Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting

Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and disco...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 23; s. 17217 - 17231
Hlavní autoři: Xia, Dawen, Shen, Bingqi, Geng, Jian, Hu, Yang, Li, Yantao, Li, Huaqing
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.08.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and discover temporal and spatial characteristics, we propose an attention-based spatial–temporal adaptive dual-graph convolutional network (ASTA-DGCN) for TFF in this paper. Specifically, we employ a spatial–temporal attention module to explore the hidden temporal correlation information of traffic data and the implicit influence of weights among road network nodes and to further capture the dynamic influence of different spatial–temporal positions on the current spatial–temporal position. Then, we utilize an adaptive graph modeling module to automatically extract the one-way relationship between variables and integrate external knowledge into the module. The FastDTW algorithm is exploited to measure the similarity of road network nodes, and the non-Euclidean pairwise association between regions is encoded into graphs to discover the hidden temporal pattern similarity effectively. Furthermore, temporal and spatial correlations are explicitly modeled using dual-graph convolution and sequential convolution based on the obtained graphs to mine the spatial–temporal patterns in dynamic traffic flow, and the final prediction result is produced based on the weighted fusion of the output values of the recent, daily, and weekly components. Finally, the ASTA-DGCN algorithm is successfully applied to TFF on two real-world traffic datasets. The experimental results indicate that our ASTA-DGCN algorithm outperforms ARIMA, VAR, FNN, GCN, GAT, GWNet, STGCN, ASTGCN, and STSGCN.
AbstractList Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and improving traffic management in intelligent transportation systems. To precisely characterize the spatial structure of road networks and discover temporal and spatial characteristics, we propose an attention-based spatial–temporal adaptive dual-graph convolutional network (ASTA-DGCN) for TFF in this paper. Specifically, we employ a spatial–temporal attention module to explore the hidden temporal correlation information of traffic data and the implicit influence of weights among road network nodes and to further capture the dynamic influence of different spatial–temporal positions on the current spatial–temporal position. Then, we utilize an adaptive graph modeling module to automatically extract the one-way relationship between variables and integrate external knowledge into the module. The FastDTW algorithm is exploited to measure the similarity of road network nodes, and the non-Euclidean pairwise association between regions is encoded into graphs to discover the hidden temporal pattern similarity effectively. Furthermore, temporal and spatial correlations are explicitly modeled using dual-graph convolution and sequential convolution based on the obtained graphs to mine the spatial–temporal patterns in dynamic traffic flow, and the final prediction result is produced based on the weighted fusion of the output values of the recent, daily, and weekly components. Finally, the ASTA-DGCN algorithm is successfully applied to TFF on two real-world traffic datasets. The experimental results indicate that our ASTA-DGCN algorithm outperforms ARIMA, VAR, FNN, GCN, GAT, GWNet, STGCN, ASTGCN, and STSGCN.
Author Li, Yantao
Shen, Bingqi
Geng, Jian
Xia, Dawen
Li, Huaqing
Hu, Yang
Author_xml – sequence: 1
  givenname: Dawen
  surname: Xia
  fullname: Xia, Dawen
  organization: College of Data Science and Information Engineering, Guizhou Minzu University
– sequence: 2
  givenname: Bingqi
  surname: Shen
  fullname: Shen, Bingqi
  organization: College of Data Science and Information Engineering, Guizhou Minzu University
– sequence: 3
  givenname: Jian
  surname: Geng
  fullname: Geng, Jian
  organization: College of Data Science and Information Engineering, Guizhou Minzu University
– sequence: 4
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
  organization: Department of Automotive Engineering, Guizhou Traffic Technician and Transportation College
– sequence: 5
  givenname: Yantao
  surname: Li
  fullname: Li, Yantao
  organization: College of Computer Science, Chongqing University
– sequence: 6
  givenname: Huaqing
  orcidid: 0000-0001-6310-8965
  surname: Li
  fullname: Li, Huaqing
  email: huaqingli@swu.edu.cn
  organization: College of Electronic and Information Engineering, Southwest University
BookMark eNp9kM1KAzEUhYNUsFZfwNWA6-jN5KfTpYh_ILjRdcjkp0bHyZikFne-g2_ok5ixguCiqwv3nu9yztlHkz70FqEjAicEYH6aAHhNMNQUQ8ObGpMdNCWMUkyBNxM0hQUrZ8HoHtpP6QkAmGj4FPmznG2ffehxq5I1VRpU9qr7-vjM9mUIUXWVMmrI_s1WZqU6vIxqeKx06N9CtxrBouhtXof4XLkQqxyVc15XrgvrcWG1Stn3ywO061SX7OHvnKGHy4v782t8e3d1c352izUli4wFM0o7YTjhuq2hFsaYMZtwmmtHnKXcCKU4E4y1rdFG2Hk5gGkdm4MGOkPHm79DDK8rm7J8CqtYXCZZN1QQwpqFKKpmo9IxpBStk9pnNcYp_n0nCcixWLkpVpZi5U-xkhS0_ocO0b-o-L4dohsoFXG_tPHP1RbqGxNmkVI
CitedBy_id crossref_primary_10_1007_s00521_024_09906_5
crossref_primary_10_26599_TST2024_9010134
crossref_primary_10_1177_03611981251330897
crossref_primary_10_1007_s00521_024_09675_1
crossref_primary_10_1007_s10489_025_06341_4
crossref_primary_10_1007_s10586_024_04583_4
crossref_primary_10_3390_systems13020096
crossref_primary_10_1007_s13177_025_00511_x
crossref_primary_10_1007_s44290_025_00205_z
crossref_primary_10_1007_s41965_024_00167_8
crossref_primary_10_1109_JIOT_2024_3496795
crossref_primary_10_1016_j_ins_2024_120482
crossref_primary_10_1109_ACCESS_2024_3357783
crossref_primary_10_1016_j_engappai_2025_110526
crossref_primary_10_3390_su17177905
Cites_doi 10.1007/s00521-021-06409-5
10.1007/s12652-020-02182-w
10.1016/j.trc.2019.03.022
10.1016/j.ijpe.2020.107868
10.1007/s00521-018-3578-y
10.1007/s00521-018-3850-1
10.1109/TITS.2020.2987909
10.1049/iet-its.2017.0313
10.1016/j.trc.2018.03.001
10.1007/s11042-022-12039-3
10.1016/j.trc.2019.12.022
10.3390/math10224279
10.3141/1748-12
10.1016/j.artint.2018.03.002
10.1109/TITS.2019.2935152
10.1016/j.physa.2019.03.007
10.1016/j.asoc.2019.02.006
10.1007/s00521-020-05076-2
10.1109/TITS.2019.2939290
10.1016/j.neucom.2020.11.038
10.1016/j.ins.2020.06.026
10.1080/15389588.2022.2130279
10.1049/iet-its.2016.0208
10.1016/j.ins.2022.06.090
10.1016/j.trc.2017.02.024
10.1016/j.neucom.2015.12.013
10.1109/TITS.2019.2906365
10.1016/j.eswa.2022.119161
10.1109/TITS.2021.3067603
10.1007/s40534-019-0193-2
10.1007/s11063-019-09994-8
10.1109/TITS.2021.3052796
10.1016/j.pmcj.2018.07.004
10.1007/s00521-020-05115-y
10.1049/iet-its.2016.0263
10.1145/3292500.3330884
10.1609/aaai.v34i01.5438
10.24963/ijcai.2018/505
10.24963/ijcai.2019/264
10.1007/978-981-10-6893-5_24
10.1609/aaai.v33i01.3301922
10.1109/INNOVATIONS.2016.7880022
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-023-08582-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 17231
ExternalDocumentID 10_1007_s00521_023_08582_1
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072061
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62162012
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62173278
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-64dacf6d515cb2026ddd05216fc5cf1fe35d6aa54644bbdcd6e75cf0dbf470c03
IEDL.DBID BENPR
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000978514400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 04:08:50 EST 2025
Tue Nov 18 21:56:25 EST 2025
Sat Nov 29 04:30:39 EST 2025
Fri Feb 21 02:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Big data analytics
Traffic flow forecasting
Graph convolutional network
Adaptive graph modeling
FastDTW
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-64dacf6d515cb2026ddd05216fc5cf1fe35d6aa54644bbdcd6e75cf0dbf470c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6310-8965
PQID 2836114896
PQPubID 2043988
PageCount 15
ParticipantIDs proquest_journals_2836114896
crossref_citationtrail_10_1007_s00521_023_08582_1
crossref_primary_10_1007_s00521_023_08582_1
springer_journals_10_1007_s00521_023_08582_1
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Lin, Lin, Gu (CR8) 2022; 608
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (CR22) 2019; 21
Zhang, Zheng, Qi, Li, Yi, Li (CR18) 2018; 259
Cheng, Lu, Zhou, Zhang, Zhang (CR7) 2021; 23
Shah, Muhammad, Ali, Ahmed, Almazah, Al-Rezami (CR6) 2022; 10
Chen, Zou, Li, Li, Yang, Chen (CR12) 2021; 542
CR14
Gu, Lu, Xu, Qin, Shao, Zhang (CR16) 2019; 21
CR31
AlKheder, Alkhamees, Almutairi, Alkhedher (CR10) 2021; 33
Liu, Guo, Cao, Wei, Huang (CR36) 2018; 30
Luo, Huang, Cao, Lu, Huang, Guo, Wei (CR32) 2019; 50
Chen, Petty, Skabardonis, Varaiya, Jia (CR45) 2001; 1748
Angayarkanni, Sivakumar, Ramana Rao (CR27) 2021; 12
Xu, Peng, Zeng, Zhou, Tian, Peng (CR13) 2019; 77
Sa, Yv, Sadiq (CR33) 2022; 17
Zou, Xia (CR34) 2019; 31
Xia, Wang, Li, Li, Zhang (CR28) 2016; 179
Taguchi, Yoshimura (CR9) 2021; 23
Xia, Zhang, Yan, Bai, Zheng, Li, Li (CR37) 2021; 33
Polson, Sokolov (CR42) 2017; 79
Nagy, Simon (CR2) 2018; 50
Tian (CR11) 2020; 22
Kaffash, Nguyen, Zhu (CR1) 2021; 231
Díaz, Macià, Valero, Boubeta-Puig, Cuartero (CR4) 2020; 32
Sutskever, Vinyals, Le (CR46) 2014; 27
CR48
Xia, Yang, Jian, Hu, Li (CR44) 2022; 81
CR47
CR24
Sun, Cheng, Goswami, Bai (CR35) 2018; 12
Tang, Chen, Hu, Zong, Han, Li (CR5) 2019; 534
Zhang, Kabuka (CR15) 2018; 12
CR23
Guo, Lin, Li, Chen, Wan (CR40) 2019; 20
Dai, Fu, Zhao, Zhang, Lin, Wang, Li (CR41) 2019; 103
CR21
Nassiri, Mohammadpour, Dahaghin (CR25) 2023; 24
Ma, Zhu, Song, Wang (CR29) 2023; 213
Xia, Yang, Jiang, Hu, Li, Li, Wang (CR38) 2022; 34
CR43
Yin, Wu, Wei, Shen, Qi, Yin (CR19) 2021; 428
CR20
Ma, Antoniou, Toledo (CR30) 2020; 111
Emami, Sarvi, Asadi Bagloee (CR26) 2019; 27
Tedjopurnomo, Bao, Zheng, Choudhury, Qin (CR3) 2020; 34
Zhao, Chen, Wu, Chen, Liu (CR39) 2017; 11
Wu, Tan, Qin, Ran, Jiang (CR17) 2018; 90
S Guo (8582_CR40) 2019; 20
AM Nagy (8582_CR2) 2018; 50
A Sa (8582_CR33) 2022; 17
Z Liu (8582_CR36) 2018; 30
A Emami (8582_CR26) 2019; 27
X Dai (8582_CR41) 2019; 103
B Sun (8582_CR35) 2018; 12
W Xu (8582_CR13) 2019; 77
I Sutskever (8582_CR46) 2014; 27
S Angayarkanni (8582_CR27) 2021; 12
S Taguchi (8582_CR9) 2021; 23
S Kaffash (8582_CR1) 2021; 231
G Díaz (8582_CR4) 2020; 32
8582_CR20
8582_CR21
8582_CR43
Z Cheng (8582_CR7) 2021; 23
8582_CR23
D Xia (8582_CR44) 2022; 81
8582_CR24
8582_CR47
8582_CR48
D Xia (8582_CR37) 2021; 33
C Chen (8582_CR45) 2001; 1748
C Luo (8582_CR32) 2019; 50
D Xia (8582_CR38) 2022; 34
Y Gu (8582_CR16) 2019; 21
G Lin (8582_CR8) 2022; 608
L Zhao (8582_CR22) 2019; 21
D Xia (8582_CR28) 2016; 179
H Nassiri (8582_CR25) 2023; 24
W Zou (8582_CR34) 2019; 31
X Yin (8582_CR19) 2021; 428
D Ma (8582_CR29) 2023; 213
NG Polson (8582_CR42) 2017; 79
DA Tedjopurnomo (8582_CR3) 2020; 34
S AlKheder (8582_CR10) 2021; 33
Z Tian (8582_CR11) 2020; 22
8582_CR31
8582_CR14
Y Chen (8582_CR12) 2021; 542
J Zhang (8582_CR18) 2018; 259
D Zhang (8582_CR15) 2018; 12
J Tang (8582_CR5) 2019; 534
Y Wu (8582_CR17) 2018; 90
I Shah (8582_CR6) 2022; 10
T Ma (8582_CR30) 2020; 111
Z Zhao (8582_CR39) 2017; 11
References_xml – volume: 34
  start-page: 1557
  issue: 2
  year: 2022
  end-page: 1575
  ident: CR38
  article-title: A parallel NAW-DBLSTM algorithm on Spark for traffic flow forecasting
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06409-5
– ident: CR43
– volume: 12
  start-page: 1293
  year: 2021
  end-page: 1304
  ident: CR27
  article-title: Hybrid grey wolf: bald eagle search optimized support vector regression for traffic flow forecasting
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02182-w
– ident: CR47
– volume: 103
  start-page: 142
  year: 2019
  end-page: 157
  ident: CR41
  article-title: Deeptrend 2.0: a light-weighted multi-scale traffic prediction model using detrending
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2019.03.022
– volume: 231
  year: 2021
  ident: CR1
  article-title: Big data algorithms and applications in intelligent transportation system: a review and bibliometric analysis
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2020.107868
– volume: 31
  start-page: 7401
  issue: 11
  year: 2019
  end-page: 7414
  ident: CR34
  article-title: Back propagation bidirectional extreme learning machine for traffic flow time series prediction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3578-y
– ident: CR14
– volume: 32
  start-page: 405
  issue: 2
  year: 2020
  end-page: 426
  ident: CR4
  article-title: An intelligent transportation system to control air pollution and road traffic in cities integrating CEP and colored Petri Nets
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3850-1
– volume: 22
  start-page: 5566
  issue: 9
  year: 2020
  end-page: 5576
  ident: CR11
  article-title: Approach for short-term traffic flow prediction based on empirical mode decomposition and combination model fusion
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2987909
– volume: 12
  start-page: 578
  issue: 7
  year: 2018
  end-page: 585
  ident: CR15
  article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2017.0313
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: CR17
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2018.03.001
– volume: 81
  start-page: 23589
  year: 2022
  end-page: 23614
  ident: CR44
  article-title: SW-BiLSTM: a Spark-based weighted BiLSTM model for traffic flow forecasting
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12039-3
– volume: 17
  start-page: 0275104
  issue: 9
  year: 2022
  ident: CR33
  article-title: Traffic flow forecasting using natural selection based hybrid bald eagle search-grey wolf optimization algorithm
  publication-title: PLoS ONE
– volume: 111
  start-page: 352
  year: 2020
  end-page: 372
  ident: CR30
  article-title: Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2019.12.022
– volume: 10
  start-page: 4279
  issue: 22
  year: 2022
  ident: CR6
  article-title: Forecasting day-ahead traffic flow using functional time series approach
  publication-title: Mathematics
  doi: 10.3390/math10224279
– volume: 1748
  start-page: 96
  issue: 1
  year: 2001
  end-page: 102
  ident: CR45
  article-title: Freeway performance measurement system: mining loop detector data
  publication-title: Transport Res Rec
  doi: 10.3141/1748-12
– volume: 259
  start-page: 147
  year: 2018
  end-page: 166
  ident: CR18
  article-title: Predicting citywide crowd flows using deep spatio-temporal residual networks
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.03.002
– volume: 21
  start-page: 3848
  issue: 9
  year: 2019
  end-page: 3858
  ident: CR22
  article-title: T-GCN: a temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– volume: 534
  year: 2019
  ident: CR5
  article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.03.007
– ident: CR23
– volume: 77
  start-page: 605
  year: 2019
  end-page: 621
  ident: CR13
  article-title: Deep belief network-based AR model for nonlinear time series forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.02.006
– ident: CR21
– volume: 33
  start-page: 2393
  issue: 7
  year: 2021
  end-page: 2410
  ident: CR37
  article-title: A distributed WND-LSTM model on MapReduce for short-term traffic flow prediction
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05076-2
– volume: 21
  start-page: 1332
  issue: 3
  year: 2019
  end-page: 1342
  ident: CR16
  article-title: An improved bayesian combination model for short-term traffic prediction with deep learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2939290
– volume: 428
  start-page: 42
  year: 2021
  end-page: 53
  ident: CR19
  article-title: Multi-stage attention spatial-temporal graph networks for traffic prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.038
– ident: CR48
– volume: 542
  start-page: 476
  year: 2021
  end-page: 491
  ident: CR12
  article-title: Multiple local 3D CNNs for region-based prediction in smart cities
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.06.026
– volume: 24
  start-page: 44
  issue: 1
  year: 2023
  end-page: 49
  ident: CR25
  article-title: Forecasting time trends of fatal motor vehicle crashes in Iran using an ensemble learning algorithm
  publication-title: Traffic Inj Prev
  doi: 10.1080/15389588.2022.2130279
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  end-page: 75
  ident: CR39
  article-title: LSTM network: a deep learning approach for short-term traffic forecast
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2016.0208
– volume: 608
  start-page: 517
  year: 2022
  end-page: 531
  ident: CR8
  article-title: Using support vector regression and k-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.06.090
– volume: 79
  start-page: 1
  year: 2017
  end-page: 17
  ident: CR42
  article-title: Deep learning for short-term traffic flow prediction
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2017.02.024
– volume: 27
  start-page: 1
  year: 2014
  end-page: 9
  ident: CR46
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 30
  start-page: 445
  issue: 4
  year: 2018
  end-page: 456
  ident: CR36
  article-title: A hybrid short-term traffic flow forecasting method based on neural networks combined with k-nearest neighbor
  publication-title: Promet Traffic Transport
– volume: 179
  start-page: 246
  year: 2016
  end-page: 263
  ident: CR28
  article-title: A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.013
– ident: CR31
– volume: 20
  start-page: 3913
  issue: 10
  year: 2019
  end-page: 3926
  ident: CR40
  article-title: Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2906365
– volume: 213
  year: 2023
  ident: CR29
  article-title: Traffic flow and speed forecasting through a bayesian deep multi-linear relationship network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119161
– volume: 23
  start-page: 7233
  issue: 7
  year: 2021
  end-page: 7243
  ident: CR9
  article-title: Online estimation and prediction of large-scale network traffic from sparse probe vehicle data
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3067603
– volume: 27
  start-page: 222
  issue: 3
  year: 2019
  end-page: 232
  ident: CR26
  article-title: Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment
  publication-title: J Mod Transport
  doi: 10.1007/s40534-019-0193-2
– volume: 50
  start-page: 2305
  issue: 3
  year: 2019
  end-page: 2322
  ident: CR32
  article-title: Short-term traffic flow prediction based on least square support vector machine with hybrid optimization algorithm
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-09994-8
– volume: 34
  start-page: 1544
  year: 2020
  end-page: 1561
  ident: CR3
  article-title: A survey on modern deep neural network for traffic prediction: trends, methods and challenges
  publication-title: IEEE Trans Knowl Data Eng
– volume: 23
  start-page: 5231
  issue: 6
  year: 2021
  end-page: 5244
  ident: CR7
  article-title: Short-term traffic flow prediction: an integrated method of econometrics and hybrid deep learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3052796
– volume: 50
  start-page: 148
  year: 2018
  end-page: 163
  ident: CR2
  article-title: Survey on traffic prediction in smart cities
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2018.07.004
– ident: CR24
– volume: 33
  start-page: 1785
  issue: 6
  year: 2021
  end-page: 1836
  ident: CR10
  article-title: Bayesian combined neural network for traffic volume short-term forecasting at adjacent intersections
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05115-y
– volume: 12
  start-page: 41
  issue: 1
  year: 2018
  end-page: 48
  ident: CR35
  article-title: Short-term traffic forecasting using self-adjusting k-nearest neighbours
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2016.0263
– ident: CR20
– volume: 32
  start-page: 405
  issue: 2
  year: 2020
  ident: 8582_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3850-1
– volume: 34
  start-page: 1557
  issue: 2
  year: 2022
  ident: 8582_CR38
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06409-5
– volume: 111
  start-page: 352
  year: 2020
  ident: 8582_CR30
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2019.12.022
– volume: 30
  start-page: 445
  issue: 4
  year: 2018
  ident: 8582_CR36
  publication-title: Promet Traffic Transport
– volume: 33
  start-page: 1785
  issue: 6
  year: 2021
  ident: 8582_CR10
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05115-y
– volume: 542
  start-page: 476
  year: 2021
  ident: 8582_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.06.026
– volume: 17
  start-page: 0275104
  issue: 9
  year: 2022
  ident: 8582_CR33
  publication-title: PLoS ONE
– volume: 11
  start-page: 68
  issue: 2
  year: 2017
  ident: 8582_CR39
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2016.0208
– volume: 20
  start-page: 3913
  issue: 10
  year: 2019
  ident: 8582_CR40
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2906365
– volume: 103
  start-page: 142
  year: 2019
  ident: 8582_CR41
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2019.03.022
– volume: 22
  start-page: 5566
  issue: 9
  year: 2020
  ident: 8582_CR11
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2020.2987909
– volume: 50
  start-page: 148
  year: 2018
  ident: 8582_CR2
  publication-title: Pervasive Mob Comput
  doi: 10.1016/j.pmcj.2018.07.004
– ident: 8582_CR48
  doi: 10.1145/3292500.3330884
– volume: 23
  start-page: 5231
  issue: 6
  year: 2021
  ident: 8582_CR7
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3052796
– volume: 12
  start-page: 578
  issue: 7
  year: 2018
  ident: 8582_CR15
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2017.0313
– volume: 428
  start-page: 42
  year: 2021
  ident: 8582_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.038
– volume: 79
  start-page: 1
  year: 2017
  ident: 8582_CR42
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2017.02.024
– volume: 179
  start-page: 246
  year: 2016
  ident: 8582_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.013
– ident: 8582_CR43
  doi: 10.1609/aaai.v34i01.5438
– volume: 21
  start-page: 1332
  issue: 3
  year: 2019
  ident: 8582_CR16
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2939290
– volume: 213
  year: 2023
  ident: 8582_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119161
– ident: 8582_CR23
  doi: 10.24963/ijcai.2018/505
– ident: 8582_CR20
– volume: 12
  start-page: 41
  issue: 1
  year: 2018
  ident: 8582_CR35
  publication-title: IET Intel Transport Syst
  doi: 10.1049/iet-its.2016.0263
– ident: 8582_CR21
  doi: 10.24963/ijcai.2019/264
– volume: 50
  start-page: 2305
  issue: 3
  year: 2019
  ident: 8582_CR32
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-019-09994-8
– volume: 12
  start-page: 1293
  year: 2021
  ident: 8582_CR27
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02182-w
– volume: 231
  year: 2021
  ident: 8582_CR1
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2020.107868
– ident: 8582_CR14
  doi: 10.1007/978-981-10-6893-5_24
– volume: 24
  start-page: 44
  issue: 1
  year: 2023
  ident: 8582_CR25
  publication-title: Traffic Inj Prev
  doi: 10.1080/15389588.2022.2130279
– volume: 27
  start-page: 222
  issue: 3
  year: 2019
  ident: 8582_CR26
  publication-title: J Mod Transport
  doi: 10.1007/s40534-019-0193-2
– ident: 8582_CR47
– volume: 10
  start-page: 4279
  issue: 22
  year: 2022
  ident: 8582_CR6
  publication-title: Mathematics
  doi: 10.3390/math10224279
– ident: 8582_CR24
  doi: 10.1609/aaai.v33i01.3301922
– volume: 90
  start-page: 166
  year: 2018
  ident: 8582_CR17
  publication-title: Transport Res Part C Emerg Technol
  doi: 10.1016/j.trc.2018.03.001
– volume: 33
  start-page: 2393
  issue: 7
  year: 2021
  ident: 8582_CR37
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05076-2
– volume: 608
  start-page: 517
  year: 2022
  ident: 8582_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.06.090
– volume: 21
  start-page: 3848
  issue: 9
  year: 2019
  ident: 8582_CR22
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– volume: 1748
  start-page: 96
  issue: 1
  year: 2001
  ident: 8582_CR45
  publication-title: Transport Res Rec
  doi: 10.3141/1748-12
– volume: 27
  start-page: 1
  year: 2014
  ident: 8582_CR46
  publication-title: Adv Neural Inf Process Syst
– volume: 34
  start-page: 1544
  year: 2020
  ident: 8582_CR3
  publication-title: IEEE Trans Knowl Data Eng
– volume: 534
  year: 2019
  ident: 8582_CR5
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.03.007
– volume: 81
  start-page: 23589
  year: 2022
  ident: 8582_CR44
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12039-3
– ident: 8582_CR31
  doi: 10.1109/INNOVATIONS.2016.7880022
– volume: 31
  start-page: 7401
  issue: 11
  year: 2019
  ident: 8582_CR34
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3578-y
– volume: 23
  start-page: 7233
  issue: 7
  year: 2021
  ident: 8582_CR9
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3067603
– volume: 77
  start-page: 605
  year: 2019
  ident: 8582_CR13
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.02.006
– volume: 259
  start-page: 147
  year: 2018
  ident: 8582_CR18
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2018.03.002
SSID ssj0004685
Score 2.4065492
Snippet Accurate traffic flow forecasting (TFF) is a prerequisite for urban traffic control and guidance, which has become the key to avoiding traffic congestion and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17217
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convolution
Data Mining and Knowledge Discovery
Forecasting
Graphs
Image Processing and Computer Vision
Intelligent transportation systems
Mathematical models
Modules
Nodes
Original Article
Probability and Statistics in Computer Science
Roads & highways
Similarity
Traffic congestion
Traffic control
Traffic flow
Traffic information
Traffic management
Transportation networks
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPXhxfuJ0Sg7eNNA2XbodhyiehvjFbiXNS2BQurFWvfo_-B_6l_iSppuKCnoqtElo30fe7zXvg5CTIFQ8CbOY4TVicRbGrG-kYNxmYaoI0AQHrtlEMhr1x-PBtU8KK5to9-ZI0u3Ui2Q3-wcTXd-IM4QJiAvR51lFc9e36nhz-_AhG9I14kS_xcb0xNynyny_xmdztMSYX45FnbW5bP_vPTfJhkeXdFiLwxZZ0cU2aTedG6hX5B0yGVZVHefIrBkDWtrAapm_vbz6WlU5lSBndi-kNluLucLW1Maoe1nFEUUdQk4R99JqLm0xCmry6bO9oZUsbUT1Lrm_vLg7v2K-6QJTqI0VEzFIZQQgzlFZhB4aANgPEkb1lAmN5j0QUvZi5GKWgQKhE3wQQGbiJFAB3yOtYlrofUIBfTkOPUDmg-10JrkOEwMIMKQEo8MOCRvap8pXJLeNMfJ0UUvZ0TJFWqaOlinOOV3MmdX1OH4d3W1YmnrdLFMEVMJ6gQPRIWcNC5ePf17t4G_DD8l6VEsBC8IuaVXzR31E1tRTNSnnx05m3wEmyeht
  priority: 102
  providerName: Springer Nature
Title Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting
URI https://link.springer.com/article/10.1007/s00521-023-08582-1
https://www.proquest.com/docview/2836114896
Volume 35
WOSCitedRecordID wos000978514400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt_hYJQdvGmz61JOsonhaFl-Il5JmGhCW3XVb9ep_8B_6S5xpU1cFvXhpIS9KZ5L5kszMB7DrKRMkKgslvX0ZZiqUh1bHMuAoTOMjmWCvIptIut3Du7ujnjtwK5xbZbMmVgs1Dg2fkR-QGYwZux_Fx6NHyaxRfLvqKDSmYYYzlYUtmDk56_Yuv0RGVqSctIdh_54wcGEzVfAcn4hSqR9Igh2EM9V30zTBmz-uSCvLc77w329ehHmHOUWnVpIlmMoHy7DQ8DkIN71X4KFTlrX3o2TjhqJgd2vdf399cxms-kKjHvEKKTiGS1bprgV7rjsNphaD2rFcEBoW5Vhzigph-8MXLsiNLtjPehVuzs-uTy-ko2KQhuZoKeMQtbExEvoxmU_7NkTk3xdbExmrbB5EGGsdhSTbLEODcZ5QhYeZDRPPeMEatAbDQb4OAmmHF2CEpBLI_Gc6yFVikWCH1mhztQGqkUJqXJ5ypsvop58ZlivJpSS5tJJcSn32PvuM6iwdf7ZuN-JK3Ywt0omsNmC_Efik-vfRNv8ebQvm_FrHpKfa0CrHT_k2zJrn8qEY7zh93YHpXnRPz8ur2w_3afYE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtVAFD5BMJENqGgEUWehK5nYaadTWBhDVAIBb1hgQtiU6ZyZhOTm3sttlbjzHXgPHson8Zxpy1UT2LFw1WT-0na-8zdzfgBeJ8plhaq0pGcqdaW03AzWyIyjMF2KJIKTWGyiGAw2j4-3Dufgqo-FYbfKnidGRo1jx2fk70gMGtbdt8yHybnkqlF8u9qX0Ghhse9_XJDJVr_f-0T7-yZNdz4ffdyVXVUB6QhujTQarQsGSZC7ikx_g4gcwWqCy11QwWc5GmtzTa9ZVejQ-II6EqyCLhKXZLTuPVjQmowlop_D_OSPOMxYApQsJvYm0lkXpBND9fj8lVrTTJKSQ1qt-lsQzrTbfy5ko5zbWf7f_tBDWOo0arHdksAjmPOjx7DcV6sQHfNagbPtpml9OyWLbhQ1O5Pb4a-fl11-rqGwaCfM_wVHqMmYzFuwX35HnzRi1LrNC9L1RTO1nIBDhOH4ghu8szV7kT-Br3fywU9hfjQe-WcgkOzXDHMkwCNXd7OZV0VAUqqsxeDVKqh-10vXZWHnYiDD8jp_dERKSUgpI1JKmvP2es6kzUFy6-j1Hh5lx4_qcoaNVdjoATbrvnm1tdtXewUPdo--HJQHe4P957CYtviWiVqH-Wb6zb-A--57c1ZPX0ZKEXB618D7DUoNUwE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kinixPrFadQ_edGneaY9FLYpSCj7oLWx2slAIaWmiXv0P_kN_iTN5tFVUEE-B7INkZzbzTfabGcZODFPZvhk6Aq-WcELTEW0tPWFTFKayAE2wkReb8Pv99nDYGSxE8eds9-pIsohpoCxNSdaagG7NAt_obya6wZYtEDIgRkT_Z9mhokHkr989LkRG5kU50Ychfo9jl2Ez38_x2TTN8eaXI9Lc8vTq_3_mDbZeok7eLdRkky1FyRarVxUdeLnBt9mom2UF_1GQeQOeEuFaxu-vb2UOq5hLkBP6RnKK4hJ5wmtO3PVSh7FHUlDLOeJhnk0lJangOh6_0I1IyZSY1jvsoXd5f34lymIMQuEuzYTngFTaA8Q_KrTQcwMAeiFPK1dpU0e2C56UroPSDUNQ4EU-NhgQasc3lGHvsloyTqI9xgF9PBtcQKUAqoAm7cj0NSDwkBJ0ZDaYWckhUGWmciqYEQezHMv5Wga4lkG-lgGOOZ2NmRR5On7t3azEG5R7Ng0QaHnkHXa8BjurxDlv_nm2_b91P2arg4tecHvdvzlga1ahEMIwm6yWTZ-iQ7ainrNROj3KVfkDRZT0NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-based+spatial%E2%80%93temporal+adaptive+dual-graph+convolutional+network+for+traffic+flow+forecasting&rft.jtitle=Neural+computing+%26+applications&rft.au=Xia%2C+Dawen&rft.au=Shen%2C+Bingqi&rft.au=Geng%2C+Jian&rft.au=Hu%2C+Yang&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=23&rft.spage=17217&rft.epage=17231&rft_id=info:doi/10.1007%2Fs00521-023-08582-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon