Multi-objective whale optimization algorithm and multi-objective grey wolf optimizer for solving next release problem with developing fairness and uncertainty quality indicators

Selecting a set of requirements to implement in the next software release is an NP-Hard problem known as NRP. We propose multi-objective versions of grey wolf optimizer and whale optimization algorithm for solving bi-objective NRP. We used these two algorithms and three other evolutionary algorithms...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 8; pp. 5358 - 5387
Main Authors: Ghasemi, Mohsen, Bagherifard, Karamollah, Parvin, Hamid, Nejatian, Samad, Pho, Kim-Hung
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2021
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Selecting a set of requirements to implement in the next software release is an NP-Hard problem known as NRP. We propose multi-objective versions of grey wolf optimizer and whale optimization algorithm for solving bi-objective NRP. We used these two algorithms and three other evolutionary algorithms to solve NRP problem instances from four datasets. The cost-to-score ratio and the roulette wheel are used to satisfy constraints of the NRP problem. We compare obtained Pareto fronts based on eight quality indicators. In addition to four general multi-objective optimization quality indicators, the three aspects of fairness among clients and also uncertainty are reconfigured as quality indicators. These quality indicators are computed for a Pareto front. Results show that MOWOA performs better than others and makes requirement selection fairer. MOGWO works better than the rest when budget constraints are reduced.
AbstractList Selecting a set of requirements to implement in the next software release is an NP-Hard problem known as NRP. We propose multi-objective versions of grey wolf optimizer and whale optimization algorithm for solving bi-objective NRP. We used these two algorithms and three other evolutionary algorithms to solve NRP problem instances from four datasets. The cost-to-score ratio and the roulette wheel are used to satisfy constraints of the NRP problem. We compare obtained Pareto fronts based on eight quality indicators. In addition to four general multi-objective optimization quality indicators, the three aspects of fairness among clients and also uncertainty are reconfigured as quality indicators. These quality indicators are computed for a Pareto front. Results show that MOWOA performs better than others and makes requirement selection fairer. MOGWO works better than the rest when budget constraints are reduced.
Author Pho, Kim-Hung
Nejatian, Samad
Bagherifard, Karamollah
Ghasemi, Mohsen
Parvin, Hamid
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Ghasemi
  fullname: Ghasemi, Mohsen
  organization: Department of Computer Engineering, Yasooj Branch, Islamic Azad University
– sequence: 2
  givenname: Karamollah
  surname: Bagherifard
  fullname: Bagherifard, Karamollah
  organization: Department of Computer Engineering, Yasooj Branch, Islamic Azad University, Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University
– sequence: 3
  givenname: Hamid
  surname: Parvin
  fullname: Parvin, Hamid
  email: parvin@iust.ac.ir
  organization: Institute of Research and Development, Duy Tan University, Faculty of Information Technology, Duy Tan University, Department of Computer Engineering, Nourabad Mamasani Branch, Islamic Azad University
– sequence: 4
  givenname: Samad
  surname: Nejatian
  fullname: Nejatian, Samad
  organization: Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Department of Electrical Engineering, Yasooj Branch, Islamic Azad University
– sequence: 5
  givenname: Kim-Hung
  surname: Pho
  fullname: Pho, Kim-Hung
  organization: Fractional Calculus, Optimization and Algebra Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University
BookMark eNp9kc1q3DAUhUVJoZO0L9CVIGsn-rEteRlCkhYSummhOyHLVxMNsjSR5JlM3qpvWM9MQyGLLC53c757DvecopMQAyD0lZILSoi4zJTUsqsII_uhsmIf0II2glei7sQJWpCO1VXbdr8_odOcV4QQzgldoD8Pky-uiv0KTHEbwNtH7QHHdXGje9HFxYC1X8bkyuOIdRjw-AZYJtjhbfT2FYKEbUw4R79xYYkDPBecwIPOgNcp9h5GvJ3P4QE24ON6L7LapQA5HxymYCAV7ULZ4adJezdvFwZndIkpf0YfrfYZvvzbZ-jX7c3P62_V_Y-779dX95XhtCtV2zA5sMH2AjSxrbGDBeipbDvZMW6EANlTa1jNjGhYLW3DWd-A4bVh1pKWn6Hz490589MEuahVnFKYLRVr6k5yIZiYVfKoMinmnMAq48rhbSVp5xUlal-QOhak5nLUoSDFZpS9QdfJjTrt3of4EcqzOCwh_U_1DvUXqpqsAQ
CitedBy_id crossref_primary_10_1007_s10489_022_04132_9
crossref_primary_10_1007_s42235_022_00288_9
crossref_primary_10_1007_s44443_025_00184_2
crossref_primary_10_1007_s12652_022_03908_8
crossref_primary_10_1007_s00521_023_08370_x
crossref_primary_10_1007_s10586_024_04503_6
crossref_primary_10_1007_s11518_024_5627_7
crossref_primary_10_1016_j_asoc_2024_112145
crossref_primary_10_1007_s10489_024_05331_2
crossref_primary_10_1007_s40747_024_01668_w
crossref_primary_10_1080_00051144_2021_2014035
crossref_primary_10_1109_ACCESS_2024_3495983
crossref_primary_10_1007_s00521_024_10523_5
crossref_primary_10_1016_j_jss_2023_111632
crossref_primary_10_1155_2023_4577581
crossref_primary_10_1007_s10489_022_04115_w
crossref_primary_10_1007_s10489_022_03726_7
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_3390_electronics14061198
Cites_doi 10.1016/j.infsof.2015.03.008
10.1016/j.ins.2019.05.038
10.1520/JTE20170461
10.1007/978-3-030-12127-3
10.1007/978-3-319-96151-4_3
10.1109/SSBSE.2009.21
10.1007/s00362-016-0748-9
10.1016/j.cad.2010.12.015
10.1007/s10115-018-1216-8
10.1016/S0950-5849(01)00194-X
10.1016/j.chaos.2019.04.040
10.1016/j.matcom.2018.12.008
10.1080/03610926.2017.1295160
10.1007/s10044-017-0626-7
10.1080/03610926.2014.960584
10.1007/s10515-016-0200-3
10.1145/2576768.2598334
10.1007/11730095_17
10.1145/2537853
10.1145/1276958.1277179
10.1016/j.amc.2014.11.093
10.1080/00949655.2019.1680675
10.1007/s11042-018-5840-9
10.1049/iet-gtd.2018.5812
10.1504/IJBIC.2018.094616
10.1109/RE.2016.7
10.3233/JIFS-171727
10.1007/s00766-009-0075-y
10.1016/j.jss.2019.06.097
10.1140/epjp/s13360-020-00158-5
10.1016/j.dsp.2018.07.004
10.1109/SSBSE.2010.18
10.1080/03610926.2018.1472776
10.1109/CONSEG.2012.6349487
10.1109/RE.2018.00-56
10.1016/j.knosys.2015.03.012
10.1109/CEC.2017.7969300
10.1109/ACCESS.2018.2875122
10.1109/SSBSE.2010.16
10.1016/j.swevo.2019.03.004
10.1016/j.infsof.2011.02.001
10.1007/s00766-020-00328-y
10.1109/COMST.2017.2698366
10.1016/j.advengsoft.2013.12.007
10.1142/S0219622018500153
10.1016/j.neucom.2017.04.053
10.1109/TCYB.2016.2550502
10.17485/ijst/2016/v9i34/95638
10.1145/2576768.2598309
10.1016/j.eswa.2015.10.039
10.1109/TSE.2011.92
10.1016/j.advengsoft.2016.01.008
10.1109/CEC.2013.6557955
10.1016/j.scitotenv.2019.01.204
10.1016/j.cogsys.2020.04.001
10.1016/j.infsof.2003.07.002
10.1007/s10489-018-01397-x
10.1016/j.engappai.2015.04.002
10.3390/sym11060820
10.18178/ijmlc.2019.9.5.840
10.1016/j.neucom.2015.06.083
10.1145/3196831
10.1109/TEVC.2014.2308305
10.1007/s10489-018-1197-z
10.1080/03610926.2017.1343847
10.1109/4235.996017
10.1007/978-3-319-30282-9_1
10.1109/TEVC.2017.2749619
10.1177/0008068317732196
10.1080/00949655.2019.1615489
10.1016/j.swevo.2019.05.007
10.1016/j.inffus.2018.08.002
10.1007/s10489-018-1332-x
10.1007/s10664-013-9287-3
10.3390/computers7040058
10.1145/2792984
10.3390/axioms8020038
10.1016/j.apenergy.2017.10.031
10.1007/s11203-018-9189-5
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-02018-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 5387
ExternalDocumentID 10_1007_s10489_020_02018_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-6528d2dfb7ea0f6cfdfeeb18698923c77e8b1fc242c75248f532b5ec34c2ff063
IEDL.DBID RSV
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606299400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:52:08 EST 2025
Sat Nov 29 05:33:22 EST 2025
Tue Nov 18 22:06:30 EST 2025
Fri Feb 21 02:48:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Next release problem
Fairness quality indicator
Whale optimization algorithm
Grey wolf optimizer
Uncertainty size
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6528d2dfb7ea0f6cfdfeeb18698923c77e8b1fc242c75248f532b5ec34c2ff063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2549837727
PQPubID 326365
PageCount 30
ParticipantIDs proquest_journals_2549837727
crossref_citationtrail_10_1007_s10489_020_02018_2
crossref_primary_10_1007_s10489_020_02018_2
springer_journals_10_1007_s10489_020_02018_2
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Durillo J J, Zhang Y, Alba E, Nebro A J (2009) A study of the multi-objective next release problem. In search based software engineering, 2009 1st international symposium on (pp. 49-58). IEEE
GharehchopoghFSGholizadehHA comprehensive survey: whale optimization algorithm and its applicationsSwarm Evol Comput201948124
TianYChengRZhangXChengFJinYAn indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatilityIEEE Trans Evol Comput2018224609622
AlrezaamiriHEbrahimnejadAMotameniHParallel multi-objective artificial bee colony algorithm for software requirement optimizationRequir Eng20202536338010.1007/s00766-020-00328-y
El AzizMAEweesAAHassanienAEMudhshMXiongSHassanienAOlivaDMulti-objective whale optimization algorithm for multilevel Thresholding segmentationAdvances in soft computing and machine learning in image processing Studies in computational intelligence, vol 7302018ChamSpringer
AbbasiARMahmoudiMRAvazzadehZDiagnosis and clustering of power transformer winding fault types by cross-correlation and clustering analysis of FRA resultsIET Gener Transm Distrib2018121943014309
ZhangYHarmanMFinkelsteinAMansouriSAComparing the performance of metaheuristics for the analysis of multi-stakeholder tradeoffs in requirements optimisationInf Softw Technol2011537761773
YasrebiMEskandar-BaghbanAParvinHMohammadpourMOptimisation inspiring from behaviour of raining in nature: droplet optimisation algorithmInt J Bio Inspired Comput2018123152163
Zhang Y, Harman M, Mansouri S A (2007) The multi-objective next release problem. In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp. 1129–1137). ACM
Schott J R (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s Thesis, Department of Aeronautics and Astronautics
ParvinHNejatianSMohamadpourMExplicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic environmentsAppl Intell2018481143174337
ChoJHWangYChenRChanKSSwamiAA survey on modeling and optimizing multi-objective systemsIEEE Commun Surv Tutorials201719318671901
Maleki M, Contreras-Reyes JE, Mahmoudi MR (2019) Robust mixture modeling based on two-piece scale mixtures of normal family. Axioms 8(2):38
MalekiMMahmoudiMRTwo-piece location-scale distributions based on scale mixtures of normal familyCommun Stat Theory and Methods20174624123561236937408711384.62068
MahmoudiMRMahmoudiMNahavandiETesting the difference between two independent regression modelsCommun Stat Theory Methods201645216284628935361741349.62049
MalekiMWraithDMahmoudiMRContreras-ReyesJEAsymmetric heavy-tailed vector auto-regressive processes with application to financial dataJ Stat Comput Simul2020902324340403881007194288
MalekiMArellano-ValleRBDeyDKMahmoudiMRJalaliSMJA Bayesian approach to robust skewed autoregressive processesCalcutta Stat Assoc Bull20176921651823746983
Zhang Y, Harman M (2010) Search based optimization of requirements interaction management. In 2nd international symposium on search based software engineering (pp. 47-56). IEEE
ZhangXTianYChengRJinYAn efficient approach to nondominated sorting for evolutionary multiobjective optimizationIEEE Trans Evol Comput2014192201213
Soltani AR, Nematollahi AR, Mahmoudi MR (2019) On the asymptotic distribution of the periodograms for the discrete time harmonizable simple processes. Stat Infer Stoch Process 22(2):307–322
BagheriniaAMinaei-BidgoliBHossinzadehMParvinHElite fuzzy clustering ensemble based on clustering diversity and quality measuresAppl Intell201949517241747
EmaryEZawbaaHMHassanienAEBinary grey wolf optimization approaches for feature selectionNeurocomputing2016172371381
FinkelsteinAHarmanMMansouriSARenJZhangYA search based approach to fairness analysis in requirement assignments to aid negotiation, mediation and decision-makingRequir Eng2009144231245
Puchinger J, Raidl G R, Pferschy U (2006) The core concept for the multidimensional knapsack problem. In European conference on evolutionary computation in combinatorial optimization (pp. 195-208). Springer, Berlin, Heidelberg
HeydariMHAtanganaAAvazzadehZMahmoudiMRAn operational matrix method for nonlinear variable-order time fractional reaction–diffusion equation involving Mittag-Leffler kernelThe Europ Phys J Plus20201352119
MojaradMNejatianSParvinHMohammadpoorMA fuzzy clustering ensemble based on cluster clustering and iterative fusion of base clustersAppl Intell201949725672581
CaiXHuMGongDGuoYNZhangYFanZHuangYA decomposition-based coevolutionary multiobjective local search for combinatorial multiobjective optimizationSwarm Evol Comput201949178193
TooJAbdullahAMohd SaadNMohd AliNTeeWA new competitive binary Grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058
Aydemir F B, Dalpiaz F, Brinkkemper S, Giorgini P, Mylopoulos J (2018) The next release problem revisited: a new avenue for goal models. In 2018 IEEE 26th international requirements engineering conference (RE) (pp. 5-16). IEEE
WangJDuPNiuTYangWA novel hybrid system based on a new proposed algorithm—multi-objective whale optimization algorithm for wind speed forecastingAppl Energy2017208344360
Jalali S M J, Ahmadian S, Khosravi A, Mirjalili S, Mahmoudi M R, Nahavandi S (2020) Neuroevolution-based autonomous robot navigation: a comparative study. Cogn Syst Res
JengharaMMEbrahimpour-KomlehHParvinHDynamic protein-protein interaction networks construction using firefly algorithmPattern Anal Applic2018214106710813861340
GengJYingSJiaXZhangTLiuXGuoLXuanJSupporting many-objective software requirements decision: an exploratory study on the next release problemIEEE Access201866054760558
PanJJMahmoudiMRBaleanuDMalekiMOn comparing and classifying several independent linear and non-linear regression models with symmetric errorsSymmetry2019116820
DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput200262182197
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
Zhang Y, Harman M, Ochoa G, Ruhe G, Brinkkemper S (2018) An empirical study of Meta- and hyper-heuristic search for multi-objective release planning. ACM trans Softw Eng Methodol 27, 1, article 3 (June 2018), 32. DOI: https://doi.org/10.1145/3196831
Li Y, Yue T, Ali S, Zhang L (2017) A multi-objective and cost-aware optimization of requirements assignment for review. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 89-96). IEEE
NejatianSRezaieVParvinHPirbonyehMBagherifardKYusofSKSAn innovative linear unsupervised space adjustment by keeping low-level spatial data structureKnowl Inf Syst2019592437464
FarisHAl-ZoubiAMHeidariAAAljarahIMafarjaMHassonahMAFujitaHAn intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networksInf Fusion2019486783
NematollahiARSoltaniARMahmoudiMRPeriodically correlated modeling by means of the periodograms asymptotic distributionsStat Pap20175841267127837209611416.62518
Sajjad U, Hanif M Q (2010) Issues and Challenges of Requirement Elicitation in Large Web Projects (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3216
Chaves-GonzálezJMPerez-ToledanoMANavasaATeaching learning based optimization with Pareto tournament for the multiobjective software requirements selectionEng Appl Artif Intell20154389101
TaradehMMafarjaMHeidariAAFarisHAljarahIMirjaliliSFujitaHAn evolutionary gravitational search-based feature selectionInf Sci2019497219239
Chaves-GonzálezJMPérez-ToledanoMADifferential evolution with Pareto tournament for the multi-objective next release problemAppl Math Comput20152521313330508310.1016/j.amc.2014.11.0931338.90367
VeerapenNOchoaGHarmanMBurkeEKAn integer linear programming approach to the single and bi-objective next release problemInf Softw Technol201565113
Almeida J C, Pereira F D C, Reis M V, Piva B (2018) The next release problem: complexity, exact algorithms and computations. In international symposium on combinatorial optimization (pp. 26-38). Springer, Cham
BagnallAJRayward-SmithVJWhittleyIMThe next release problemInf Softw Technol20014314883890
XuanJJiangHRenZLuoZSolving the large-scale next release problem with a backbone-based multilevel algorithmIEEE Trans Softw Eng201238511951212
Domínguez-RíosMÁChicanoFAlbaEdel ÁguilaIdel SagradoJEfficient anytime algorithms to solve the bi-objective next release problemJ Syst Softw2019156217231
MirjaliliSSaremiSMirjaliliSMCoelhoLDSMulti-objective grey wolf optimizer: a novel algorithm for multi-criterion optimizationExpert Syst Appl201647106119
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing2017260302312
ZhangYFinkelsteinAHarmanMPaechBRollandCSearch Based Requirements Optimisation: Existing Work and ChallengesRequirements Engineering: Foundation for Software Quality REFSQ 2008 Lecture notes in computer science, vol 50252008Berlin, HeidelbergSpringer
Pitangueira A M, Tonella P, Susi A, Maciel R S, Barros M (2016) Risk-aware multi-stakeholder next release planning using multi-objective optimization. In international working conference on requirements engineering: Foundation for Software Quality (pp. 3-18). Springer, Cham
Kumari A C, Srinivas K, Gupta M P (2012) Software requirements selection using quantum-inspired multi-objective differential evolution algorithm. In 2012 CSI sixth international conference on software engineering (CONSEG) (pp. 1-8). IEEE
MahmoudiMRHeydariMHAvazzadehZOn the asymptotic distribution for the periodograms of almost periodically correlated (cyclostationary) processesDigit Signal Process201881186197
GreerDRuheGSoftware release planning: an evolutionary and iterative approachInf Softw Technol2004464243253
del Sagrado J, del Aguila I M, Orellana F J (2010) Ant colony optimization for the next release problem: a comparative study. In search ba
M Moradi (2018_CR86) 2018; 17
S Mirjalili (2018_CR17) 2020
Y Zhang (2018_CR30) 2011; 53
X Zhang (2018_CR47) 2014; 19
JJ Pan (2018_CR77) 2019; 11
MM Jenghara (2018_CR85) 2018; 21
MR Mahmoudi (2018_CR79) 2019; 160
H Faris (2018_CR60) 2019; 48
MR Mahmoudi (2018_CR80) 2019; 48
2018_CR61
2018_CR64
A Finkelstein (2018_CR19) 2009; 14
K Deb (2018_CR46) 2002; 6
2018_CR66
A Bagherinia (2018_CR73) 2019; 49
2018_CR21
2018_CR65
AJ Bagnall (2018_CR22) 2001; 43
2018_CR23
2018_CR67
2018_CR26
H Alrezaamiri (2018_CR9) 2020; 25
MR Mahmoudi (2018_CR72) 2016; 45
RV Rao (2018_CR56) 2011; 43
S Mirjalili (2018_CR52) 2016; 95
M Maleki (2018_CR62) 2020; 90
S Mirjalili (2018_CR16) 2014; 69
MH Heydari (2018_CR63) 2020; 135
J Xuan (2018_CR24) 2012; 38
H Parvin (2018_CR75) 2018; 48
N Ranjith (2018_CR28) 2016; 9
J Geng (2018_CR39) 2018; 6
MR Mahmoudi (2018_CR83) 2018; 47
FS Gharehchopogh (2018_CR8) 2019; 48
J Wang (2018_CR13) 2017; 208
H Niu (2018_CR76) 1891; 10
E Emary (2018_CR50) 2016; 172
MR Mahmoudi (2018_CR68) 2018; 81
2018_CR35
MA El Aziz (2018_CR53) 2018
2018_CR34
2018_CR36
M Maleki (2018_CR69) 2017; 46
2018_CR38
J Too (2018_CR51) 2018; 7
S Nejatian (2018_CR88) 2019; 59
2018_CR5
X Cai (2018_CR12) 2019; 49
A Hamdy (2018_CR33) 2019; 9
JH Cho (2018_CR44) 2017; 19
2018_CR7
2018_CR1
D Greer (2018_CR25) 2004; 46
2018_CR2
JM Chaves-González (2018_CR58) 2015; 252
AR Abbasi (2018_CR81) 2018; 12
MR Mahmoudi (2018_CR82) 2018; 47
2018_CR4
JM Chaves-Gonzalez (2018_CR29) 2015; 83
M Mojarad (2018_CR74) 2019; 49
2018_CR40
2018_CR41
CAC Coello (2018_CR6) 2007
2018_CR45
2018_CR48
2018_CR49
AA Araújo (2018_CR37) 2017; 24
MA El Aziz (2018_CR18) 2018; 77
MR Mahmoudi (2018_CR78) 2019; 89
M Maleki (2018_CR71) 2017; 69
N Veerapen (2018_CR11) 2015; 65
M Taradeh (2018_CR59) 2019; 497
H Wang (2018_CR43) 2016; 47
S Mirjalili (2018_CR15) 2016; 47
MM Mafarja (2018_CR14) 2017; 260
JM Chaves-González (2018_CR27) 2015; 43
Y Tian (2018_CR42) 2018; 22
Y Zhang (2018_CR20) 2008
2018_CR55
2018_CR10
MÁ Domínguez-Ríos (2018_CR32) 2019; 156
2018_CR54
2018_CR57
M Harman (2018_CR31) 2014; 23
AR Nematollahi (2018_CR70) 2017; 58
M Yasrebi (2018_CR87) 2018; 12
J del Sagrado (2018_CR3) 2015; 20
MN Omidvar (2018_CR84) 2018; 35
References_xml – reference: Mirjalili S, Dong J S, Lewis A (2020) Nature-inspired optimizers. Springer
– reference: El AzizMAEweesAAHassanienAEMudhshMXiongSHassanienAOlivaDMulti-objective whale optimization algorithm for multilevel Thresholding segmentationAdvances in soft computing and machine learning in image processing Studies in computational intelligence, vol 7302018ChamSpringer
– reference: TooJAbdullahAMohd SaadNMohd AliNTeeWA new competitive binary Grey wolf optimizer to solve the feature selection problem in EMG signals classificationComputers2018745810.3390/computers7040058
– reference: Nebro A J, Durillo J J, Coello C A C (2013) Analysis of leader selection strategies in a multi-objective particle swarm optimizer. In 2013 IEEE congress on evolutionary computation (pp. 3153-3160). IEEE
– reference: CaiXHuMGongDGuoYNZhangYFanZHuangYA decomposition-based coevolutionary multiobjective local search for combinatorial multiobjective optimizationSwarm Evol Comput201949178193
– reference: Pitangueira A M, Tonella P, Susi A, Maciel R S, Barros M (2016) Risk-aware multi-stakeholder next release planning using multi-objective optimization. In international working conference on requirements engineering: Foundation for Software Quality (pp. 3-18). Springer, Cham
– reference: Chaves-GonzálezJMPérez-ToledanoMADifferential evolution with Pareto tournament for the multi-objective next release problemAppl Math Comput20152521313330508310.1016/j.amc.2014.11.0931338.90367
– reference: Jiang H, Zhang J, Xuan J, Ren Z, Hu Y (2010) A hybrid ACO algorithm for the next release problem. In software engineering and data mining (SEDM), 2010 2nd international conference on (pp. 166-171). IEEE
– reference: MahmoudiMROn comparing two dependent linear and nonlinear regression modelsJ Test Eval2018471449458
– reference: NejatianSRezaieVParvinHPirbonyehMBagherifardKYusofSKSAn innovative linear unsupervised space adjustment by keeping low-level spatial data structureKnowl Inf Syst2019592437464
– reference: HarmanMKrinkeJMedina-BuloIPalomo-LozanoFRenJYooSExact scalable sensitivity analysis for the next release problemACM Trans Softw Eng Methodol (TOSEM)2014232193110.1145/2537853
– reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput200262182197
– reference: NematollahiARSoltaniARMahmoudiMRPeriodically correlated modeling by means of the periodograms asymptotic distributionsStat Pap20175841267127837209611416.62518
– reference: YasrebiMEskandar-BaghbanAParvinHMohammadpourMOptimisation inspiring from behaviour of raining in nature: droplet optimisation algorithmInt J Bio Inspired Comput2018123152163
– reference: ChoJHWangYChenRChanKSSwamiAA survey on modeling and optimizing multi-objective systemsIEEE Commun Surv Tutorials201719318671901
– reference: OmidvarMNNejatianSParvinHRezaieVA new natural-inspired continuous optimization approachJ Intell Fuzzy Syst201835332673283
– reference: BagnallAJRayward-SmithVJWhittleyIMThe next release problemInf Softw Technol20014314883890
– reference: Zarei AR, Shabani A, Mahmoudi MR (2019) Comparison of the climate indices based on the relationship between yield loss of rain-fed winter wheat and changes of climate indices using GEE model. Sci Total Environ 661:711–722
– reference: TaradehMMafarjaMHeidariAAFarisHAljarahIMirjaliliSFujitaHAn evolutionary gravitational search-based feature selectionInf Sci2019497219239
– reference: AraújoAAPaixaoMYeltsinIDantasASouzaJAn architecture based on interactive optimization and machine learning applied to the next release problemAutom Softw Eng2017243623671
– reference: del Sagrado J, del Aguila I M, Orellana F J (2010) Ant colony optimization for the next release problem: a comparative study. In search based software engineering (SSBSE), 2010 second international symposium on (pp. 67-76). IEEE
– reference: FarisHAl-ZoubiAMHeidariAAAljarahIMafarjaMHassonahMAFujitaHAn intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networksInf Fusion2019486783
– reference: del SagradoJDel AguilaIMOrellanaFJMulti-objective ant colony optimization for requirements selectionEmpir Softw Eng2015203577610
– reference: MoradiMNejatianSParvinHRezaieVCMCABC: clustering and memory-based chaotic artificial bee Colony dynamic optimization algorithmInt J Inf Technol Decis Mak201817410071046
– reference: Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Proc evolutionary methods for design optimization and control with applications to industrial problems (pp. 95-100)
– reference: AlrezaamiriHEbrahimnejadAMotameniHParallel multi-objective artificial bee colony algorithm for software requirement optimizationRequir Eng20202536338010.1007/s00766-020-00328-y
– reference: EmaryEZawbaaHMHassanienAEBinary grey wolf optimization approaches for feature selectionNeurocomputing2016172371381
– reference: Yue T, Ali S (2014) Applying search algorithms for optimizing stakeholders familiarity and balancing workload in requirements assignment. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (pp. 1295–1302). ACM
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: ParvinHNejatianSMohamadpourMExplicit memory based ABC with a clustering strategy for updating and retrieval of memory in dynamic environmentsAppl Intell2018481143174337
– reference: HamdyAMohamedAAGreedy binary particle swarm optimization for multi-objective constrained next release problemInt J Mach Learn Comput201995561568
– reference: Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48, 1, article 13, 35. DOI: https://doi.org/10.1145/2792984
– reference: Zhang Y, Harman M, Ochoa G, Ruhe G, Brinkkemper S (2018) An empirical study of Meta- and hyper-heuristic search for multi-objective release planning. ACM trans Softw Eng Methodol 27, 1, article 3 (June 2018), 32. DOI: https://doi.org/10.1145/3196831
– reference: XuanJJiangHRenZLuoZSolving the large-scale next release problem with a backbone-based multilevel algorithmIEEE Trans Softw Eng201238511951212
– reference: GreerDRuheGSoftware release planning: an evolutionary and iterative approachInf Softw Technol2004464243253
– reference: WangHJinYYaoXDiversity assessment in many-objective optimizationIEEE Trans Cybern201647615101522
– reference: Zhang Y, Harman M, Mansouri S A (2007) The multi-objective next release problem. In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp. 1129–1137). ACM
– reference: MalekiMArellano-ValleRBDeyDKMahmoudiMRJalaliSMJA Bayesian approach to robust skewed autoregressive processesCalcutta Stat Assoc Bull20176921651823746983
– reference: El AzizMAEweesAAHassanienAEMulti-objective whale optimization algorithm for content-based image retrievalMultimed Tools Appl201877192613526172
– reference: Chaves-GonzalezJMPerez-ToledanoMANavasaASoftware requirement optimization using a multiobjective swarm intelligence evolutionary algorithmKnowl-Based Syst201583105115
– reference: Aydemir F B, Dalpiaz F, Brinkkemper S, Giorgini P, Mylopoulos J (2018) The next release problem revisited: a new avenue for goal models. In 2018 IEEE 26th international requirements engineering conference (RE) (pp. 5-16). IEEE
– reference: MalekiMMahmoudiMRTwo-piece location-scale distributions based on scale mixtures of normal familyCommun Stat Theory and Methods20174624123561236937408711384.62068
– reference: Puchinger J, Raidl G R, Pferschy U (2006) The core concept for the multidimensional knapsack problem. In European conference on evolutionary computation in combinatorial optimization (pp. 195-208). Springer, Berlin, Heidelberg
– reference: MahmoudiMRMahmoudiMPakAOn comparing, classifying and clustering several dependent regression modelsJ Stat Comput Simul2019891222802292395709307193838
– reference: VeerapenNOchoaGHarmanMBurkeEKAn integer linear programming approach to the single and bi-objective next release problemInf Softw Technol201565113
– reference: MafarjaMMMirjaliliSHybrid whale optimization algorithm with simulated annealing for feature selectionNeurocomputing2017260302312
– reference: JengharaMMEbrahimpour-KomlehHParvinHDynamic protein-protein interaction networks construction using firefly algorithmPattern Anal Applic2018214106710813861340
– reference: MahmoudiMRHeydariMHRoohiRA new method to compare the spectral densities of two independent periodically correlated time seriesMath Comput Simul2019160103110392678107316659
– reference: FinkelsteinAHarmanMMansouriSARenJZhangYA search based approach to fairness analysis in requirement assignments to aid negotiation, mediation and decision-makingRequir Eng2009144231245
– reference: MirjaliliSSaremiSMirjaliliSMCoelhoLDSMulti-objective grey wolf optimizer: a novel algorithm for multi-criterion optimizationExpert Syst Appl201647106119
– reference: TianYChengRZhangXChengFJinYAn indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatilityIEEE Trans Evol Comput2018224609622
– reference: Li L, Harman M, Letier E, Zhang Y (2014) Robust next release problem: Handling uncertainty during optimization. In Proceedings of the ACM 2014 annual Conference on Genetic and Evolutionary Computation (pp. 1247–1254)
– reference: MalekiMWraithDMahmoudiMRContreras-ReyesJEAsymmetric heavy-tailed vector auto-regressive processes with application to financial dataJ Stat Comput Simul2020902324340403881007194288
– reference: MahmoudiMRMahmoudiMNahavandiETesting the difference between two independent regression modelsCommun Stat Theory Methods201645216284628935361741349.62049
– reference: WangJDuPNiuTYangWA novel hybrid system based on a new proposed algorithm—multi-objective whale optimization algorithm for wind speed forecastingAppl Energy2017208344360
– reference: MirjaliliSAljarahIMafarjaMHeidariAAFarisHMirjaliliSSong DongJLewisAGrey wolf optimizer: theory, literature review, and application in computational fluid dynamics problemsNature-inspired optimizers. Studies in computational intelligence, vol 8112020ChamSpringer
– reference: MahmoudiMRHeydariMHAvazzadehZOn the asymptotic distribution for the periodograms of almost periodically correlated (cyclostationary) processesDigit Signal Process201881186197
– reference: Kumari A C, Srinivas K, Gupta M P (2012) Software requirements selection using quantum-inspired multi-objective differential evolution algorithm. In 2012 CSI sixth international conference on software engineering (CONSEG) (pp. 1-8). IEEE
– reference: Sajjad U, Hanif M Q (2010) Issues and Challenges of Requirement Elicitation in Large Web Projects (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3216
– reference: Jalali S M J, Ahmadian S, Khosravi A, Mirjalili S, Mahmoudi M R, Nahavandi S (2020) Neuroevolution-based autonomous robot navigation: a comparative study. Cogn Syst Res
– reference: Heydari MH, Avazzadeh Z, Mahmoudi MR (2019) Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion. Chaos, Solitons & Fractals 124:105–124. https://doi.org/10.1016/j.chaos.2019.04.040
– reference: BagheriniaAMinaei-BidgoliBHossinzadehMParvinHElite fuzzy clustering ensemble based on clustering diversity and quality measuresAppl Intell201949517241747
– reference: GengJYingSJiaXZhangTLiuXGuoLXuanJSupporting many-objective software requirements decision: an exploratory study on the next release problemIEEE Access201866054760558
– reference: Li L (2016) Exact analysis for next release problem. In requirements engineering conference (RE), 2016 IEEE 24th international (pp. 438-443). IEEE
– reference: MahmoudiMRHeydariMHAvazzadehZTesting the difference between spectral densities of two independent periodically correlated (cyclostationary) time series modelsCommun Stat Theory Methods2019489232023283962119
– reference: Soltani AR, Nematollahi AR, Mahmoudi MR (2019) On the asymptotic distribution of the periodograms for the discrete time harmonizable simple processes. Stat Infer Stoch Process 22(2):307–322
– reference: AbbasiARMahmoudiMRAvazzadehZDiagnosis and clustering of power transformer winding fault types by cross-correlation and clustering analysis of FRA resultsIET Gener Transm Distrib2018121943014309
– reference: Durillo J J, Zhang Y, Alba E, Nebro A J (2009) A study of the multi-objective next release problem. In search based software engineering, 2009 1st international symposium on (pp. 49-58). IEEE
– reference: CoelloCACLamontGBVan VeldhuizenDAEvolutionary algorithms for solving multi-objective problems (Vol. 5)2007New YorkSpringer1142.90029
– reference: ZhangYFinkelsteinAHarmanMPaechBRollandCSearch Based Requirements Optimisation: Existing Work and ChallengesRequirements Engineering: Foundation for Software Quality REFSQ 2008 Lecture notes in computer science, vol 50252008Berlin, HeidelbergSpringer
– reference: Li Y, Yue T, Ali S, Zhang L (2017) A multi-objective and cost-aware optimization of requirements assignment for review. In 2017 IEEE congress on evolutionary computation (CEC) (pp. 89-96). IEEE
– reference: NiuHKhozouieNParvinHAlinejad-RoknyHBeheshtiAMahmoudiMRAn Ensemble of Locally Reliable Cluster SolutionsAppl Sci18911052020
– reference: GharehchopoghFSGholizadehHA comprehensive survey: whale optimization algorithm and its applicationsSwarm Evol Comput201948124
– reference: Schott J R (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s Thesis, Department of Aeronautics and Astronautics
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw2014694661
– reference: Domínguez-RíosMÁChicanoFAlbaEdel ÁguilaIdel SagradoJEfficient anytime algorithms to solve the bi-objective next release problemJ Syst Softw2019156217231
– reference: Zhang Y, Harman M (2010) Search based optimization of requirements interaction management. In 2nd international symposium on search based software engineering (pp. 47-56). IEEE
– reference: RanjithNMarimuthuAA multi objective teacher-learning-artificial bee Colony (MOTLABC) optimization for software requirements selectionIndian J Sci Technol2016934910.17485/ijst/2016/v9i34/95638
– reference: MahmoudiMRMalekiMPakATesting the equality of two independent regression modelsCommun Stat Theory Methods20184712291929263783689
– reference: HeydariMHAtanganaAAvazzadehZMahmoudiMRAn operational matrix method for nonlinear variable-order time fractional reaction–diffusion equation involving Mittag-Leffler kernelThe Europ Phys J Plus20201352119
– reference: Maleki M, Contreras-Reyes JE, Mahmoudi MR (2019) Robust mixture modeling based on two-piece scale mixtures of normal family. Axioms 8(2):38
– reference: RaoRVSavsaniVJVakhariaDPTeaching–learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des2011433303315
– reference: Almeida J C, Pereira F D C, Reis M V, Piva B (2018) The next release problem: complexity, exact algorithms and computations. In international symposium on combinatorial optimization (pp. 26-38). Springer, Cham
– reference: Chaves-GonzálezJMPerez-ToledanoMANavasaATeaching learning based optimization with Pareto tournament for the multiobjective software requirements selectionEng Appl Artif Intell20154389101
– reference: ZhangYHarmanMFinkelsteinAMansouriSAComparing the performance of metaheuristics for the analysis of multi-stakeholder tradeoffs in requirements optimisationInf Softw Technol2011537761773
– reference: MojaradMNejatianSParvinHMohammadpoorMA fuzzy clustering ensemble based on cluster clustering and iterative fusion of base clustersAppl Intell201949725672581
– reference: PanJJMahmoudiMRBaleanuDMalekiMOn comparing and classifying several independent linear and non-linear regression models with symmetric errorsSymmetry2019116820
– reference: ZhangXTianYChengRJinYAn efficient approach to nondominated sorting for evolutionary multiobjective optimizationIEEE Trans Evol Comput2014192201213
– volume: 65
  start-page: 1
  year: 2015
  ident: 2018_CR11
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2015.03.008
– volume: 497
  start-page: 219
  year: 2019
  ident: 2018_CR59
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.038
– volume: 47
  start-page: 449
  issue: 1
  year: 2018
  ident: 2018_CR82
  publication-title: J Test Eval
  doi: 10.1520/JTE20170461
– ident: 2018_CR7
  doi: 10.1007/978-3-030-12127-3
– ident: 2018_CR5
  doi: 10.1007/978-3-319-96151-4_3
– ident: 2018_CR1
  doi: 10.1109/SSBSE.2009.21
– ident: 2018_CR55
– volume: 58
  start-page: 1267
  issue: 4
  year: 2017
  ident: 2018_CR70
  publication-title: Stat Pap
  doi: 10.1007/s00362-016-0748-9
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 2018_CR56
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 59
  start-page: 437
  issue: 2
  year: 2019
  ident: 2018_CR88
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1216-8
– volume-title: Requirements Engineering: Foundation for Software Quality REFSQ 2008 Lecture notes in computer science, vol 5025
  year: 2008
  ident: 2018_CR20
– volume: 43
  start-page: 883
  issue: 14
  year: 2001
  ident: 2018_CR22
  publication-title: Inf Softw Technol
  doi: 10.1016/S0950-5849(01)00194-X
– ident: 2018_CR65
  doi: 10.1016/j.chaos.2019.04.040
– volume: 160
  start-page: 103
  year: 2019
  ident: 2018_CR79
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2018.12.008
– volume: 46
  start-page: 12356
  issue: 24
  year: 2017
  ident: 2018_CR69
  publication-title: Commun Stat Theory and Methods
  doi: 10.1080/03610926.2017.1295160
– volume: 21
  start-page: 1067
  issue: 4
  year: 2018
  ident: 2018_CR85
  publication-title: Pattern Anal Applic
  doi: 10.1007/s10044-017-0626-7
– volume: 45
  start-page: 6284
  issue: 21
  year: 2016
  ident: 2018_CR72
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2014.960584
– volume: 24
  start-page: 623
  issue: 3
  year: 2017
  ident: 2018_CR37
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-016-0200-3
– ident: 2018_CR21
  doi: 10.1145/2576768.2598334
– ident: 2018_CR49
  doi: 10.1007/11730095_17
– volume: 23
  start-page: 19
  issue: 2
  year: 2014
  ident: 2018_CR31
  publication-title: ACM Trans Softw Eng Methodol (TOSEM)
  doi: 10.1145/2537853
– ident: 2018_CR10
  doi: 10.1145/1276958.1277179
– volume-title: Nature-inspired optimizers. Studies in computational intelligence, vol 811
  year: 2020
  ident: 2018_CR17
  doi: 10.1007/978-3-030-12127-3
– volume: 252
  start-page: 13
  year: 2015
  ident: 2018_CR58
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2014.11.093
– volume: 90
  start-page: 324
  issue: 2
  year: 2020
  ident: 2018_CR62
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2019.1680675
– volume: 77
  start-page: 26135
  issue: 19
  year: 2018
  ident: 2018_CR18
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-5840-9
– volume: 12
  start-page: 4301
  issue: 19
  year: 2018
  ident: 2018_CR81
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2018.5812
– volume: 12
  start-page: 152
  issue: 3
  year: 2018
  ident: 2018_CR87
  publication-title: Int J Bio Inspired Comput
  doi: 10.1504/IJBIC.2018.094616
– ident: 2018_CR48
  doi: 10.1109/RE.2016.7
– volume: 35
  start-page: 3267
  issue: 3
  year: 2018
  ident: 2018_CR84
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-171727
– volume: 14
  start-page: 231
  issue: 4
  year: 2009
  ident: 2018_CR19
  publication-title: Requir Eng
  doi: 10.1007/s00766-009-0075-y
– volume: 156
  start-page: 217
  year: 2019
  ident: 2018_CR32
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2019.06.097
– volume-title: Advances in soft computing and machine learning in image processing Studies in computational intelligence, vol 730
  year: 2018
  ident: 2018_CR53
– ident: 2018_CR2
– volume: 135
  start-page: 1
  issue: 2
  year: 2020
  ident: 2018_CR63
  publication-title: The Europ Phys J Plus
  doi: 10.1140/epjp/s13360-020-00158-5
– volume: 81
  start-page: 186
  year: 2018
  ident: 2018_CR68
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2018.07.004
– ident: 2018_CR23
  doi: 10.1109/SSBSE.2010.18
– volume: 48
  start-page: 2320
  issue: 9
  year: 2019
  ident: 2018_CR80
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2018.1472776
– ident: 2018_CR35
  doi: 10.1109/CONSEG.2012.6349487
– ident: 2018_CR34
  doi: 10.1109/RE.2018.00-56
– volume: 83
  start-page: 105
  year: 2015
  ident: 2018_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.03.012
– ident: 2018_CR41
  doi: 10.1109/CEC.2017.7969300
– volume: 6
  start-page: 60547
  year: 2018
  ident: 2018_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2875122
– ident: 2018_CR4
  doi: 10.1109/SSBSE.2010.16
– volume: 10
  start-page: 2020
  issue: 5
  year: 1891
  ident: 2018_CR76
  publication-title: Appl Sci
– volume: 48
  start-page: 1
  year: 2019
  ident: 2018_CR8
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.03.004
– volume: 53
  start-page: 761
  issue: 7
  year: 2011
  ident: 2018_CR30
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2011.02.001
– volume: 25
  start-page: 363
  year: 2020
  ident: 2018_CR9
  publication-title: Requir Eng
  doi: 10.1007/s00766-020-00328-y
– volume: 19
  start-page: 1867
  issue: 3
  year: 2017
  ident: 2018_CR44
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2017.2698366
– volume: 69
  start-page: 46
  year: 2014
  ident: 2018_CR16
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 17
  start-page: 1007
  issue: 4
  year: 2018
  ident: 2018_CR86
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/S0219622018500153
– volume: 260
  start-page: 302
  year: 2017
  ident: 2018_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 47
  start-page: 1510
  issue: 6
  year: 2016
  ident: 2018_CR43
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2550502
– volume: 9
  start-page: 9
  issue: 34
  year: 2016
  ident: 2018_CR28
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i34/95638
– ident: 2018_CR40
  doi: 10.1145/2576768.2598309
– volume: 47
  start-page: 106
  year: 2016
  ident: 2018_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.10.039
– volume: 38
  start-page: 1195
  issue: 5
  year: 2012
  ident: 2018_CR24
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2011.92
– volume: 95
  start-page: 51
  year: 2016
  ident: 2018_CR52
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 2018_CR57
  doi: 10.1109/CEC.2013.6557955
– ident: 2018_CR67
  doi: 10.1016/j.scitotenv.2019.01.204
– ident: 2018_CR61
  doi: 10.1016/j.cogsys.2020.04.001
– volume: 46
  start-page: 243
  issue: 4
  year: 2004
  ident: 2018_CR25
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2003.07.002
– volume: 49
  start-page: 2567
  issue: 7
  year: 2019
  ident: 2018_CR74
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01397-x
– volume: 43
  start-page: 89
  year: 2015
  ident: 2018_CR27
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2015.04.002
– volume: 11
  start-page: 820
  issue: 6
  year: 2019
  ident: 2018_CR77
  publication-title: Symmetry
  doi: 10.3390/sym11060820
– volume: 9
  start-page: 561
  issue: 5
  year: 2019
  ident: 2018_CR33
  publication-title: Int J Mach Learn Comput
  doi: 10.18178/ijmlc.2019.9.5.840
– volume: 172
  start-page: 371
  year: 2016
  ident: 2018_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: 2018_CR36
  doi: 10.1145/3196831
– volume: 19
  start-page: 201
  issue: 2
  year: 2014
  ident: 2018_CR47
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2014.2308305
– volume: 48
  start-page: 4317
  issue: 11
  year: 2018
  ident: 2018_CR75
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1197-z
– volume: 47
  start-page: 2919
  issue: 12
  year: 2018
  ident: 2018_CR83
  publication-title: Commun Stat Theory Methods
  doi: 10.1080/03610926.2017.1343847
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 2018_CR46
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 2018_CR38
  doi: 10.1007/978-3-319-30282-9_1
– volume: 22
  start-page: 609
  issue: 4
  year: 2018
  ident: 2018_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2749619
– ident: 2018_CR54
– volume: 69
  start-page: 165
  issue: 2
  year: 2017
  ident: 2018_CR71
  publication-title: Calcutta Stat Assoc Bull
  doi: 10.1177/0008068317732196
– volume: 89
  start-page: 2280
  issue: 12
  year: 2019
  ident: 2018_CR78
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2019.1615489
– volume: 49
  start-page: 178
  year: 2019
  ident: 2018_CR12
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.05.007
– ident: 2018_CR26
– volume: 48
  start-page: 67
  year: 2019
  ident: 2018_CR60
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2018.08.002
– volume: 49
  start-page: 1724
  issue: 5
  year: 2019
  ident: 2018_CR73
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1332-x
– volume: 20
  start-page: 577
  issue: 3
  year: 2015
  ident: 2018_CR3
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-013-9287-3
– volume: 7
  start-page: 58
  issue: 4
  year: 2018
  ident: 2018_CR51
  publication-title: Computers
  doi: 10.3390/computers7040058
– volume-title: Evolutionary algorithms for solving multi-objective problems (Vol. 5)
  year: 2007
  ident: 2018_CR6
– ident: 2018_CR45
  doi: 10.1145/2792984
– ident: 2018_CR66
  doi: 10.3390/axioms8020038
– volume: 208
  start-page: 344
  year: 2017
  ident: 2018_CR13
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.031
– ident: 2018_CR64
  doi: 10.1007/s11203-018-9189-5
SSID ssj0003301
Score 2.384235
Snippet Selecting a set of requirements to implement in the next software release is an NP-Hard problem known as NRP. We propose multi-objective versions of grey wolf...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5358
SubjectTerms Artificial Intelligence
Computer Science
Evolutionary algorithms
Indicators
Machines
Manufacturing
Mechanical Engineering
Multiple objective analysis
Optimization algorithms
Pareto optimization
Processes
Uncertainty
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60evBifeKbOXjTxWbz7ElELJ5EUKG30OzDKm2iNir9Wf5DZzabBgV78ZBTsruBmZ33zMfYcaC0FEaEPMwGMTookeRdFUdcSp8GVetOoAILNhHf3CT9fvfWBdwmrqyylolWUKtCUoz8jBwZdKZQ3Z6_vHJCjaLsqoPQWGRLNCXBs6V7dzNJjL66RcxDH4NHUbfvmmZc61xAxULoPOHjIbf8VEyNtfkrQWr1Tq_93z9eY6vO4oSLikXW2YLON1i7RnMAd7k32ZftxeVF9lzJQPgcovKAAmXK2DVrwmD0iCeUwzEMcgXjXwvQdZ_CZzEy9SLcHm1iQPamsAXkqAiAQFpQc4JDsgEKBEPTugWUYCLxa09ApVuVLJRTqNo_p0BJdkmhgskWe-hd3V9ecwfowCXe9JJHoUiUUCaL9aBjImmU0agrEgKxFL6MY51knpFoNcg4FEFiQl9koZZ-gPxk0JjaZq28yPUOgwglUegHyhMdE_hadVFuZeTLRpkQKhG7zKupmUo37ZxAN0ZpM6eZOCBF6qeWA1JcczJb81LN-pj79UFN9tTd-0na0HyXndaM07z-e7e9-bvtsxVBxTS28vCAtcq3d33IluVH-TR5O7Jc_w1ONgyN
  priority: 102
  providerName: ProQuest
Title Multi-objective whale optimization algorithm and multi-objective grey wolf optimizer for solving next release problem with developing fairness and uncertainty quality indicators
URI https://link.springer.com/article/10.1007/s10489-020-02018-2
https://www.proquest.com/docview/2549837727
Volume 51
WOSCitedRecordID wos000606299400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4V6KEX6FO8Gs2BW7tSsn6sc2wRqFJFFEEfaS9WvI9CldgoMaD8LP5hZ9Zr0iJAKgevZNmztjTv3Zn9APZiY7V0MhFJMVaUoKRa9I1KhdYRH1Rtu7GJPdiEGgyy0ag_DE1h87bavd2S9Jb6r2a3mMt7KN2hq0f8XYE1cncZAzYcn3y7sb-UoXucPMosRJr2R6FV5u45_nVHyxjz1rao9zaHG4_7z-ewHqJL_NCIwwt4YsuXsNEiN2BQ5Fdw7ftuRVX8buwdXp2So8CK7Mc0NGbiePKrmp3Vp1MclwantwgoTV_gVTVxLRFNT_EvkijzEgWWZPSRAVnIS2JArUFe9MVlmxbyZhKbWv8FcrBNeUK9wKbVc4G8oa55WWD-Gr4eHnzZ_yQCeIPQpNW1SBOZGWlcoey461LtjLPkFzIGrJSRVspmRc9pihC0SmScuSSSRWJ1FJPsOAqc3sBqWZV2EzAlq5NEsenJrosja_pkowrOW9NCSpPJLei1PMx1ONmcATYm-fJMZuZJTvzIPU9yonl3Q3PenOvx4Nu7rWjkQcfnOafWlN5TALgF71tRWD6-f7bt_3t9B55JLqTxVYe7sFrPLuxbeKov67P5rAMr6vuPDqx9PBgMj-nusxI0HnX3eVQnNA6Tnx2vIX8ADksIlQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXyqcoFJgDnMBi107i7AEhBFSttqw4FGlvYeOPFrSblG5gtX8KiX_IjOM0ohK99cAhp8SO4jy_mbFn_ACeJdYZ6WUq0nKmKUDJjBhZnQljFB9U7QaJTYLYhJ5M8ul09GkDfnW1MJxW2XFiIGpbG14jf8WBDAVTZG7fnHwXrBrFu6udhEYLi7FbryhkW77ef0__97mUux8O3-2JqCogDMGtEVkqcyutL7WbDXxmvPWOCCtnJUWpjNYuL4fekOkyOpVJ7lMly9QZldBHebLo1O8VuJqoXPO8GmtxxvxKBbnlAcU0IstG01ikE0v1Ek5OomCNriGh829D2Hu35zZkg53b3frfRugW3IweNb5tp8Bt2HDVHdjq1Cowktdd-B1qjUVdfms5HlfHZByxJs5cxGJUnM2P6Iua4wXOKouLcw2OCPa4que-a0Tdk8-PNH15WQYrMnTIIjTkGWBU6kFe6Ma-NA15A43NS3gDORVtSkazxra8dY2cRGB4KWR5Dz5fysDdh82qrtwDwIyYNlWJHcqBT5SzI-LlkmP1rJTS5nIbhh16ChNPc2dRkXnRn0PNiCsIbUVAXEFtXpy1OWnPMrnw6Z0OZkXktWXRY2wbXnZA7W__u7eHF_f2FK7vHX48KA72J-NHcENy4lDIstyBzeb0h3sM18zP5uvy9EmYcQhfLhvAfwBGU2rU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NTxsxEB1RqCouBfohKLSdQ3tqLRLvZw5VhaBRESjKoZWiXrZZf0BRsgtkIcrP4tpf1xmvl1WRyo1DDzkldrTe5zd-9owfwLtQGyWtjESUjxMSKLESPZ3EQqmAL6o2nVCHzmwiGQzS0ag3XILfTS0Mp1U2nOiIWpeK98h3WciQmKJwu2t9WsTwoP_5_EKwgxSftDZ2GjVEjsxiTvJt9unwgN71eyn7X77tfxXeYUAogl4l4kimWmqbJ2bcsbGy2hoir5RdFWWgksSkedcqCmMqiWSY2iiQeWRUENIDWoru1O8jWElIY3I64TD6cRsFgsBZL3dI34g47o18wY4v2ws5UYmEG326hNS_g2K70r1zOOtiXn_tfx6tdXjqV9q4V0-NDVgyxTNYa1ws0JPac7hxNciizM9q7sf5KQVNLIlLp75IFceTE3qi6nSK40Lj9E6DE5oOOC8ntmlE3ZMWQJrWvF2DBY0LsjkNrRjQO_ggb4BjW7KGfLDGYcf9Ay026lSNaoF12esCOblA8RbJ7AV8f5CBewnLRVmYTcCYGDgKQt2VHRsGRveIr3PW8HEupU7lFnQbJGXK3_LOZiOTrL2fmtGXEfIyh76M2ny4bXNe33Fy7693Gshlnu9mWYu3LfjYgLb9-t-9vbq_t7fwhHCbHR8OjrZhVXI-kUu-3IHl6vLKvIbH6rr6Nbt84yYfws-Hxu8fTZFz-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+whale+optimization+algorithm+and+multi-objective+grey+wolf+optimizer+for+solving+next+release+problem+with+developing+fairness+and+uncertainty+quality+indicators&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Ghasemi%2C+Mohsen&rft.au=Bagherifard%2C+Karamollah&rft.au=Parvin%2C+Hamid&rft.au=Nejatian%2C+Samad&rft.date=2021-08-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=8&rft.spage=5358&rft.epage=5387&rft_id=info:doi/10.1007%2Fs10489-020-02018-2&rft.externalDocID=10_1007_s10489_020_02018_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon