Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting
Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and disco...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 35; číslo 23; s. 17217 - 17231 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.08.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and discover temporal and spatial characteristics, we propose an attention-based spatial–temporal adaptive dual-graph convolutional network (ASTA-DGCN) for TFF in this paper. Specifically, we employ a spatial–temporal attention module to explore the hidden temporal correlation information of traffic data and the implicit influence of weights among road network nodes and to further capture the dynamic influence of different spatial–temporal positions on the current spatial–temporal position. Then, we utilize an adaptive graph modeling module to automatically extract the one-way relationship between variables and integrate external knowledge into the module. The FastDTW algorithm is exploited to measure the similarity of road network nodes, and the non-Euclidean pairwise association between regions is encoded into graphs to discover the hidden temporal pattern similarity effectively. Furthermore, temporal and spatial correlations are explicitly modeled using dual-graph convolution and sequential convolution based on the obtained graphs to mine the spatial–temporal patterns in dynamic traffic flow, and the final prediction result is produced based on the weighted fusion of the output values of the recent, daily, and weekly components. Finally, the ASTA-DGCN algorithm is successfully applied to TFF on two real-world traffic datasets. The experimental results indicate that our ASTA-DGCN algorithm outperforms ARIMA, VAR, FNN, GCN, GAT, GWNet, STGCN, ASTGCN, and STSGCN. |
|---|---|
| AbstractList | Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and discover temporal and spatial characteristics, we propose an attention-based spatial–temporal adaptive dual-graph convolutional network (ASTA-DGCN) for TFF in this paper. Specifically, we employ a spatial–temporal attention module to explore the hidden temporal correlation information of traffic data and the implicit influence of weights among road network nodes and to further capture the dynamic influence of different spatial–temporal positions on the current spatial–temporal position. Then, we utilize an adaptive graph modeling module to automatically extract the one-way relationship between variables and integrate external knowledge into the module. The FastDTW algorithm is exploited to measure the similarity of road network nodes, and the non-Euclidean pairwise association between regions is encoded into graphs to discover the hidden temporal pattern similarity effectively. Furthermore, temporal and spatial correlations are explicitly modeled using dual-graph convolution and sequential convolution based on the obtained graphs to mine the spatial–temporal patterns in dynamic traffic flow, and the final prediction result is produced based on the weighted fusion of the output values of the recent, daily, and weekly components. Finally, the ASTA-DGCN algorithm is successfully applied to TFF on two real-world traffic datasets. The experimental results indicate that our ASTA-DGCN algorithm outperforms ARIMA, VAR, FNN, GCN, GAT, GWNet, STGCN, ASTGCN, and STSGCN. |
| Author | Li, Yantao Shen, Bingqi Geng, Jian Xia, Dawen Li, Huaqing Hu, Yang |
| Author_xml | – sequence: 1 givenname: Dawen surname: Xia fullname: Xia, Dawen organization: College of Data Science and Information Engineering, Guizhou Minzu University – sequence: 2 givenname: Bingqi surname: Shen fullname: Shen, Bingqi organization: College of Data Science and Information Engineering, Guizhou Minzu University – sequence: 3 givenname: Jian surname: Geng fullname: Geng, Jian organization: College of Data Science and Information Engineering, Guizhou Minzu University – sequence: 4 givenname: Yang surname: Hu fullname: Hu, Yang organization: Department of Automotive Engineering, Guizhou Traffic Technician and Transportation College – sequence: 5 givenname: Yantao surname: Li fullname: Li, Yantao organization: College of Computer Science, Chongqing University – sequence: 6 givenname: Huaqing orcidid: 0000-0001-6310-8965 surname: Li fullname: Li, Huaqing email: huaqingli@swu.edu.cn organization: College of Electronic and Information Engineering, Southwest University |
| BookMark | eNp9kM1KAzEUhYNUsFZfwNWA6-jN5KfTpYh_ILjRdcjkp0bHyZikFne-g2_ok5ixguCiqwv3nu9yztlHkz70FqEjAicEYH6aAHhNMNQUQ8ObGpMdNCWMUkyBNxM0hQUrZ8HoHtpP6QkAmGj4FPmznG2ffehxq5I1VRpU9qr7-vjM9mUIUXWVMmrI_s1WZqU6vIxqeKx06N9CtxrBouhtXof4XLkQqxyVc15XrgvrcWG1Stn3ywO061SX7OHvnKGHy4v782t8e3d1c352izUli4wFM0o7YTjhuq2hFsaYMZtwmmtHnKXcCKU4E4y1rdFG2Hk5gGkdm4MGOkPHm79DDK8rm7J8CqtYXCZZN1QQwpqFKKpmo9IxpBStk9pnNcYp_n0nCcixWLkpVpZi5U-xkhS0_ocO0b-o-L4dohsoFXG_tPHP1RbqGxNmkVI |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09906_5 crossref_primary_10_26599_TST2024_9010134 crossref_primary_10_1177_03611981251330897 crossref_primary_10_1007_s00521_024_09675_1 crossref_primary_10_1007_s10489_025_06341_4 crossref_primary_10_1007_s10586_024_04583_4 crossref_primary_10_3390_systems13020096 crossref_primary_10_1007_s13177_025_00511_x crossref_primary_10_1007_s44290_025_00205_z crossref_primary_10_1007_s41965_024_00167_8 crossref_primary_10_1109_JIOT_2024_3496795 crossref_primary_10_1016_j_ins_2024_120482 crossref_primary_10_1109_ACCESS_2024_3357783 crossref_primary_10_1016_j_engappai_2025_110526 crossref_primary_10_3390_su17177905 |
| Cites_doi | 10.1007/s00521-021-06409-5 10.1007/s12652-020-02182-w 10.1016/j.trc.2019.03.022 10.1016/j.ijpe.2020.107868 10.1007/s00521-018-3578-y 10.1007/s00521-018-3850-1 10.1109/TITS.2020.2987909 10.1049/iet-its.2017.0313 10.1016/j.trc.2018.03.001 10.1007/s11042-022-12039-3 10.1016/j.trc.2019.12.022 10.3390/math10224279 10.3141/1748-12 10.1016/j.artint.2018.03.002 10.1109/TITS.2019.2935152 10.1016/j.physa.2019.03.007 10.1016/j.asoc.2019.02.006 10.1007/s00521-020-05076-2 10.1109/TITS.2019.2939290 10.1016/j.neucom.2020.11.038 10.1016/j.ins.2020.06.026 10.1080/15389588.2022.2130279 10.1049/iet-its.2016.0208 10.1016/j.ins.2022.06.090 10.1016/j.trc.2017.02.024 10.1016/j.neucom.2015.12.013 10.1109/TITS.2019.2906365 10.1016/j.eswa.2022.119161 10.1109/TITS.2021.3067603 10.1007/s40534-019-0193-2 10.1007/s11063-019-09994-8 10.1109/TITS.2021.3052796 10.1016/j.pmcj.2018.07.004 10.1007/s00521-020-05115-y 10.1049/iet-its.2016.0263 10.1145/3292500.3330884 10.1609/aaai.v34i01.5438 10.24963/ijcai.2018/505 10.24963/ijcai.2019/264 10.1007/978-981-10-6893-5_24 10.1609/aaai.v33i01.3301922 10.1109/INNOVATIONS.2016.7880022 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-023-08582-1 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 17231 |
| ExternalDocumentID | 10_1007_s00521_023_08582_1 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072061 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62162012 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 62173278 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-64dacf6d515cb2026ddd05216fc5cf1fe35d6aa54644bbdcd6e75cf0dbf470c03 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000978514400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 04:08:50 EST 2025 Tue Nov 18 21:56:25 EST 2025 Sat Nov 29 04:30:39 EST 2025 Fri Feb 21 02:42:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Big data analytics Traffic flow forecasting Graph convolutional network Adaptive graph modeling FastDTW |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-64dacf6d515cb2026ddd05216fc5cf1fe35d6aa54644bbdcd6e75cf0dbf470c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6310-8965 |
| PQID | 2836114896 |
| PQPubID | 2043988 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2836114896 crossref_citationtrail_10_1007_s00521_023_08582_1 crossref_primary_10_1007_s00521_023_08582_1 springer_journals_10_1007_s00521_023_08582_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230800 2023-08-00 20230801 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Lin, Lin, Gu (CR8) 2022; 608 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR22) 2019; 21 Zhang, Zheng, Qi, Li, Yi, Li (CR18) 2018; 259 Cheng, Lu, Zhou, Zhang, Zhang (CR7) 2021; 23 Shah, Muhammad, Ali, Ahmed, Almazah, Al-Rezami (CR6) 2022; 10 Chen, Zou, Li, Li, Yang, Chen (CR12) 2021; 542 CR14 Gu, Lu, Xu, Qin, Shao, Zhang (CR16) 2019; 21 CR31 AlKheder, Alkhamees, Almutairi, Alkhedher (CR10) 2021; 33 Liu, Guo, Cao, Wei, Huang (CR36) 2018; 30 Luo, Huang, Cao, Lu, Huang, Guo, Wei (CR32) 2019; 50 Chen, Petty, Skabardonis, Varaiya, Jia (CR45) 2001; 1748 Angayarkanni, Sivakumar, Ramana Rao (CR27) 2021; 12 Xu, Peng, Zeng, Zhou, Tian, Peng (CR13) 2019; 77 Sa, Yv, Sadiq (CR33) 2022; 17 Zou, Xia (CR34) 2019; 31 Xia, Wang, Li, Li, Zhang (CR28) 2016; 179 Taguchi, Yoshimura (CR9) 2021; 23 Xia, Zhang, Yan, Bai, Zheng, Li, Li (CR37) 2021; 33 Polson, Sokolov (CR42) 2017; 79 Nagy, Simon (CR2) 2018; 50 Tian (CR11) 2020; 22 Kaffash, Nguyen, Zhu (CR1) 2021; 231 Díaz, Macià, Valero, Boubeta-Puig, Cuartero (CR4) 2020; 32 Sutskever, Vinyals, Le (CR46) 2014; 27 CR48 Xia, Yang, Jian, Hu, Li (CR44) 2022; 81 CR47 CR24 Sun, Cheng, Goswami, Bai (CR35) 2018; 12 Tang, Chen, Hu, Zong, Han, Li (CR5) 2019; 534 Zhang, Kabuka (CR15) 2018; 12 CR23 Guo, Lin, Li, Chen, Wan (CR40) 2019; 20 Dai, Fu, Zhao, Zhang, Lin, Wang, Li (CR41) 2019; 103 CR21 Nassiri, Mohammadpour, Dahaghin (CR25) 2023; 24 Ma, Zhu, Song, Wang (CR29) 2023; 213 Xia, Yang, Jiang, Hu, Li, Li, Wang (CR38) 2022; 34 CR43 Yin, Wu, Wei, Shen, Qi, Yin (CR19) 2021; 428 CR20 Ma, Antoniou, Toledo (CR30) 2020; 111 Emami, Sarvi, Asadi Bagloee (CR26) 2019; 27 Tedjopurnomo, Bao, Zheng, Choudhury, Qin (CR3) 2020; 34 Zhao, Chen, Wu, Chen, Liu (CR39) 2017; 11 Wu, Tan, Qin, Ran, Jiang (CR17) 2018; 90 S Guo (8582_CR40) 2019; 20 AM Nagy (8582_CR2) 2018; 50 A Sa (8582_CR33) 2022; 17 Z Liu (8582_CR36) 2018; 30 A Emami (8582_CR26) 2019; 27 X Dai (8582_CR41) 2019; 103 B Sun (8582_CR35) 2018; 12 W Xu (8582_CR13) 2019; 77 I Sutskever (8582_CR46) 2014; 27 S Angayarkanni (8582_CR27) 2021; 12 S Taguchi (8582_CR9) 2021; 23 S Kaffash (8582_CR1) 2021; 231 G Díaz (8582_CR4) 2020; 32 8582_CR20 8582_CR21 8582_CR43 Z Cheng (8582_CR7) 2021; 23 8582_CR23 D Xia (8582_CR44) 2022; 81 8582_CR24 8582_CR47 8582_CR48 D Xia (8582_CR37) 2021; 33 C Chen (8582_CR45) 2001; 1748 C Luo (8582_CR32) 2019; 50 D Xia (8582_CR38) 2022; 34 Y Gu (8582_CR16) 2019; 21 G Lin (8582_CR8) 2022; 608 L Zhao (8582_CR22) 2019; 21 D Xia (8582_CR28) 2016; 179 H Nassiri (8582_CR25) 2023; 24 W Zou (8582_CR34) 2019; 31 X Yin (8582_CR19) 2021; 428 D Ma (8582_CR29) 2023; 213 NG Polson (8582_CR42) 2017; 79 DA Tedjopurnomo (8582_CR3) 2020; 34 S AlKheder (8582_CR10) 2021; 33 Z Tian (8582_CR11) 2020; 22 8582_CR31 8582_CR14 Y Chen (8582_CR12) 2021; 542 J Zhang (8582_CR18) 2018; 259 D Zhang (8582_CR15) 2018; 12 J Tang (8582_CR5) 2019; 534 Y Wu (8582_CR17) 2018; 90 I Shah (8582_CR6) 2022; 10 T Ma (8582_CR30) 2020; 111 Z Zhao (8582_CR39) 2017; 11 |
| References_xml | – volume: 34 start-page: 1557 issue: 2 year: 2022 end-page: 1575 ident: CR38 article-title: A parallel NAW-DBLSTM algorithm on Spark for traffic flow forecasting publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06409-5 – ident: CR43 – volume: 12 start-page: 1293 year: 2021 end-page: 1304 ident: CR27 article-title: Hybrid grey wolf: bald eagle search optimized support vector regression for traffic flow forecasting publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02182-w – ident: CR47 – volume: 103 start-page: 142 year: 2019 end-page: 157 ident: CR41 article-title: Deeptrend 2.0: a light-weighted multi-scale traffic prediction model using detrending publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2019.03.022 – volume: 231 year: 2021 ident: CR1 article-title: Big data algorithms and applications in intelligent transportation system: a review and bibliometric analysis publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2020.107868 – volume: 31 start-page: 7401 issue: 11 year: 2019 end-page: 7414 ident: CR34 article-title: Back propagation bidirectional extreme learning machine for traffic flow time series prediction publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3578-y – ident: CR14 – volume: 32 start-page: 405 issue: 2 year: 2020 end-page: 426 ident: CR4 article-title: An intelligent transportation system to control air pollution and road traffic in cities integrating CEP and colored Petri Nets publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3850-1 – volume: 22 start-page: 5566 issue: 9 year: 2020 end-page: 5576 ident: CR11 article-title: Approach for short-term traffic flow prediction based on empirical mode decomposition and combination model fusion publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2987909 – volume: 12 start-page: 578 issue: 7 year: 2018 end-page: 585 ident: CR15 article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2017.0313 – volume: 90 start-page: 166 year: 2018 end-page: 180 ident: CR17 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2018.03.001 – volume: 81 start-page: 23589 year: 2022 end-page: 23614 ident: CR44 article-title: SW-BiLSTM: a Spark-based weighted BiLSTM model for traffic flow forecasting publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12039-3 – volume: 17 start-page: 0275104 issue: 9 year: 2022 ident: CR33 article-title: Traffic flow forecasting using natural selection based hybrid bald eagle search-grey wolf optimization algorithm publication-title: PLoS ONE – volume: 111 start-page: 352 year: 2020 end-page: 372 ident: CR30 article-title: Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2019.12.022 – volume: 10 start-page: 4279 issue: 22 year: 2022 ident: CR6 article-title: Forecasting day-ahead traffic flow using functional time series approach publication-title: Mathematics doi: 10.3390/math10224279 – volume: 1748 start-page: 96 issue: 1 year: 2001 end-page: 102 ident: CR45 article-title: Freeway performance measurement system: mining loop detector data publication-title: Transport Res Rec doi: 10.3141/1748-12 – volume: 259 start-page: 147 year: 2018 end-page: 166 ident: CR18 article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks publication-title: Artif Intell doi: 10.1016/j.artint.2018.03.002 – volume: 21 start-page: 3848 issue: 9 year: 2019 end-page: 3858 ident: CR22 article-title: T-GCN: a temporal graph convolutional network for traffic prediction publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2935152 – volume: 534 year: 2019 ident: CR5 article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes publication-title: Physica A doi: 10.1016/j.physa.2019.03.007 – ident: CR23 – volume: 77 start-page: 605 year: 2019 end-page: 621 ident: CR13 article-title: Deep belief network-based AR model for nonlinear time series forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.006 – ident: CR21 – volume: 33 start-page: 2393 issue: 7 year: 2021 end-page: 2410 ident: CR37 article-title: A distributed WND-LSTM model on MapReduce for short-term traffic flow prediction publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05076-2 – volume: 21 start-page: 1332 issue: 3 year: 2019 end-page: 1342 ident: CR16 article-title: An improved bayesian combination model for short-term traffic prediction with deep learning publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2939290 – volume: 428 start-page: 42 year: 2021 end-page: 53 ident: CR19 article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.038 – ident: CR48 – volume: 542 start-page: 476 year: 2021 end-page: 491 ident: CR12 article-title: Multiple local 3D CNNs for region-based prediction in smart cities publication-title: Inf Sci doi: 10.1016/j.ins.2020.06.026 – volume: 24 start-page: 44 issue: 1 year: 2023 end-page: 49 ident: CR25 article-title: Forecasting time trends of fatal motor vehicle crashes in Iran using an ensemble learning algorithm publication-title: Traffic Inj Prev doi: 10.1080/15389588.2022.2130279 – volume: 11 start-page: 68 issue: 2 year: 2017 end-page: 75 ident: CR39 article-title: LSTM network: a deep learning approach for short-term traffic forecast publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2016.0208 – volume: 608 start-page: 517 year: 2022 end-page: 531 ident: CR8 article-title: Using support vector regression and k-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient publication-title: Inf Sci doi: 10.1016/j.ins.2022.06.090 – volume: 79 start-page: 1 year: 2017 end-page: 17 ident: CR42 article-title: Deep learning for short-term traffic flow prediction publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2017.02.024 – volume: 27 start-page: 1 year: 2014 end-page: 9 ident: CR46 article-title: Sequence to sequence learning with neural networks publication-title: Adv Neural Inf Process Syst – volume: 30 start-page: 445 issue: 4 year: 2018 end-page: 456 ident: CR36 article-title: A hybrid short-term traffic flow forecasting method based on neural networks combined with k-nearest neighbor publication-title: Promet Traffic Transport – volume: 179 start-page: 246 year: 2016 end-page: 263 ident: CR28 article-title: A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.013 – ident: CR31 – volume: 20 start-page: 3913 issue: 10 year: 2019 end-page: 3926 ident: CR40 article-title: Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2906365 – volume: 213 year: 2023 ident: CR29 article-title: Traffic flow and speed forecasting through a bayesian deep multi-linear relationship network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119161 – volume: 23 start-page: 7233 issue: 7 year: 2021 end-page: 7243 ident: CR9 article-title: Online estimation and prediction of large-scale network traffic from sparse probe vehicle data publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3067603 – volume: 27 start-page: 222 issue: 3 year: 2019 end-page: 232 ident: CR26 article-title: Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment publication-title: J Mod Transport doi: 10.1007/s40534-019-0193-2 – volume: 50 start-page: 2305 issue: 3 year: 2019 end-page: 2322 ident: CR32 article-title: Short-term traffic flow prediction based on least square support vector machine with hybrid optimization algorithm publication-title: Neural Process Lett doi: 10.1007/s11063-019-09994-8 – volume: 34 start-page: 1544 year: 2020 end-page: 1561 ident: CR3 article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges publication-title: IEEE Trans Knowl Data Eng – volume: 23 start-page: 5231 issue: 6 year: 2021 end-page: 5244 ident: CR7 article-title: Short-term traffic flow prediction: an integrated method of econometrics and hybrid deep learning publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3052796 – volume: 50 start-page: 148 year: 2018 end-page: 163 ident: CR2 article-title: Survey on traffic prediction in smart cities publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2018.07.004 – ident: CR24 – volume: 33 start-page: 1785 issue: 6 year: 2021 end-page: 1836 ident: CR10 article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05115-y – volume: 12 start-page: 41 issue: 1 year: 2018 end-page: 48 ident: CR35 article-title: Short-term traffic forecasting using self-adjusting k-nearest neighbours publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2016.0263 – ident: CR20 – volume: 32 start-page: 405 issue: 2 year: 2020 ident: 8582_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3850-1 – volume: 34 start-page: 1557 issue: 2 year: 2022 ident: 8582_CR38 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06409-5 – volume: 111 start-page: 352 year: 2020 ident: 8582_CR30 publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2019.12.022 – volume: 30 start-page: 445 issue: 4 year: 2018 ident: 8582_CR36 publication-title: Promet Traffic Transport – volume: 33 start-page: 1785 issue: 6 year: 2021 ident: 8582_CR10 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05115-y – volume: 542 start-page: 476 year: 2021 ident: 8582_CR12 publication-title: Inf Sci doi: 10.1016/j.ins.2020.06.026 – volume: 17 start-page: 0275104 issue: 9 year: 2022 ident: 8582_CR33 publication-title: PLoS ONE – volume: 11 start-page: 68 issue: 2 year: 2017 ident: 8582_CR39 publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2016.0208 – volume: 20 start-page: 3913 issue: 10 year: 2019 ident: 8582_CR40 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2906365 – volume: 103 start-page: 142 year: 2019 ident: 8582_CR41 publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2019.03.022 – volume: 22 start-page: 5566 issue: 9 year: 2020 ident: 8582_CR11 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.2987909 – volume: 50 start-page: 148 year: 2018 ident: 8582_CR2 publication-title: Pervasive Mob Comput doi: 10.1016/j.pmcj.2018.07.004 – ident: 8582_CR48 doi: 10.1145/3292500.3330884 – volume: 23 start-page: 5231 issue: 6 year: 2021 ident: 8582_CR7 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3052796 – volume: 12 start-page: 578 issue: 7 year: 2018 ident: 8582_CR15 publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2017.0313 – volume: 428 start-page: 42 year: 2021 ident: 8582_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.038 – volume: 79 start-page: 1 year: 2017 ident: 8582_CR42 publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2017.02.024 – volume: 179 start-page: 246 year: 2016 ident: 8582_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.013 – ident: 8582_CR43 doi: 10.1609/aaai.v34i01.5438 – volume: 21 start-page: 1332 issue: 3 year: 2019 ident: 8582_CR16 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2939290 – volume: 213 year: 2023 ident: 8582_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119161 – ident: 8582_CR23 doi: 10.24963/ijcai.2018/505 – ident: 8582_CR20 – volume: 12 start-page: 41 issue: 1 year: 2018 ident: 8582_CR35 publication-title: IET Intel Transport Syst doi: 10.1049/iet-its.2016.0263 – ident: 8582_CR21 doi: 10.24963/ijcai.2019/264 – volume: 50 start-page: 2305 issue: 3 year: 2019 ident: 8582_CR32 publication-title: Neural Process Lett doi: 10.1007/s11063-019-09994-8 – volume: 12 start-page: 1293 year: 2021 ident: 8582_CR27 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02182-w – volume: 231 year: 2021 ident: 8582_CR1 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2020.107868 – ident: 8582_CR14 doi: 10.1007/978-981-10-6893-5_24 – volume: 24 start-page: 44 issue: 1 year: 2023 ident: 8582_CR25 publication-title: Traffic Inj Prev doi: 10.1080/15389588.2022.2130279 – volume: 27 start-page: 222 issue: 3 year: 2019 ident: 8582_CR26 publication-title: J Mod Transport doi: 10.1007/s40534-019-0193-2 – ident: 8582_CR47 – volume: 10 start-page: 4279 issue: 22 year: 2022 ident: 8582_CR6 publication-title: Mathematics doi: 10.3390/math10224279 – ident: 8582_CR24 doi: 10.1609/aaai.v33i01.3301922 – volume: 90 start-page: 166 year: 2018 ident: 8582_CR17 publication-title: Transport Res Part C Emerg Technol doi: 10.1016/j.trc.2018.03.001 – volume: 33 start-page: 2393 issue: 7 year: 2021 ident: 8582_CR37 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05076-2 – volume: 608 start-page: 517 year: 2022 ident: 8582_CR8 publication-title: Inf Sci doi: 10.1016/j.ins.2022.06.090 – volume: 21 start-page: 3848 issue: 9 year: 2019 ident: 8582_CR22 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2935152 – volume: 1748 start-page: 96 issue: 1 year: 2001 ident: 8582_CR45 publication-title: Transport Res Rec doi: 10.3141/1748-12 – volume: 27 start-page: 1 year: 2014 ident: 8582_CR46 publication-title: Adv Neural Inf Process Syst – volume: 34 start-page: 1544 year: 2020 ident: 8582_CR3 publication-title: IEEE Trans Knowl Data Eng – volume: 534 year: 2019 ident: 8582_CR5 publication-title: Physica A doi: 10.1016/j.physa.2019.03.007 – volume: 81 start-page: 23589 year: 2022 ident: 8582_CR44 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12039-3 – ident: 8582_CR31 doi: 10.1109/INNOVATIONS.2016.7880022 – volume: 31 start-page: 7401 issue: 11 year: 2019 ident: 8582_CR34 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3578-y – volume: 23 start-page: 7233 issue: 7 year: 2021 ident: 8582_CR9 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3067603 – volume: 77 start-page: 605 year: 2019 ident: 8582_CR13 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.006 – volume: 259 start-page: 147 year: 2018 ident: 8582_CR18 publication-title: Artif Intell doi: 10.1016/j.artint.2018.03.002 |
| SSID | ssj0004685 |
| Score | 2.4065492 |
| Snippet | Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17217 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convolution Data Mining and Knowledge Discovery Forecasting Graphs Image Processing and Computer Vision Intelligent transportation systems Mathematical models Modules Nodes Original Article Probability and Statistics in Computer Science Roads & highways Similarity Traffic congestion Traffic control Traffic flow Traffic information Traffic management Transportation networks |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7eNNA2XbodhyiehvjFbiXNS2BQurFWvfo_-B_6l_iSppuKCnoqtElo30fe7zXvg5CTIFQ8CbOY4TVicRbGrG-kYNxmYaoI0AQHrtlEMhr1x-PBtU8KK5to9-ZI0u3Ui2Q3-wcTXd-IM4QJiAvR51lFc9e36nhz-_AhG9I14kS_xcb0xNynyny_xmdztMSYX45FnbW5bP_vPTfJhkeXdFiLwxZZ0cU2aTedG6hX5B0yGVZVHefIrBkDWtrAapm_vbz6WlU5lSBndi-kNluLucLW1Maoe1nFEUUdQk4R99JqLm0xCmry6bO9oZUsbUT1Lrm_vLg7v2K-6QJTqI0VEzFIZQQgzlFZhB4aANgPEkb1lAmN5j0QUvZi5GKWgQKhE3wQQGbiJFAB3yOtYlrofUIBfTkOPUDmg-10JrkOEwMIMKQEo8MOCRvap8pXJLeNMfJ0UUvZ0TJFWqaOlinOOV3MmdX1OH4d3W1YmnrdLFMEVMJ6gQPRIWcNC5ePf17t4G_DD8l6VEsBC8IuaVXzR31E1tRTNSnnx05m3wEmyeht priority: 102 providerName: Springer Nature |
| Title | Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting |
| URI | https://link.springer.com/article/10.1007/s00521-023-08582-1 https://www.proquest.com/docview/2836114896 |
| Volume | 35 |
| WOSCitedRecordID | wos000978514400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt_hYJQdvGmz61JOsonhaFl-Il5JmGhCW3XVb9ep_8B_6S5xpU1cFvXhpIS9KZ5L5kszMB7DrKRMkKgslvX0ZZiqUh1bHMuAoTOMjmWCvIptIut3Du7ujnjtwK5xbZbMmVgs1Dg2fkR-QGYwZux_Fx6NHyaxRfLvqKDSmYYYzlYUtmDk56_Yuv0RGVqSctIdh_54wcGEzVfAcn4hSqR9Igh2EM9V30zTBmz-uSCvLc77w329ehHmHOUWnVpIlmMoHy7DQ8DkIN71X4KFTlrX3o2TjhqJgd2vdf399cxms-kKjHvEKKTiGS1bprgV7rjsNphaD2rFcEBoW5Vhzigph-8MXLsiNLtjPehVuzs-uTy-ko2KQhuZoKeMQtbExEvoxmU_7NkTk3xdbExmrbB5EGGsdhSTbLEODcZ5QhYeZDRPPeMEatAbDQb4OAmmHF2CEpBLI_Gc6yFVikWCH1mhztQGqkUJqXJ5ypsvop58ZlivJpSS5tJJcSn32PvuM6iwdf7ZuN-JK3Ywt0omsNmC_Efik-vfRNv8ebQvm_FrHpKfa0CrHT_k2zJrn8qEY7zh93YHpXnRPz8ur2w_3afYE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtVAFD5BMJENqGgEUWehK5nYaadTWBhDVAIBb1hgQtiU6ZyZhOTm3sttlbjzHXgPHson8Zxpy1UT2LFw1WT-0na-8zdzfgBeJ8plhaq0pGcqdaW03AzWyIyjMF2KJIKTWGyiGAw2j4-3Dufgqo-FYbfKnidGRo1jx2fk70gMGtbdt8yHybnkqlF8u9qX0Ghhse9_XJDJVr_f-0T7-yZNdz4ffdyVXVUB6QhujTQarQsGSZC7ikx_g4gcwWqCy11QwWc5GmtzTa9ZVejQ-II6EqyCLhKXZLTuPVjQmowlop_D_OSPOMxYApQsJvYm0lkXpBND9fj8lVrTTJKSQ1qt-lsQzrTbfy5ko5zbWf7f_tBDWOo0arHdksAjmPOjx7DcV6sQHfNagbPtpml9OyWLbhQ1O5Pb4a-fl11-rqGwaCfM_wVHqMmYzFuwX35HnzRi1LrNC9L1RTO1nIBDhOH4ghu8szV7kT-Br3fywU9hfjQe-WcgkOzXDHMkwCNXd7OZV0VAUqqsxeDVKqh-10vXZWHnYiDD8jp_dERKSUgpI1JKmvP2es6kzUFy6-j1Hh5lx4_qcoaNVdjoATbrvnm1tdtXewUPdo--HJQHe4P957CYtviWiVqH-Wb6zb-A--57c1ZPX0ZKEXB618D7DUoNUwE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kinixPrFadQ_edGneaY9FLYpSCj7oLWx2slAIaWmiXv0P_kN_iTN5tFVUEE-B7INkZzbzTfabGcZODFPZvhk6Aq-WcELTEW0tPWFTFKayAE2wkReb8Pv99nDYGSxE8eds9-pIsohpoCxNSdaagG7NAt_obya6wZYtEDIgRkT_Z9mhokHkr989LkRG5kU50Ychfo9jl2Ez38_x2TTN8eaXI9Lc8vTq_3_mDbZeok7eLdRkky1FyRarVxUdeLnBt9mom2UF_1GQeQOeEuFaxu-vb2UOq5hLkBP6RnKK4hJ5wmtO3PVSh7FHUlDLOeJhnk0lJangOh6_0I1IyZSY1jvsoXd5f34lymIMQuEuzYTngFTaA8Q_KrTQcwMAeiFPK1dpU0e2C56UroPSDUNQ4EU-NhgQasc3lGHvsloyTqI9xgF9PBtcQKUAqoAm7cj0NSDwkBJ0ZDaYWckhUGWmciqYEQezHMv5Wga4lkG-lgGOOZ2NmRR5On7t3azEG5R7Ng0QaHnkHXa8BjurxDlv_nm2_b91P2arg4tecHvdvzlga1ahEMIwm6yWTZ-iQ7ainrNROj3KVfkDRZT0NQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+spatial%E2%80%93temporal+adaptive+dual-graph+convolutional+network+for+traffic+flow+forecasting&rft.jtitle=Neural+computing+%26+applications&rft.au=Xia%2C+Dawen&rft.au=Shen%2C+Bingqi&rft.au=Geng%2C+Jian&rft.au=Hu%2C+Yang&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=23&rft.spage=17217&rft.epage=17231&rft_id=info:doi/10.1007%2Fs00521-023-08582-1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |