A Modified Multi-objective Particle Swarm Optimizer-Based Lévy Flight: An Approach Toward Intrusion Detection in Internet of Things

The emerging of the Internet of things (IoT), and more, the advent of the Internet of everything have revolutionized the computer networks industry. The high diversity of IoT devices, its protocols and standards, and its limited computational resources have led to the appearance of novel security ch...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Arabian journal for science and engineering (2011) Ročník 45; číslo 8; s. 6081 - 6108
Hlavní autori: Habib, Maria, Aljarah, Ibrahim, Faris, Hossam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2020
Springer Nature B.V
Predmet:
ISSN:2193-567X, 1319-8025, 2191-4281
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The emerging of the Internet of things (IoT), and more, the advent of the Internet of everything have revolutionized the computer networks industry. The high diversity of IoT devices, its protocols and standards, and its limited computational resources have led to the appearance of novel security challenges. Hence, the traditional security countermeasures of encryption and authentication are insufficient. Promoting the network security is a fundamental concern for practitioners for safeguarding their economical and industrial strategies. Intrusion detection systems (IDSs) are the major solutions for protecting Internet-connected frameworks at the network-level. But, more importantly, is how to convert the traditional IDSs into intelligent IDSs that resemble the intelligent IoT. This paper presents a new approach for converting the traditional IDSs into smart, evolutionary, and multi-objective IDSs for IoT networks. Moreover, this article presents a modified algorithm for IDSs that tackles the problem of feature selection. The modified algorithm stands on the integration of multi-objective particle swarm optimization with Lévy flight randomization component (MOPSO-Lévy); the modified MOPSO-Lévy has been tested on real IoT network data that is drawn from UCI repository. MOPSO-Lévy has achieved superior performance results when compared with state-of-the-art evolutionary multi-objective algorithms.
AbstractList The emerging of the Internet of things (IoT), and more, the advent of the Internet of everything have revolutionized the computer networks industry. The high diversity of IoT devices, its protocols and standards, and its limited computational resources have led to the appearance of novel security challenges. Hence, the traditional security countermeasures of encryption and authentication are insufficient. Promoting the network security is a fundamental concern for practitioners for safeguarding their economical and industrial strategies. Intrusion detection systems (IDSs) are the major solutions for protecting Internet-connected frameworks at the network-level. But, more importantly, is how to convert the traditional IDSs into intelligent IDSs that resemble the intelligent IoT. This paper presents a new approach for converting the traditional IDSs into smart, evolutionary, and multi-objective IDSs for IoT networks. Moreover, this article presents a modified algorithm for IDSs that tackles the problem of feature selection. The modified algorithm stands on the integration of multi-objective particle swarm optimization with Lévy flight randomization component (MOPSO-Lévy); the modified MOPSO-Lévy has been tested on real IoT network data that is drawn from UCI repository. MOPSO-Lévy has achieved superior performance results when compared with state-of-the-art evolutionary multi-objective algorithms.
Author Aljarah, Ibrahim
Habib, Maria
Faris, Hossam
Author_xml – sequence: 1
  givenname: Maria
  surname: Habib
  fullname: Habib, Maria
  organization: King Abdullah II School for Information Technology, The University of Jordan
– sequence: 2
  givenname: Ibrahim
  surname: Aljarah
  fullname: Aljarah, Ibrahim
  email: i.aljarah@ju.edu.jo
  organization: King Abdullah II School for Information Technology, The University of Jordan
– sequence: 3
  givenname: Hossam
  surname: Faris
  fullname: Faris, Hossam
  organization: King Abdullah II School for Information Technology, The University of Jordan
BookMark eNp9kMtKAzEUhoMoeH0BVwHX0WQyk5m4q3ehRcEK7kImk2kj06QmaUXXvozP4YuZaQXBhXDgHA7_dy7_Lti0zmoADgk-JhiXJ4FQyjjCGUY4z0uG-AbYyQgnKM8qsrmqKSpY-bQNDkIwNc4rygtC6A74GMCRa0xrdANHiy4a5OpnraJZangvfTSq0_DhVfoZvJtHMzPv2qMzGZJ8-PW5fINXnZlM4ykcWDiYz72TagrHLgENvLXRL4JxFl7o2M9MlbF9W3urI3QtHE-NnYR9sNXKLuiDn7wHHq8ux-c3aHh3fXs-GCJFCY-IUZZJWVOsFFZFUxctrosUtCh0TTmpiKalbmrV8qbFFa-Svi0ryRnDDBNF98DRem6682WhQxTPbuFtWimyPCtYRnnFkypbq5R3IXjdirk3M-nfBMGiN1ysDRfJcLEyXPRQ9QdSJsr-5eil6f5H6RoNaY-daP971T_UNytTmKc
CitedBy_id crossref_primary_10_1007_s00354_022_00188_w
crossref_primary_10_3390_math10030464
crossref_primary_10_1057_s41288_022_00266_6
crossref_primary_10_3390_s21227611
crossref_primary_10_3390_math10152785
crossref_primary_10_1177_09266801241289769
crossref_primary_10_1007_s11042_022_13836_6
crossref_primary_10_1155_2022_2882643
crossref_primary_10_3390_s22218566
crossref_primary_10_1007_s10791_025_09708_w
crossref_primary_10_1016_j_iot_2023_100952
crossref_primary_10_3389_fcomp_2023_997159
crossref_primary_10_1016_j_knosys_2022_108505
crossref_primary_10_3390_app12178676
crossref_primary_10_1007_s11042_024_19962_7
crossref_primary_10_1093_comjnl_bxae008
crossref_primary_10_1016_j_future_2020_05_020
crossref_primary_10_1155_2021_7504806
crossref_primary_10_1002_nem_2296
crossref_primary_10_1109_ACCESS_2021_3071450
crossref_primary_10_1016_j_measen_2023_100700
crossref_primary_10_1016_j_knosys_2024_112950
crossref_primary_10_1007_s13369_020_05301_z
crossref_primary_10_1016_j_swevo_2025_101984
crossref_primary_10_1109_ACCESS_2025_3531216
Cites_doi 10.1016/j.future.2017.08.043
10.1016/j.ijinfomgt.2019.04.006
10.1109/JIOT.2018.2883344
10.1007/s12652-019-01387-y
10.1016/j.future.2017.07.060
10.1007/978-3-030-12127-3_3
10.1109/TEVC.2003.816583
10.1109/TEVC.2004.826067
10.1109/CC.2018.8331989
10.1145/1656274.1656278
10.1109/TENCON.2019.8929510
10.5220/0006048201710177
10.1016/j.measurement.2017.12.014
10.1080/00031305.1992.10475879
10.1007/978-3-642-20662-7_2
10.1007/978-3-319-92639-1_30
10.1007/978-3-030-12127-3_8
10.1109/ACCESS.2018.2800664
10.1109/MPRV.2018.03367731
10.1007/978-3-319-70688-7_2
10.1051/matecconf/201815901053
10.1109/TEVC.2007.892759
10.1016/j.camwa.2008.09.023
10.1093/biomet/52.1-2.203
10.1109/MSP.2018.2825478
10.1007/s10586-019-02913-5
10.1007/978-3-319-92058-0_56
10.1155/2018/2492956
10.1016/j.jnca.2017.02.009
10.1109/AEECT.2015.7360576
10.1109/COMST.2020.2986444
10.1016/j.swevo.2012.09.002
10.1007/s12652-017-0558-5
10.1201/9780429504044-8
10.1007/s10586-018-1847-2
10.1109/MASCOTS.2018.00038
10.1007/s00500-008-0323-y
10.1109/CEC.2008.4631192
10.1007/s10489-017-0967-3
10.1109/JIOT.2018.2871719
10.1016/j.comnet.2019.01.023
10.1142/S0218213016500330
10.1007/s00521-019-04015-0
10.1016/j.asoc.2018.05.049
10.1007/s00521-018-3801-x
10.3390/s18093030
10.1007/978-1-4614-6849-3
10.1007/3-540-45356-3_83
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2020
King Fahd University of Petroleum & Minerals 2020.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2020
– notice: King Fahd University of Petroleum & Minerals 2020.
DBID AAYXX
CITATION
DOI 10.1007/s13369-020-04476-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 6108
ExternalDocumentID 10_1007_s13369_020_04476_9
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-6362aab30cc0c5db5f0b50b5355eb39181e37edbcf9df0898362f78a9660601c3
IEDL.DBID RSV
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522934600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:04:16 EDT 2025
Tue Nov 18 22:23:21 EST 2025
Sat Nov 29 02:51:32 EST 2025
Fri Feb 21 02:36:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Multi-objective particle swarm optimization
Internet of Things
Botnets
Classification
Lévy flight
Multi-objective feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-6362aab30cc0c5db5f0b50b5355eb39181e37edbcf9df0898362f78a9660601c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2425623989
PQPubID 2044268
PageCount 28
ParticipantIDs proquest_journals_2425623989
crossref_primary_10_1007_s13369_020_04476_9
crossref_citationtrail_10_1007_s13369_020_04476_9
springer_journals_10_1007_s13369_020_04476_9
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AzmoodehADehghantanhaAContiMChooK-KRDetecting crypto-ransomware in iot networks based on energy consumption footprintJ. Ambient Intell. Humaniz. Comput.20189411411152
Mohemmed, A.W.; Zhang, M.: Evaluation of particle swarm optimization based centroid classifier with different distance metrics. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2929–2932. IEEE (2008)
FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl. Intell.201848445464
ZhanyangXRenhaoGHuangTXiangHZhangXQiLXiaolongXAn IoT-oriented offloading method with privacy preservation for cloudlet-enabled wireless metropolitan area networksSensors20181893030
SelvaraniPSureshAMalarvizhiNSecure and optimal authentication framework for cloud management using HGAPSO algorithmCluster Comput.201822240074016
AltmanNSAn introduction to kernel and nearest-neighbor nonparametric regressionAm. Stat.19924631751851183070
ChechkinAVMetzlerRKlafterJGoncharVYIntroduction to the theory of Lévy flightsAnomalous Transp. Found. Appl.2008492431451
LiDDengLLeeMWangHIoT data feature extraction and intrusion detection system for smart cities based on deep migration learningInt. J. Inf. Manag.201949533545
da CostaKAPPapaJPLisboaCOMunozRde AlbuquerqueVHCInternet of things: a survey on machine learning-based intrusion detection approachesComput. Netw.2019151147157
AlhajriRZagroubaRAl-HaidariFSurvey for anomaly detection of iot botnets using machine learning auto-encodersInt. J. Appl. Eng. Res.2019141024172421
Corne, D.W; Jerram, N.R.; Knowles, J.D.; Oates, M.J.: Pesa-ii: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)
Coello, C.A.C.; Lechuga, M.S.: Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1051–1056. IEEE (2002)
ZarpelaoBBMianiRSKawakaniCTde AlvarengaSCA survey of intrusion detection in internet of thingsJ. Netw. Comput. Appl.2017842537
DebKKalyanmoyDMulti-objective Optimization Using Evolutionary Algorithms2001New YorkWiley0970.90091
MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut. Comput.20139114
KuhnMJohnsonKApplied Predictive Modeling2013BerlinSpringer1306.62014
Mohamed, T.A.; Otsuka, T.; Ito, T.: Towards machine learning based IoT intrusion detection service. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 580–585. Springer (2018)
Yang, X.-S.; Metaheuristic optimization: algorithm analysis and open problems. In: International Symposium on Experimental Algorithms, pp. 21–32. Springer, Berlin (2011)
Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.: Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. In: Nature-Inspired Optimizers, pp. 23–46. Springer, Cham (2020)
KesavamoorthyRSoundarKRSwarm intelligence based autonomous DDOS attack detection and defense using multi agent systemCluster Comput.201822494699476
HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe weka data mining software: an updateACM SIGKDD Explor. Newslett.20091111018
Almomani, A.; Alweshah, M.; Al, S.: Metaheuristic algorithms-based feature selection approach for intrusion detection. In: Machine Learning for Computer and Cyber Security: Principle, Algorithms, and Practices (2019)
Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E.: Machine learning in IoT security: current solutions and future challenges. arXiv preprint arXiv:1904.05735 (2019)
GehanEAA generalized Wilcoxon test for comparing arbitrarily singly-censored samplesBiometrika1965521–22032242071300133.41901
SangeethaALBharathiNGaneshABRadhakrishnanTKParticle swarm optimization tuned cascade control system in an internet of things (IoT) environmentMeasurement20181178089
RanaSHossainSShounHIAbul KashemMAn effective lightweight cryptographic algorithm to secure resource-constrained devicesInt. J. Adv. Comput. Sci. Appl.2018911267275
Deng, L.; Li, D.; Yao, X.; Cox, D.; Wang, H.: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Comput. 1–16 (2018)
Mishra, S.; Sagban, R.; Yakoob, A.; Gandhi, N.: Swarm intelligence in anomaly detection systems: an overview. Int. J. Comput. Appl. 1–10 (2018)
YangX-SNature-Inspired Metaheuristic Algorithms2010BeckingtonLuniver Press
Sreenivasamurthy, S.; Obraczka, K.: Clustering for load balancing and energy efficiency in IoT applications. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 319–332. IEEE (2018)
Faris, H.; Aljarah, I.; Alqatawna, J.F.: Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–5. IEEE (2015)
Faris, H.; Aljarah, I.; Mirjalili, S.; Castillo, P.A.; Guervós, J.J.M.: EvoloPy: an open-source nature-inspired optimization framework in Python. In: IJCCI (ECTA), pp. 171–177 (2016)
LiSBiFChenWMiaoXLiuJTangCAn improved information security risk assessments method for cyber-physical-social computing and networkingIEEE Access201861031110319
LeeC-YYaoXEvolutionary programming using mutations based on the Lévy probability distributionIEEE Trans. Evol. Comput.200481113
Suman, C.; Tripathy, S.; Saha, S.: Building an effective intrusion detection system using unsupervised feature selection in multi-objective optimization framework. arXiv preprint arXiv:1905.06562 (2019)
LiJZhaoZLiRZhangHZhangTAi-based two-stage intrusion detection for software defined iot networksIEEE Internet Things J.20186220932102
CoelloCACPulidoGTHandling multiple objectives with particle swarm optimizationIEEE Trans. Evol. Comput.200483256279
Xue, Y.; Jia, W.; Zhao, X.; Pang, W.: An evolutionary computation based feature selection method for intrusion detection. Secur. Commun. Netw. (2018)
Sanchez-Pi, N.; Martí, L.; Molina, J.M.: Applying voreal for IoT intrusion detection. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 363–374. Springer (2018)
XiaoLWanXXiaozhenLZhangYDiWIot security techniques based on machine learning: how do iot devices use ai to enhance security?IEEE Signal Process. Mag.20183554149
Dheeru, D.; Taniskidou, E.K.: UCI machine learning repository (2017)
Al Shorman, A.; Faris, H.; Aljarah, I.: Unsupervised intelligent system based on one class support vector machine and grey wolf optimization for iot botnet detection. J. Ambient Intell. Humaniz. Comput. 1–17 (2019)
Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.: Multi-verse optimizer: theory, literature review, and application in data clustering. In: Nature-Inspired Optimizers, pp. 123–141. Springer, Cham (2020)
FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt. J. Artif. Intell. Tools20162561650033
AljarahIFarisHMirjaliliSAl-MadiNShetaAMafarjaMEvolving neural networks using bird swarm algorithm for data classification and regression applicationsCluster Comput.201922413171345
Zitzler, E.; Laumanns, M.; Thiele, L.: Spea2: improving the strength Pareto evolutionary algorithm. TIK-report, 103 (2001)
Alcalá-FdezJSanchezLGarciaSdel JesusMJVenturaSGarrellJMOteroJRomeroCBacarditJRivasVMKeel: a software tool to assess evolutionary algorithms for data mining problemsSoft Comput.2009133307318
Elhoseny, M.; Shankar, K.; Lakshmanaprabu, S.K.; Maseleno, A.; Arunkumar, N.: Hybrid optimization with cryptography encryption for medical image security in internet of things. Neural Comput. Appl. 1–15 (2018)
Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, Berlin (2000)
ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.2007116712731
Conti, M.; Dehghantanha, A.; Franke, K., Watson, S.: Internet of things security and forensics: challenges and opportunities (2018)
DiroAAChilamkurtiNDistributed attack detection scheme using deep learning approach for internet of thingsFuture Gener. Comput. Syst.201882761768
RathoreSParkJHSemi-supervised learning based distributed attack detection framework for IoTAppl. Soft Comput.2018727989
HanJPeiJKamberMData Mining: Concepts and Techniques2011AmsterdamElsevier1230.68018
MeidanYBohadanaMMathovYMirskyYShabtaiABreitenbacherDEloviciYN-baiot—network-based detection of iot botnet attacks using deep autoencodersIEEE Pervasive Comput.20181731222
Kennedy, J.; Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108. IEEE (1997)
Hemdan, E.E.-D.; Manjaiah, D.H.: Cybercrimes investigation and intrusion detection in internet of things based on data science methods. In: Cognitive Computing for Big Data Systems Over IoT, pp. 39–62. Springer, Berlin (2018)
Tama, B.A.; Rhee, K.-H.: An integration of PSO-based feature selection and random forest for anomaly detection in ToT network. In: MATEC Web of Conferences, vol. 159, pp. 01053. EDP Sciences (2018)
ZhengXLiuHA hybrid vertical mutation and self-adaptation based MOPSOComput. Math. Appl.20095711–122030203825233691186.90137
Heidari, A.A.; Aljarah, I.; Faris, H.; Chen, H.; Luo, J.; Mirjalili, S.: An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04015-0
MoustafaNTurnbullBChooK-KRAn
NS Altman (4476_CR54) 1992; 46
S Rathore (4476_CR31) 2018; 72
J Han (4476_CR53) 2011
C-Y Lee (4476_CR60) 2004; 8
4476_CR47
4476_CR48
R Alhajri (4476_CR29) 2019; 14
BB Zarpelao (4476_CR19) 2017; 84
4476_CR49
KAP da Costa (4476_CR26) 2019; 151
4476_CR40
4476_CR41
H Faris (4476_CR5) 2016; 25
H Faris (4476_CR4) 2018; 48
Y Meidan (4476_CR28) 2018; 17
J Alcalá-Fdez (4476_CR61) 2009; 13
4476_CR14
4476_CR15
4476_CR12
4476_CR56
X Zhanyang (4476_CR37) 2018; 18
4476_CR16
4476_CR17
4476_CR51
4476_CR10
4476_CR55
4476_CR1
4476_CR2
X-S Yang (4476_CR3) 2010
4476_CR6
4476_CR7
4476_CR25
4476_CR8
4476_CR9
L Xiao (4476_CR22) 2018; 35
S Li (4476_CR46) 2018; 6
4476_CR21
AV Chechkin (4476_CR58) 2008; 49
CAC Coello (4476_CR50) 2004; 8
K Deb (4476_CR13) 2001
D Li (4476_CR24) 2019; 49
AA Diro (4476_CR23) 2018; 82
S Mirjalili (4476_CR52) 2013; 9
J Li (4476_CR45) 2018; 6
I Aljarah (4476_CR11) 2019; 22
AL Sangeetha (4476_CR39) 2018; 117
4476_CR34
4476_CR35
M Hall (4476_CR63) 2009; 11
4476_CR38
P Selvarani (4476_CR43) 2018; 22
A Azmoodeh (4476_CR27) 2018; 9
4476_CR32
R Kesavamoorthy (4476_CR42) 2018; 22
4476_CR33
Q Zhang (4476_CR18) 2007; 11
4476_CR30
M Kuhn (4476_CR59) 2013
X Zheng (4476_CR57) 2009; 57
S Rana (4476_CR36) 2018; 9
EA Gehan (4476_CR62) 1965; 52
Z Sun (4476_CR44) 2018; 15
N Moustafa (4476_CR20) 2018; 6
References_xml – reference: Mishra, S.; Sagban, R.; Yakoob, A.; Gandhi, N.: Swarm intelligence in anomaly detection systems: an overview. Int. J. Comput. Appl. 1–10 (2018)
– reference: Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E.: Machine learning in IoT security: current solutions and future challenges. arXiv preprint arXiv:1904.05735 (2019)
– reference: MeidanYBohadanaMMathovYMirskyYShabtaiABreitenbacherDEloviciYN-baiot—network-based detection of iot botnet attacks using deep autoencodersIEEE Pervasive Comput.20181731222
– reference: Coello, C.A.C.; Lechuga, M.S.: Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1051–1056. IEEE (2002)
– reference: LiJZhaoZLiRZhangHZhangTAi-based two-stage intrusion detection for software defined iot networksIEEE Internet Things J.20186220932102
– reference: RathoreSParkJHSemi-supervised learning based distributed attack detection framework for IoTAppl. Soft Comput.2018727989
– reference: ZhengXLiuHA hybrid vertical mutation and self-adaptation based MOPSOComput. Math. Appl.20095711–122030203825233691186.90137
– reference: Faris, H.; Aljarah, I.; Alqatawna, J.F.: Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–5. IEEE (2015)
– reference: Deng, L.; Li, D.; Yao, X.; Cox, D.; Wang, H.: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Comput. 1–16 (2018)
– reference: Kennedy, J.; Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108. IEEE (1997)
– reference: MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut. Comput.20139114
– reference: AltmanNSAn introduction to kernel and nearest-neighbor nonparametric regressionAm. Stat.19924631751851183070
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.2007116712731
– reference: KuhnMJohnsonKApplied Predictive Modeling2013BerlinSpringer1306.62014
– reference: YangX-SNature-Inspired Metaheuristic Algorithms2010BeckingtonLuniver Press
– reference: Mohamed, T.A.; Otsuka, T.; Ito, T.: Towards machine learning based IoT intrusion detection service. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 580–585. Springer (2018)
– reference: Xue, Y.; Jia, W.; Zhao, X.; Pang, W.: An evolutionary computation based feature selection method for intrusion detection. Secur. Commun. Netw. (2018)
– reference: Faris, H.; Aljarah, I.; Mirjalili, S.; Castillo, P.A.; Guervós, J.J.M.: EvoloPy: an open-source nature-inspired optimization framework in Python. In: IJCCI (ECTA), pp. 171–177 (2016)
– reference: FarisHAljarahIMirjaliliSImproved monarch butterfly optimization for unconstrained global search and neural network trainingAppl. Intell.201848445464
– reference: Zitzler, E.; Laumanns, M.; Thiele, L.: Spea2: improving the strength Pareto evolutionary algorithm. TIK-report, 103 (2001)
– reference: Sreenivasamurthy, S.; Obraczka, K.: Clustering for load balancing and energy efficiency in IoT applications. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 319–332. IEEE (2018)
– reference: XiaoLWanXXiaozhenLZhangYDiWIot security techniques based on machine learning: how do iot devices use ai to enhance security?IEEE Signal Process. Mag.20183554149
– reference: Téllez, Nadim; Jimeno, Miguel; Salazar, Augusto; Nino-Ruiz, E: A tabu search method for load balancing in fog computing. Int. J. Artif. Intell. 16(2) (2018)
– reference: Hemdan, E.E.-D.; Manjaiah, D.H.: Cybercrimes investigation and intrusion detection in internet of things based on data science methods. In: Cognitive Computing for Big Data Systems Over IoT, pp. 39–62. Springer, Berlin (2018)
– reference: Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.: Multi-verse optimizer: theory, literature review, and application in data clustering. In: Nature-Inspired Optimizers, pp. 123–141. Springer, Cham (2020)
– reference: ZarpelaoBBMianiRSKawakaniCTde AlvarengaSCA survey of intrusion detection in internet of thingsJ. Netw. Comput. Appl.2017842537
– reference: AlhajriRZagroubaRAl-HaidariFSurvey for anomaly detection of iot botnets using machine learning auto-encodersInt. J. Appl. Eng. Res.2019141024172421
– reference: Elhoseny, M.; Shankar, K.; Lakshmanaprabu, S.K.; Maseleno, A.; Arunkumar, N.: Hybrid optimization with cryptography encryption for medical image security in internet of things. Neural Comput. Appl. 1–15 (2018)
– reference: CoelloCACPulidoGTHandling multiple objectives with particle swarm optimizationIEEE Trans. Evol. Comput.200483256279
– reference: AljarahIFarisHMirjaliliSAl-MadiNShetaAMafarjaMEvolving neural networks using bird swarm algorithm for data classification and regression applicationsCluster Comput.201922413171345
– reference: Mohemmed, A.W.; Zhang, M.: Evaluation of particle swarm optimization based centroid classifier with different distance metrics. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 2929–2932. IEEE (2008)
– reference: LeeC-YYaoXEvolutionary programming using mutations based on the Lévy probability distributionIEEE Trans. Evol. Comput.200481113
– reference: Dheeru, D.; Taniskidou, E.K.: UCI machine learning repository (2017)
– reference: da CostaKAPPapaJPLisboaCOMunozRde AlbuquerqueVHCInternet of things: a survey on machine learning-based intrusion detection approachesComput. Netw.2019151147157
– reference: Tama, B.A.; Rhee, K.-H.: An integration of PSO-based feature selection and random forest for anomaly detection in ToT network. In: MATEC Web of Conferences, vol. 159, pp. 01053. EDP Sciences (2018)
– reference: SelvaraniPSureshAMalarvizhiNSecure and optimal authentication framework for cloud management using HGAPSO algorithmCluster Comput.201822240074016
– reference: LiSBiFChenWMiaoXLiuJTangCAn improved information security risk assessments method for cyber-physical-social computing and networkingIEEE Access201861031110319
– reference: MoustafaNTurnbullBChooK-KRAn ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of internet of thingsIEEE Internet Things J.20186348154830
– reference: Alcalá-FdezJSanchezLGarciaSdel JesusMJVenturaSGarrellJMOteroJRomeroCBacarditJRivasVMKeel: a software tool to assess evolutionary algorithms for data mining problemsSoft Comput.2009133307318
– reference: AzmoodehADehghantanhaAContiMChooK-KRDetecting crypto-ransomware in iot networks based on energy consumption footprintJ. Ambient Intell. Humaniz. Comput.20189411411152
– reference: Heidari, A.A.; Aljarah, I.; Faris, H.; Chen, H.; Luo, J.; Mirjalili, S.: An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04015-0
– reference: LiDDengLLeeMWangHIoT data feature extraction and intrusion detection system for smart cities based on deep migration learningInt. J. Inf. Manag.201949533545
– reference: HanJPeiJKamberMData Mining: Concepts and Techniques2011AmsterdamElsevier1230.68018
– reference: Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, Berlin (2000)
– reference: FarisHAljarahIAl-MadiNMirjaliliSOptimizing the learning process of feedforward neural networks using lightning search algorithmInt. J. Artif. Intell. Tools20162561650033
– reference: SangeethaALBharathiNGaneshABRadhakrishnanTKParticle swarm optimization tuned cascade control system in an internet of things (IoT) environmentMeasurement20181178089
– reference: Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.: Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks. In: Nature-Inspired Optimizers, pp. 23–46. Springer, Cham (2020)
– reference: GehanEAA generalized Wilcoxon test for comparing arbitrarily singly-censored samplesBiometrika1965521–22032242071300133.41901
– reference: Sanchez-Pi, N.; Martí, L.; Molina, J.M.: Applying voreal for IoT intrusion detection. In: International Conference on Hybrid Artificial Intelligence Systems, pp. 363–374. Springer (2018)
– reference: Al Shorman, A.; Faris, H.; Aljarah, I.: Unsupervised intelligent system based on one class support vector machine and grey wolf optimization for iot botnet detection. J. Ambient Intell. Humaniz. Comput. 1–17 (2019)
– reference: KesavamoorthyRSoundarKRSwarm intelligence based autonomous DDOS attack detection and defense using multi agent systemCluster Comput.201822494699476
– reference: DiroAAChilamkurtiNDistributed attack detection scheme using deep learning approach for internet of thingsFuture Gener. Comput. Syst.201882761768
– reference: Suman, C.; Tripathy, S.; Saha, S.: Building an effective intrusion detection system using unsupervised feature selection in multi-objective optimization framework. arXiv preprint arXiv:1905.06562 (2019)
– reference: SunZZhangZXiaoCGangQDs evidence theory based trust ant colony routing in WSNChina Commun.20181532741
– reference: ChechkinAVMetzlerRKlafterJGoncharVYIntroduction to the theory of Lévy flightsAnomalous Transp. Found. Appl.2008492431451
– reference: Conti, M.; Dehghantanha, A.; Franke, K., Watson, S.: Internet of things security and forensics: challenges and opportunities (2018)
– reference: Almomani, A.; Alweshah, M.; Al, S.: Metaheuristic algorithms-based feature selection approach for intrusion detection. In: Machine Learning for Computer and Cyber Security: Principle, Algorithms, and Practices (2019)
– reference: Yang, X.-S.; Metaheuristic optimization: algorithm analysis and open problems. In: International Symposium on Experimental Algorithms, pp. 21–32. Springer, Berlin (2011)
– reference: RanaSHossainSShounHIAbul KashemMAn effective lightweight cryptographic algorithm to secure resource-constrained devicesInt. J. Adv. Comput. Sci. Appl.2018911267275
– reference: HallMFrankEHolmesGPfahringerBReutemannPWittenIHThe weka data mining software: an updateACM SIGKDD Explor. Newslett.20091111018
– reference: Corne, D.W; Jerram, N.R.; Knowles, J.D.; Oates, M.J.: Pesa-ii: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)
– reference: ZhanyangXRenhaoGHuangTXiangHZhangXQiLXiaolongXAn IoT-oriented offloading method with privacy preservation for cloudlet-enabled wireless metropolitan area networksSensors20181893030
– reference: DebKKalyanmoyDMulti-objective Optimization Using Evolutionary Algorithms2001New YorkWiley0970.90091
– volume-title: Nature-Inspired Metaheuristic Algorithms
  year: 2010
  ident: 4476_CR3
– volume: 82
  start-page: 761
  year: 2018
  ident: 4476_CR23
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.043
– volume: 49
  start-page: 533
  year: 2019
  ident: 4476_CR24
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2019.04.006
– volume: 6
  start-page: 2093
  issue: 2
  year: 2018
  ident: 4476_CR45
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2883344
– ident: 4476_CR49
  doi: 10.1007/s12652-019-01387-y
– ident: 4476_CR1
  doi: 10.1016/j.future.2017.07.060
– ident: 4476_CR16
– ident: 4476_CR35
– ident: 4476_CR10
  doi: 10.1007/978-3-030-12127-3_3
– volume: 22
  start-page: 4007
  issue: 2
  year: 2018
  ident: 4476_CR43
  publication-title: Cluster Comput.
– volume: 8
  start-page: 1
  issue: 1
  year: 2004
  ident: 4476_CR60
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.816583
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 4476_CR50
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– volume: 15
  start-page: 27
  issue: 3
  year: 2018
  ident: 4476_CR44
  publication-title: China Commun.
  doi: 10.1109/CC.2018.8331989
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 4476_CR63
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1656274.1656278
– ident: 4476_CR48
  doi: 10.1109/TENCON.2019.8929510
– ident: 4476_CR8
  doi: 10.5220/0006048201710177
– volume-title: Data Mining: Concepts and Techniques
  year: 2011
  ident: 4476_CR53
– volume: 117
  start-page: 80
  year: 2018
  ident: 4476_CR39
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.12.014
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 4476_CR54
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– ident: 4476_CR12
  doi: 10.1007/978-3-642-20662-7_2
– ident: 4476_CR47
  doi: 10.1007/978-3-319-92639-1_30
– ident: 4476_CR32
– ident: 4476_CR9
  doi: 10.1007/978-3-030-12127-3_8
– volume: 6
  start-page: 10311
  year: 2018
  ident: 4476_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2800664
– volume: 17
  start-page: 12
  issue: 3
  year: 2018
  ident: 4476_CR28
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2018.03367731
– ident: 4476_CR2
  doi: 10.1007/978-3-319-70688-7_2
– ident: 4476_CR41
  doi: 10.1051/matecconf/201815901053
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 4476_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 57
  start-page: 2030
  issue: 11–12
  year: 2009
  ident: 4476_CR57
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.09.023
– volume: 14
  start-page: 2417
  issue: 10
  year: 2019
  ident: 4476_CR29
  publication-title: Int. J. Appl. Eng. Res.
– volume: 52
  start-page: 203
  issue: 1–2
  year: 1965
  ident: 4476_CR62
  publication-title: Biometrika
  doi: 10.1093/biomet/52.1-2.203
– volume: 35
  start-page: 41
  issue: 5
  year: 2018
  ident: 4476_CR22
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2018.2825478
– volume: 22
  start-page: 1317
  issue: 4
  year: 2019
  ident: 4476_CR11
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-019-02913-5
– ident: 4476_CR30
  doi: 10.1007/978-3-319-92058-0_56
– volume: 9
  start-page: 267
  issue: 11
  year: 2018
  ident: 4476_CR36
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: 4476_CR38
  doi: 10.1155/2018/2492956
– volume: 84
  start-page: 25
  year: 2017
  ident: 4476_CR19
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.02.009
– ident: 4476_CR6
  doi: 10.1109/AEECT.2015.7360576
– volume: 49
  start-page: 431
  issue: 2
  year: 2008
  ident: 4476_CR58
  publication-title: Anomalous Transp. Found. Appl.
– ident: 4476_CR25
  doi: 10.1109/COMST.2020.2986444
– ident: 4476_CR14
– ident: 4476_CR56
– volume: 9
  start-page: 1
  year: 2013
  ident: 4476_CR52
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 9
  start-page: 1141
  issue: 4
  year: 2018
  ident: 4476_CR27
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-017-0558-5
– ident: 4476_CR33
  doi: 10.1201/9780429504044-8
– ident: 4476_CR21
  doi: 10.1007/s10586-018-1847-2
– ident: 4476_CR34
  doi: 10.1109/MASCOTS.2018.00038
– volume: 13
  start-page: 307
  issue: 3
  year: 2009
  ident: 4476_CR61
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0323-y
– ident: 4476_CR55
  doi: 10.1109/CEC.2008.4631192
– volume: 48
  start-page: 445
  year: 2018
  ident: 4476_CR4
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0967-3
– volume: 6
  start-page: 4815
  issue: 3
  year: 2018
  ident: 4476_CR20
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2871719
– volume: 151
  start-page: 147
  year: 2019
  ident: 4476_CR26
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.023
– volume: 25
  start-page: 1650033
  issue: 6
  year: 2016
  ident: 4476_CR5
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213016500330
– ident: 4476_CR7
  doi: 10.1007/s00521-019-04015-0
– ident: 4476_CR51
– ident: 4476_CR17
– volume: 72
  start-page: 79
  year: 2018
  ident: 4476_CR31
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.049
– ident: 4476_CR40
  doi: 10.1007/s00521-018-3801-x
– volume: 18
  start-page: 3030
  issue: 9
  year: 2018
  ident: 4476_CR37
  publication-title: Sensors
  doi: 10.3390/s18093030
– volume-title: Applied Predictive Modeling
  year: 2013
  ident: 4476_CR59
  doi: 10.1007/978-1-4614-6849-3
– volume-title: Multi-objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: 4476_CR13
– ident: 4476_CR15
  doi: 10.1007/3-540-45356-3_83
– volume: 22
  start-page: 9469
  issue: 4
  year: 2018
  ident: 4476_CR42
  publication-title: Cluster Comput.
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3350205
Snippet The emerging of the Internet of things (IoT), and more, the advent of the Internet of everything have revolutionized the computer networks industry. The high...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6081
SubjectTerms Authentication
Computer networks
Encryption
Engineering
Evolutionary algorithms
Humanities and Social Sciences
Internet of Things
Intrusion detection systems
multidisciplinary
Multiple objective analysis
Network security
Particle swarm optimization
Protocol (computers)
Research Article-Computer Engineering and Computer Science
Science
Title A Modified Multi-objective Particle Swarm Optimizer-Based Lévy Flight: An Approach Toward Intrusion Detection in Internet of Things
URI https://link.springer.com/article/10.1007/s13369-020-04476-9
https://www.proquest.com/docview/2425623989
Volume 45
WOSCitedRecordID wos000522934600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEA1uBz24izt18KaBttNbvI3LoOAGLsytSWeBkbFHZgZFz_6M3-GPWUl32yoqKPQtC02qknqVVL0iZCPzZGhCrSnTQtBAcWYfCRX1tYy18FWcbUtXbCI-PU1aLX5eJoX1q2j36knSndR1shtjEafW3fGCII4oHyajoWWbsT76xXWlRQGafEQRrL5pQQTku1KyuDsZDaO4VWbPfD_tZwtVw84vL6XOADWn_vfr02SyBJzQKDRkhgzpfJZMfKAhnCPPDTjpqrZBNAouIZd2s5viIITzUrXg4kH0buEMT5jb9pPu0V00fwqOX1_uH6HZsS7-DjRyaJQc5XDp4nHhKLdZHSh82NcDF_aVQzuH4iJSD6BroCgdOk-umgeXe4e0rM5AJW7bAY3Q9AmRMU9KlLfKQuNlIX4IYNBB54gcNIu1yqThyngJT7C_iRNh6UDRC5RsgYzk3VwvElA-DotNiGhEBr4wIsEeXCiT-FkShcES2a4kksqSutxW0OikNemyXeEUVzh1K5zyJbL5PuauIO74tfdqJei03MT91HpjkeVHxOatSrB188-zLf-t-woZ951u2LDCVTKCctFrZEzeD9r93rpT7jfnVPKH
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYoVCocCuUh0vKYQ2_U0rLel7mFRwQiBCQCym3l9UMKgg1KoiA482f4Hf1jjL27bEEUqZX25rG18ow933hehPzMPBmaUGvKtBA0UJxZJ6GivpaxFr6Ks23pmk3EnU7S6_GzMilsVEW7Vy5Jd1PXyW6MRZxac8cLgjii_BOZCWybHWujn19WUhSgykcUweqXFkRAvmsli6eT0TCKe2X2zPvLvtZQNex84yl1Cqg1_3-_vkC-loATmoWEfCNTOl8kc3-UIVwij004Gai-QTQKLiGXDrKr4iKEs1K04PxODG_gFG-Ym_6DHtJdVH8K2r-fJvfQurYm_g40c2iWNcqh6-Jx4Si3WR3IfNjXYxf2lUM_h-IhUo9hYKBoHbpMLloH3b1DWnZnoBKP7ZhGqPqEyJgnJfJbZaHxshA_BDBooHNEDprFWmXScGW8hCdIb-JE2HKgaAVKtkKm80GuVwkoH6fFJkQ0IgNfGJEgBRfKJH6WRGHQINsVR1JZli63HTSu07rost3hFHc4dTuc8gbZeplzWxTu-JB6rWJ0Wh7iUWqtscjWR8ThXxVj6-G_r_b938g3yZfD7kk7bR91jn-QWd_JiQ0xXCPTyCO9Tj7Lybg_Gm44QX8GTQf1aw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELaAItQeKBRQeZU5cAOLbJyXe9sWVkXAsuKlvUWOH9IiyKIlomrP_Jn-Dv4YYychgAoSQsrNDymesecbe-YbQtYzT4Ym1JoyLQQNFGf2kVBRX8tYC1_FWUu6YhNxt5v0-7z3KIvfRbvXT5JlToNlacqLrStltprEN8YiTq3r4wVBHFE-Tj4E6MnYoK6j47NaowI0_4goWHPrgmjId2VlcacyGkZxv8qk-f-0T61VA0GfvZo6Y9T5_P7fmCHTFRCFdqk5s2RM51_Ip0f0hHPktg0HQzUwiFLBJerSYXZeHpDQq1QOjn-L0SUc4slzOfirR_QHmkUF-3f_bv5A58K6_t-hnUO74i6HExenC7u5zfZApYBtXbhwsBwGOZQXlLqAoYGypOg8Oe3snPz8RauqDVTidi5ohCZRiIx5UqIeqCw0Xhbih8AGHXeOiEKzWKtMGq6Ml_AE-5s4EZYmFL1DyRbIRD7M9VcCysdhsQkRpcjAF0Yk2IMLZRI_S6IwWCStWjqprCjNbWWNi7QhY7YrnOIKp26FU75INh7GXJWEHq_2XqmFnlab-zq1XlpkeROxebMWctP88mxLb-u-RqZ62510f7e7t0w--k5NbOThCplAEelVMilvisH16JvT-Xv4Ef5P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+Multi-objective+Particle+Swarm+Optimizer-Based+L%C3%A9vy+Flight%3A+An+Approach+Toward+Intrusion+Detection+in+Internet+of+Things&rft.jtitle=The+Arabian+Journal+for+Science+and+Engineering.+Section+B%2C+Engineering&rft.au=Habib%2C+Maria&rft.au=Aljarah+Ibrahim&rft.au=Faris+Hossam&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=45&rft.issue=8&rft.spage=6081&rft.epage=6108&rft_id=info:doi/10.1007%2Fs13369-020-04476-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon