Mendelian evolutionary theory optimization algorithm

This study presented a new multi-species binary coded algorithm, Mendelian evolutionary theory optimization (METO), inspired by the plant genetics. This framework mainly consists of three concepts: first, the “denaturation” of DNA’s of two different species to produce the hybrid “offspring DNA”. Sec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 24; číslo 19; s. 14345 - 14390
Hlavní autori: Gupta, Neeraj, Khosravy, Mahdi, Patel, Nilesh, Dey, Nilanjan, Mahela, Om Prakash
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This study presented a new multi-species binary coded algorithm, Mendelian evolutionary theory optimization (METO), inspired by the plant genetics. This framework mainly consists of three concepts: first, the “denaturation” of DNA’s of two different species to produce the hybrid “offspring DNA”. Second, the Mendelian evolutionary theory of genetic inheritance, which explains how the dominant and recessive traits appear in two successive generations. Third, the Epimutation , through which organism resist for natural mutation. The above concepts are reconfigured in order to design the binary meta-heuristic evolutionary search technique. Based on this framework, four evolutionary operators—(1) Flipper, (2) Pollination, (3) Breeding, and (4) Epimutation—are created in the binary domain. In this paper, METO is compared with well-known evolutionary and swarm optimizers: (1) binary hybrid GA, (2) bio-geography-based optimization, (3) invasive weed optimization, (4) shuffled frog leap algorithm, (5) teaching–learning-based optimization, (6) cuckoo search, (7) bat algorithm, (8) gravitational search algorithm, (9) covariance matrix adaptation evolution strategy, (10) differential evolution, (11) firefly algorithm and (12) social learning PSO. This comparison is evaluated on 30 and 100 variables benchmark test functions, including noisy, rotated, and hybrid composite functions. Kruskal–Wallis statistical rank-based nonparametric H-test is utilized to determine the statistically significant differences between the output distributions of the optimizer, which are the result of the 100 independent runs. The statistical analysis shows that METO is a significantly better algorithm for complex and multi-modal problems with many local extremes.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-020-05239-2