sensitivity Oracles for Single-Source Distances. In: 24th Annual European Symposium on Algorithms (ESA 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 57, pp. 13:1–13:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.ESA.2016.13. http://drops.dagstuhl.de/opus/volltexte/2016/6364
Bilò, D., Choudhary, K., Gualà, L., Leucci, S., Parter, M., Proietti, G.: Efficient oracles and routing schemes for replacement paths. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, pp. 13:1–13:15 (2018). https://doi.org/10.4230/LIPIcs.STACS.2018.13
BaswanaSTelikepalliKMehlhornKPettieSAdditive spanners and (alpha, beta)-spannersACM Trans. Algorithms201071510.1145/1868237.18682421295.05094
AlstrupSHolmJde LichtenbergKThorupMMaintaining information in fully dynamic trees with top treesACM Trans. Algorithms200512243264219012310.1145/1103963.11039661321.68211
Knuth, D.E.: The art of computer programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-Wesley (1997). https://www.worldcat.org/oclc/312910844
Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: STOC, pp. 101–110 (2009)
BaswanaSKhannaNApproximate shortest paths avoiding a failed vertex: near optimal data structures for undirected unweighted graphsAlgorithmica20136611850302380510.1007/s00453-012-9621-y1264.68068
Charalampopoulos, P., Mozes, S., Tebeka, B.: Exact distance oracles for planar graphs with failing vertices. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 2110–2123 (2019). https://doi.org/10.1137/1.9781611975482.127
Gupta, M., Singh, A.: Generic single edge fault tolerant exact distance oracle. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pp. 72:1–72:15 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.72
SandersPMehlhornKDietzfelbingerMDementievRSequential and parallel algorithms and data structures: the basic toolboxSpringer201910.1007/978-3-030-25209-01445.68003
HolmJde LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM2001484723760214492810.1145/502090.5020951127.68408
Parter, M., Peleg, D.: Fault-tolerant approximate BFS structures. ACM Trans. Algorithms 14(1), 10:1-10:15 (2018). https://doi.org/10.1145/3022730
Bodwin, G., Grandoni, F., Parter, M., Williams, V.V.: Preserving distances in very faulty graphs. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp. 73:1–73:14 (2017). 10.4230/LIPIcs.ICALP.2017.73
Parter, M., Peleg, D.: Sparse fault-tolerant BFS structures. ACM Trans. Algorithms 13(1), 11:1-11:24 (2016). https://doi.org/10.1145/2976741
BaswanaSChoudharyKRodittyLFault-tolerant subgraph for single-source reachability: general and optimalSIAM J. Comput.20184718095374500410.1137/16M10876431379.05045
Chechik, S.: Approximate distance oracles with constant query time. In: STOC, pp. 654–663 (2014). https://doi.org/10.1145/2591796.2591801
Elkin, M., Pettie, S.: A linear-size logarithmic stretch path-reporting distance oracle for general graphs. ACM Trans. Algorithms 12(4), 50:1-50:31 (2016). https://doi.org/10.1145/2888397
EppsteinDOffline algorithms for dynamic minimum spanning tree problemsJ. Algorithms1994172237250129154110.1006/jagm.1994.10331427.68239
Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36 (1964)
Jordan, C.: Sur les assemblages de lignes. (1869)
EppsteinDGalilZItalianoGFNissenzweigASparsification: a technique for speeding up dynamic graph algorithmsJ. ACM1997445669696149234110.1145/265910.2659140891.68072
ChechikSLangbergMPelegDRodittyLf-sensitivity distance oracles and routing schemesAlgorithmica2012634861882291532310.1007/s00453-011-9543-01254.68095
HenzingerMRKingVMaintaining minimum spanning forests in dynamic graphsSIAM J. Comput.2001312364374186128010.1137/S00975397973272090996.68129
FredericksonGNData structures for on-line updating of minimum spanning trees, with applicationsSIAM J. Comput.198514478179880788110.1137/02140550575.68068
Parter, M.: Dual failure resilient BFS structure. In: PODC, pp. 481–490 (2015)
Chechik, S.: New additive spanners. In: SODA, pp. 498–512 (2013). https://doi.org/10.1137/1.9781611973105.36
BraunschvigGChechikSPelegDSealfonAFault tolerant additive and (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document})-spannersTheor. Comput. Sci.201558094100332760110.1016/j.tcs.2015.02.0361311.05184
Gupta, M., Khan, S.: Multiple source dual fault tolerant BFS trees. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pp. 127:1–127:15 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.127
ParterMVertex fault tolerant additive spannersDistrib. Comput.2017305357372370428010.1007/s00446-015-0252-91425.68042
Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: SODA, pp. 506–515 (2009). http://dl.acm.org/citation.cfm?id=1496770.1496826
Bilò, D., Grandoni, F., Gualà, L., Leucci, S., Proietti, G.: Improved purely additive fault-tolerant spanners. In: ESA, pp. 167–178 (2015)
ChazelleBA minimum spanning tree algorithm with inverse-ackermann type complexityJ. ACM200047610281047186645610.1145/355541.3555621094.68606
Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: FOCS, pp. 748–757 (2012)
BilòDGualàLLeucciSProiettiGFault-tolerant approximate shortest-path treesAlgorithmica2018801234373460386471010.1007/s00453-017-0396-z1397.05045
Ahmed, A.R., Bodwin, G., Sahneh, F.D., Hamm, K., Jebelli, M.J.L., Kobourov, S.G., Spence, R.: Graph spanners: a tutorial review. arXiv:1909.03152 (2019)
HagerupTMiltersenPBPaghRDeterministic dictionariesJ. Algorithms20014116985185534910.1006/jagm.2001.11711002.68503
D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Path-fault-tolerant approximate shortest-path trees. In: SIROCCO, pp. 224–238 (2015). https://doi.org/10.1007/978-3-319-25258-2_16
HarelDTarjanREFast algorithms for finding nearest common ancestorsSIAM J. Comput.198413233835573999410.1137/02130240535.68022
AlthöferIDasGDobkinDPJosephDSoaresJOn sparse spanners of weighted graphsDiscrete Comput. Geom.1993981100118469510.1007/BF021893080762.05039
AusielloGFranciosaPGItalianoGFRibichiniAOn resilient graph spannersAlgorithmica201674413631385348240810.1007/s00453-015-0006-x1339.68198
Parter, M.: Fault-tolerant logical network structures. Bulletin of the EATCS 118 (2016). http://eatcs.org/beatcs/index.php/beatcs/article/view/403
879_CR14
879_CR36
879_CR13
879_CR35
879_CR8
E Nardelli (879_CR37) 2003; 35
879_CR9
879_CR11
879_CR10
B Chazelle (879_CR17) 2000; 47
D Eppstein (879_CR24) 1994; 17
879_CR30
879_CR19
879_CR18
879_CR39
879_CR16
879_CR38
P Sanders (879_CR43) 2019
S Alstrup (879_CR2) 2005; 1
G Braunschvig (879_CR15) 2015; 580
M Parter (879_CR40) 2017; 30
S Baswana (879_CR5) 2018; 47
G Ausiello (879_CR4) 2016; 74
879_CR23
I Althöfer (879_CR3) 1993; 9
879_CR22
879_CR21
M Thorup (879_CR44) 2005; 52
879_CR42
879_CR41
GN Frederickson (879_CR27) 1985; 14
879_CR29
879_CR28
879_CR26
D Harel (879_CR32) 1984; 13
T Hagerup (879_CR31) 2001; 41
J Holm (879_CR34) 2001; 48
S Baswana (879_CR6) 2013; 66
D Eppstein (879_CR25) 1997; 44
S Baswana (879_CR7) 2010; 7
879_CR1
D Bilò (879_CR12) 2018; 80
S Chechik (879_CR20) 2012; 63
MR Henzinger (879_CR33) 2001; 31
References_xml – reference: Bodwin, G., Patel, S.: A trivial yet optimal solution to vertex fault tolerant spanners. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019., pp. 541–543 (2019). 10.1145/3293611.3331588
– reference: Elkin, M., Pettie, S.: A linear-size logarithmic stretch path-reporting distance oracle for general graphs. ACM Trans. Algorithms 12(4), 50:1-50:31 (2016). https://doi.org/10.1145/2888397
– reference: Parter, M.: Fault-tolerant logical network structures. Bulletin of the EATCS 118 (2016). http://eatcs.org/beatcs/index.php/beatcs/article/view/403
– reference: Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices and edges. In: STOC, pp. 101–110 (2009)
– reference: SandersPMehlhornKDietzfelbingerMDementievRSequential and parallel algorithms and data structures: the basic toolboxSpringer201910.1007/978-3-030-25209-01445.68003
– reference: ChechikSLangbergMPelegDRodittyLf-sensitivity distance oracles and routing schemesAlgorithmica2012634861882291532310.1007/s00453-011-9543-01254.68095
– reference: ParterMVertex fault tolerant additive spannersDistrib. Comput.2017305357372370428010.1007/s00446-015-0252-91425.68042
– reference: Chechik, S.: New additive spanners. In: SODA, pp. 498–512 (2013). https://doi.org/10.1137/1.9781611973105.36
– reference: FredericksonGNData structures for on-line updating of minimum spanning trees, with applicationsSIAM J. Comput.198514478179880788110.1137/02140550575.68068
– reference: Gupta, M., Khan, S.: Multiple source dual fault tolerant BFS trees. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pp. 127:1–127:15 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.127
– reference: BilòDGualàLLeucciSProiettiGFault-tolerant approximate shortest-path treesAlgorithmica2018801234373460386471010.1007/s00453-017-0396-z1397.05045
– reference: Bodwin, G., Grandoni, F., Parter, M., Williams, V.V.: Preserving distances in very faulty graphs. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp. 73:1–73:14 (2017). 10.4230/LIPIcs.ICALP.2017.73
– reference: HarelDTarjanREFast algorithms for finding nearest common ancestorsSIAM J. Comput.198413233835573999410.1137/02130240535.68022
– reference: Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36 (1964)
– reference: Ahmed, A.R., Bodwin, G., Sahneh, F.D., Hamm, K., Jebelli, M.J.L., Kobourov, S.G., Spence, R.: Graph spanners: a tutorial review. arXiv:1909.03152 (2019)
– reference: Gupta, M., Singh, A.: Generic single edge fault tolerant exact distance oracle. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pp. 72:1–72:15 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.72
– reference: HenzingerMRKingVMaintaining minimum spanning forests in dynamic graphsSIAM J. Comput.2001312364374186128010.1137/S00975397973272090996.68129
– reference: NardelliEProiettiGWidmayerPSwapping a failing edge of a single source shortest paths tree is good and fastAlgorithmica20033515674193824310.1007/s00453-002-0988-z
– reference: AusielloGFranciosaPGItalianoGFRibichiniAOn resilient graph spannersAlgorithmica201674413631385348240810.1007/s00453-015-0006-x1339.68198
– reference: Chechik, S.: Approximate distance oracles with constant query time. In: STOC, pp. 654–663 (2014). https://doi.org/10.1145/2591796.2591801
– reference: HolmJde LichtenbergKThorupMPoly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivityJ. ACM2001484723760214492810.1145/502090.5020951127.68408
– reference: Parter, M., Peleg, D.: Fault-tolerant approximate BFS structures. ACM Trans. Algorithms 14(1), 10:1-10:15 (2018). https://doi.org/10.1145/3022730
– reference: ChazelleBA minimum spanning tree algorithm with inverse-ackermann type complexityJ. ACM200047610281047186645610.1145/355541.3555621094.68606
– reference: Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: FOCS, pp. 748–757 (2012)
– reference: BaswanaSChoudharyKRodittyLFault-tolerant subgraph for single-source reachability: general and optimalSIAM J. Comput.20184718095374500410.1137/16M10876431379.05045
– reference: Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Compact and Fast Sensitivity Oracles for Single-Source Distances. In: 24th Annual European Symposium on Algorithms (ESA 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 57, pp. 13:1–13:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.4230/LIPIcs.ESA.2016.13. http://drops.dagstuhl.de/opus/volltexte/2016/6364
– reference: D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Path-fault-tolerant approximate shortest-path trees. In: SIROCCO, pp. 224–238 (2015). https://doi.org/10.1007/978-3-319-25258-2_16
– reference: AlthöferIDasGDobkinDPJosephDSoaresJOn sparse spanners of weighted graphsDiscrete Comput. Geom.1993981100118469510.1007/BF021893080762.05039
– reference: AlstrupSHolmJde LichtenbergKThorupMMaintaining information in fully dynamic trees with top treesACM Trans. Algorithms200512243264219012310.1145/1103963.11039661321.68211
– reference: BaswanaSKhannaNApproximate shortest paths avoiding a failed vertex: near optimal data structures for undirected unweighted graphsAlgorithmica20136611850302380510.1007/s00453-012-9621-y1264.68068
– reference: ThorupMZwickUApproximate distance oraclesJ. ACM2005521124214368310.1145/1044731.10447321175.68303
– reference: BaswanaSTelikepalliKMehlhornKPettieSAdditive spanners and (alpha, beta)-spannersACM Trans. Algorithms201071510.1145/1868237.18682421295.05094
– reference: Knuth, D.E.: The art of computer programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-Wesley (1997). https://www.worldcat.org/oclc/312910844
– reference: Charalampopoulos, P., Mozes, S., Tebeka, B.: Exact distance oracles for planar graphs with failing vertices. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 2110–2123 (2019). https://doi.org/10.1137/1.9781611975482.127
– reference: Parter, M.: Dual failure resilient BFS structure. In: PODC, pp. 481–490 (2015)
– reference: BraunschvigGChechikSPelegDSealfonAFault tolerant additive and (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document})-spannersTheor. Comput. Sci.201558094100332760110.1016/j.tcs.2015.02.0361311.05184
– reference: Parter, M., Peleg, D.: Sparse fault-tolerant BFS structures. ACM Trans. Algorithms 13(1), 11:1-11:24 (2016). https://doi.org/10.1145/2976741
– reference: EppsteinDOffline algorithms for dynamic minimum spanning tree problemsJ. Algorithms1994172237250129154110.1006/jagm.1994.10331427.68239
– reference: Jordan, C.: Sur les assemblages de lignes. (1869)
– reference: HagerupTMiltersenPBPaghRDeterministic dictionariesJ. Algorithms20014116985185534910.1006/jagm.2001.11711002.68503
– reference: Bilò, D., Choudhary, K., Gualà, L., Leucci, S., Parter, M., Proietti, G.: Efficient oracles and routing schemes for replacement paths. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, pp. 13:1–13:15 (2018). https://doi.org/10.4230/LIPIcs.STACS.2018.13
– reference: Bilò, D., Grandoni, F., Gualà, L., Leucci, S., Proietti, G.: Improved purely additive fault-tolerant spanners. In: ESA, pp. 167–178 (2015)
– reference: Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: SODA, pp. 506–515 (2009). http://dl.acm.org/citation.cfm?id=1496770.1496826
– reference: EppsteinDGalilZItalianoGFNissenzweigASparsification: a technique for speeding up dynamic graph algorithmsJ. ACM1997445669696149234110.1145/265910.2659140891.68072
– ident: 879_CR18
  doi: 10.1137/1.9781611973105.36
– volume: 41
  start-page: 69
  issue: 1
  year: 2001
  ident: 879_CR31
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2001.1171
– ident: 879_CR11
  doi: 10.4230/LIPIcs.ESA.2016.13
– volume: 74
  start-page: 1363
  issue: 4
  year: 2016
  ident: 879_CR4
  publication-title: Algorithmica
  doi: 10.1007/s00453-015-0006-x
– volume: 52
  start-page: 1
  issue: 1
  year: 2005
  ident: 879_CR44
  publication-title: J. ACM
  doi: 10.1145/1044731.1044732
– ident: 879_CR13
– volume: 63
  start-page: 861
  issue: 4
  year: 2012
  ident: 879_CR20
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9543-0
– ident: 879_CR23
  doi: 10.1145/2888397
– ident: 879_CR36
– ident: 879_CR38
  doi: 10.1145/2767386.2767408
– volume: 66
  start-page: 18
  issue: 1
  year: 2013
  ident: 879_CR6
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9621-y
– volume: 47
  start-page: 80
  issue: 1
  year: 2018
  ident: 879_CR5
  publication-title: SIAM J. Comput.
  doi: 10.1137/16M1087643
– ident: 879_CR29
  doi: 10.4230/LIPIcs.ICALP.2017.127
– volume: 13
  start-page: 338
  issue: 2
  year: 1984
  ident: 879_CR32
  publication-title: SIAM J. Comput.
  doi: 10.1137/0213024
– ident: 879_CR10
  doi: 10.1007/978-3-662-48350-3_15
– ident: 879_CR14
  doi: 10.1145/3293611.3331588
– ident: 879_CR16
  doi: 10.1137/1.9781611975482.127
– ident: 879_CR1
  doi: 10.1016/j.cosrev.2020.100253
– volume: 580
  start-page: 94
  year: 2015
  ident: 879_CR15
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.02.036
– ident: 879_CR26
– volume: 30
  start-page: 357
  issue: 5
  year: 2017
  ident: 879_CR40
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-015-0252-9
– ident: 879_CR28
  doi: 10.1109/FOCS.2012.17
– volume: 48
  start-page: 723
  issue: 4
  year: 2001
  ident: 879_CR34
  publication-title: J. ACM
  doi: 10.1145/502090.502095
– volume: 35
  start-page: 56
  issue: 1
  year: 2003
  ident: 879_CR37
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0988-z
– ident: 879_CR30
  doi: 10.4230/LIPIcs.ICALP.2018.72
– volume: 1
  start-page: 243
  issue: 2
  year: 2005
  ident: 879_CR2
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1103963.1103966
– ident: 879_CR19
  doi: 10.1145/2591796.2591801
– volume: 14
  start-page: 781
  issue: 4
  year: 1985
  ident: 879_CR27
  publication-title: SIAM J. Comput.
  doi: 10.1137/0214055
– ident: 879_CR41
  doi: 10.1145/2976741
– volume: 17
  start-page: 237
  issue: 2
  year: 1994
  ident: 879_CR24
  publication-title: J. Algorithms
  doi: 10.1006/jagm.1994.1033
– ident: 879_CR35
  doi: 10.1515/crll.1869.70.185
– ident: 879_CR9
  doi: 10.4230/LIPIcs.STACS.2018.13
– volume: 9
  start-page: 81
  year: 1993
  ident: 879_CR3
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02189308
– volume: 47
  start-page: 1028
  issue: 6
  year: 2000
  ident: 879_CR17
  publication-title: J. ACM
  doi: 10.1145/355541.355562
– volume: 31
  start-page: 364
  issue: 2
  year: 2001
  ident: 879_CR33
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539797327209
– year: 2019
  ident: 879_CR43
  publication-title: Springer
  doi: 10.1007/978-3-030-25209-0
– volume: 80
  start-page: 3437
  issue: 12
  year: 2018
  ident: 879_CR12
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0396-z
– ident: 879_CR8
  doi: 10.1145/1536414.1536431
– volume: 44
  start-page: 669
  issue: 5
  year: 1997
  ident: 879_CR25
  publication-title: J. ACM
  doi: 10.1145/265910.265914
– ident: 879_CR22
  doi: 10.1137/1.9781611973068.56
– ident: 879_CR39
– ident: 879_CR42
  doi: 10.1145/3022730
– volume: 7
  start-page: 5
  issue: 1
  year: 2010
  ident: 879_CR7
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/1868237.1868242
– ident: 879_CR21
  doi: 10.1007/978-3-319-25258-2_16
SSID ssj0012796
Score 2.3338578
Snippet Let G be an n -node and m -edge positively real-weighted undirected graph. For any given integer f ≥ 1 , we study the problem of designing a sparse f...
Let G be an n-node and m-edge positively real-weighted undirected graph. For any given integer f≥1, we study the problem of designing a sparse...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Fault tolerance
Graph theory
Integers
Lower bounds
Mathematics of Computing
Shortest-path problems
Theory of Computation
Trees (mathematics)
Title Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees
URI https://link.springer.com/article/10.1007/s00453-021-00879-8
https://www.proquest.com/docview/2622620475
Volume 84
WOSCitedRecordID wos000712938300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWK1Sg7edKF5bLIBL0VaPGgptkpvIfvSQmmlieLPd3a7aVFU0GPIZgmzu5lvMjPfB3AumYxDHiaEU52SKBSc5BhHEE3Rt3ARhFpZyvzbpNdjo1Had01hRVXtXqUk7Zd62exm0IfJOWL422JJStg6bKC7Y0aw4X7wuMwdBIlV5TK68yRCB-1aZb6f47M7WmHML2lR62269f-95w5sO3TptRfbYRfW1HQP6pVyg-cO8j5c3bk6QtKRT4p0c7wkw9lEoecqvbbhGX8fI5ZV3uDZVOMWJekjVPSGc6WKA3jodobXN8TpKBCBB6wkCNnyRKc6ZrH2W9IPaSq0loyjhWjOpMipr8MYYwVfS624QAymI0ZVpJLIEMQdQm06m6oj8DCgbYVCKCapkarWPE5joVOhuBaGaq4BfmXOTDiScaN1McmW9MjWPBmaJ7PmyVgDLpbPvCwoNn4d3axWKXPHrciCOLDE-gltwGW1KqvbP892_LfhJ7AVmPYH-wumCbVy_qpOYVO8leNifma34QfMY9UX
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqX3wTQPrj7Qp-DJkQ3Ebw1XZW2jSRAdjk7WKf75Jlm4oKuhjaRrKJen3Xe_uO4DzjGShz_wIMSxjFPicoVT5EUhihS2Me74URjK_E_V6ZDiM-7YoLC-z3cuQpPlSL4rdNPvQMUfl_jZIFCOyCmuBQiytmH8_eFzEDrzIdOXSfedRoADalsp8P8dnOFpyzC9hUYM27er_3nMbtiy7dJrz7bADK2KyC9Wyc4NjD_IeXHVtHiFqZU8CtVN1iZLpWCjkKpym1hl_HykuK5zBs87GzQvUV1TRSWZC5Pvw0G4l1zfI9lFAXB2wAinKlkYyliEJpdvIXB_HXMqMMGUhnJKMp9iVfqh8BVdmUjCuOJgMCBaBiAItEHcAlcl0Ig7BUQ5tw-dckAzrVtWShXHIZcwFk1xLzdXALc1JuRUZ170uxnQhj2zMQ5V5qDEPJTW4WDzzMpfY-HV0vVwlao9bTr3QM8L6Ea7BZbkqy9s_z3b0t-FnsHGTdDu0c9u7O4ZNT5dCmN8xdagUs1dxAuv8rRjls1OzJT8A0vjX-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1D74psH1kjYFX4ZuKM4x2JS9hTYXHYxurFX8-SZZ26moID6WJqGcJJzv9JzzfQCnnHDfjd0AxViGyHNZjCIVRyCJlW-JmeNKYSjzO0G3S4bDsPehi99UuxcpyXlPg2ZpSrKLKZcXZeObRiI6_6hC4QYJQkSWYcXThfQ6Xu8_lnkEJzAKXVqDHnnKWedtM9-v8dk1LfDmlxSp8Tzt6v-_eRM2ctRpNefHZAuWRLIN1ULRwcov-A5c3uf1hajFnwRqR-oRDSZjoTxaZjU1__jbSGFcYfWfdZVumqGegpDWYCZEugsP7dbg6gbl-gqIqYuXIQXlokCG0ie-tBvcdnHIpOQkVtbCEeEswrZ0fRVD2JJLETOFzaRHsPBE4GniuD2oJJNE7IOlAt2Gy5ggHGsJaxn7oc9kyEQsmaagq4FdmJaynHxca2CMaUmbbMxDlXmoMQ8lNTgr50zn1Bu_jq4XO0bza5hSx3cM4X6Aa3Be7NDi9c-rHfxt-Ams9a7btHPbvTuEdUd3SJi_NHWoZLMXcQSr7DUbpbNjczrfAZGs4N8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple-Edge-Fault-Tolerant+Approximate+Shortest-Path+Trees&rft.jtitle=Algorithmica&rft.au=Bil%C3%B2%2C+Davide&rft.au=Gual%C3%A0%2C+Luciano&rft.au=Leucci%2C+Stefano&rft.au=Proietti%2C+Guido&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=84&rft.issue=1&rft.spage=37&rft.epage=59&rft_id=info:doi/10.1007%2Fs00453-021-00879-8&rft.externalDocID=10_1007_s00453_021_00879_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon