Robust nonsmooth optimality conditions for uncertain multiobjective programs involving stable functions

In this paper, we study and develop robust nonsmooth optimality conditions and duality analysis for an uncertain multiobjective programming problem with constraints (( UCMOP ), for brevity). First, we introduce the constraint qualification of the ( GRSCQ ) type and then establish some robust necessa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis Jg. 28; H. 4; S. 60
1. Verfasser: Van Su, Tran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Schlagworte:
ISSN:1385-1292, 1572-9281
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we study and develop robust nonsmooth optimality conditions and duality analysis for an uncertain multiobjective programming problem with constraints (( UCMOP ), for brevity). First, we introduce the constraint qualification of the ( GRSCQ ) type and then establish some robust necessary optimality conditions in terms of the generalized subdifferentials for some types of minima (including robust weakly efficient and robust properly efficient) to such problem involving stable functions. Under suitable assumptions on the pseudo-convexity of objective and constraint functions, robust necessary nonsmooth optimality conditions become robust sufficient optimality conditions. An application of the obtained results for its Wolfe and Mond–Weir types dual problem is presented and some illustrative examples are also provided for our findings.
AbstractList In this paper, we study and develop robust nonsmooth optimality conditions and duality analysis for an uncertain multiobjective programming problem with constraints ((UCMOP), for brevity). First, we introduce the constraint qualification of the (GRSCQ) type and then establish some robust necessary optimality conditions in terms of the generalized subdifferentials for some types of minima (including robust weakly efficient and robust properly efficient) to such problem involving stable functions. Under suitable assumptions on the pseudo-convexity of objective and constraint functions, robust necessary nonsmooth optimality conditions become robust sufficient optimality conditions. An application of the obtained results for its Wolfe and Mond–Weir types dual problem is presented and some illustrative examples are also provided for our findings.
In this paper, we study and develop robust nonsmooth optimality conditions and duality analysis for an uncertain multiobjective programming problem with constraints (( UCMOP ), for brevity). First, we introduce the constraint qualification of the ( GRSCQ ) type and then establish some robust necessary optimality conditions in terms of the generalized subdifferentials for some types of minima (including robust weakly efficient and robust properly efficient) to such problem involving stable functions. Under suitable assumptions on the pseudo-convexity of objective and constraint functions, robust necessary nonsmooth optimality conditions become robust sufficient optimality conditions. An application of the obtained results for its Wolfe and Mond–Weir types dual problem is presented and some illustrative examples are also provided for our findings.
ArticleNumber 60
Author Van Su, Tran
Author_xml – sequence: 1
  givenname: Tran
  surname: Van Su
  fullname: Van Su, Tran
  email: tvsu@ued.udn.vn
  organization: Faculty of Mathematics, The University of Danang - University of Science and Education
BookMark eNp9kF9rwyAUxWV0sLbbF9iTsGc3NSYmj6PsHxQGY3sWTUxmSbRT09JvP9sMBnuYL8r1_M699yzAzDqrAbgm-JZgzO8CSYcjTBnCBHOO9mdgTnJOUUVLMkvvrMwRoRW9AIsQNjipMMNz0L05NYYIk18YnIuf0G2jGWRv4gHWzjYmmvQFW-fhaGvtozQWDmOfymqj62h2Gm6967wcAjR25_qdsR0MUapewzYxJ4NLcN7KPuirn3sJPh4f3lfPaP369LK6X6M6I1VERcZkSUrGGS3ymjAtFVcNYVSWmmrcSNVwXDSUKoKlbpXmRUvyVimmqcS0yJbgZvJNM32NOkSxcaO3qaXIcEUoKUqGk4pOqtq7ELxuxdanpf1BECyOgYopUJECFadAxT5B5R-oNlEet4temv5_NJvQkPrYTvvfqf6hvgEw8JCt
CitedBy_id crossref_primary_10_1007_s12190_025_02584_z
Cites_doi 10.1007/s10957-018-1437-8
10.1016/j.ejor.2013.10.028
10.1007/BF01594928
10.1080/02331939208843804
10.1007/s10898-009-9522-z
10.1007/978-3-642-50280-4
10.1016/j.jmaa.2007.01.110
10.1080/02331934.2022.2031189
10.1016/j.na.2011.04.006
10.1080/01630563.2016.1155158
10.1090/qam/135625
10.1515/9781400873173
10.1016/j.na.2016.01.002
10.1137/100791841
10.1016/j.ejor.2016.12.045
10.1007/s10957-014-0564-0
10.1007/s10479-016-2363-5
10.1080/02331930601120516
10.1016/j.jmaa.2006.04.060
10.1007/s00158-004-0450-8
10.1007/s00186-014-0471-z
10.1080/02331934.2013.769104
10.1016/j.ejor.2017.04.012
10.1080/02331934.2018.1442448
10.1080/02331934.2022.2038154
10.1007/s10107-006-0092-2
10.1080/02331934.2020.1836636
10.4134/CKMS.2013.28.3.597
10.1080/02331934.2022.2046740
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
88I
8AO
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11117-024-01077-w
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9281
ExternalDocumentID 10_1007_s11117_024_01077_w
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8G5
8TC
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7XB
8FK
JQ2
L.-
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-634a818474265c14eab7bd142a8e2e0dabd706d22b10aefbe76f15fbb4e2a0263
IEDL.DBID M2P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287977200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-1292
IngestDate Fri Nov 07 23:42:30 EST 2025
Tue Nov 18 21:39:53 EST 2025
Sat Nov 29 03:21:15 EST 2025
Fri Feb 21 02:38:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Robust duality theorems
Robust efficient solutions
Robust nonsmooth optimality conditions
Uncertain nonsmooth multiobjective programming
90C46
90C25
65K10
90C29
Wolfe and Mond–Weir types dual problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-634a818474265c14eab7bd142a8e2e0dabd706d22b10aefbe76f15fbb4e2a0263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3091216840
PQPubID 26063
ParticipantIDs proquest_journals_3091216840
crossref_primary_10_1007_s11117_024_01077_w
crossref_citationtrail_10_1007_s11117_024_01077_w
springer_journals_10_1007_s11117_024_01077_w
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Mathematics Journal devoted to Theory and Applications of Positivity
PublicationTitle Positivity : an international journal devoted to the theory and applications of positivity in analysis
PublicationTitleAbbrev Positivity
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References IdeJKobisEConcepts of efficiency for uncertain multiobjective problems based on set order relationsMath. Meth. Oper. Res.2014809912710.1007/s00186-014-0471-z
RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/9781400873173
KlamrothKKobisESchobelATammerCA unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionalsOptimization2013625649671306096810.1080/02331934.2013.769104
Rodríguez - Marín, L., Sama, M.: Variational characterization of the contingent epiderivative: J. Math. Anal. Appl. 335, 1374–1382 (2007)
BokrantzRFredrikssonANecessary and sufficient conditions for Pareto efficiency in robust multiobjective optimizationEur. J. Oper. Res.2017262682692365476810.1016/j.ejor.2017.04.012
GunawanSAzarmSMultiobjective robust optimization using a sensitivity region conceptStruct. Multidiscrip. Optimization.200529506010.1007/s00158-004-0450-8
WangJLiS-JChenC-RRobust nonsmooth optimality conditions for multiobjective optimization problems with infinitely many uncertain constraintsOptimization202372820392067462046810.1080/02331934.2022.2046740
AubinJ-PFrankowskaHSet-Valued Analysis1990BostonBirkhauser
ThuyNTTSuTVRobust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain dataOptimization202372717451775460368710.1080/02331934.2022.2038154
ClasonCKhanAASamaATammerCContingent derivatives and regularization for noncoercive inverse problemsOptimization201968713371364398520110.1080/02331934.2018.1442448
LucDTContingent derivatives of set-valued maps and applications to vector optimizationMath. Program.19915099111109885010.1007/BF01594928
LeeGMLeeJHOn nonsmooth optimality theorems for robust multiobjective optimization problemsJ. Nonlinear Convex Anal.201516203920523422635
JiménezBNovoVFirst order optimality conditions in vector optimization involving stable functionsOptimization2008573449471241207710.1080/02331930601120516
WolfePA duality theorem for nonlinear programmingQ. J. Appl. Math.19611923924410.1090/qam/135625
WeiH-ZChenC-RLiS-JNecessary optimality conditions for nonsmooth robust optimization problemsOptimization202271718171837444824410.1080/02331934.2020.1836636
DuyTQRobust efficiency and well-posedness in uncertain vector optimization problemsOptimization202374937955455923610.1080/02331934.2022.2031189
Rodríguez - Marín, L., Sama, M.: About Contingent epiderivatives: J. Math. Anal. Appl. 327, 745–762 (2007)
GopfertARiahiHTammerCZalinescuCVariational Methods in Partially Ordered Spaces2003New YorkSpringer
MondMWeirTGenerallized Concavity and Duality. Generallized Concavity in Optimization and Economics1981New YorkAcademic Press
ChenJKobisEYaoJ-COptimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraintsJ. Optim. Theory Appl.2019181411436393847510.1007/s10957-018-1437-8
SuTVOptimality conditions for vector equilibrium problems in terms of contingent epiderivativesNumer. Funct. Anal. Optim.201637640665351452210.1080/01630563.2016.1155158
KlamrothKKobisESchobelATammerCA unified approach to uncertain optimizationEur. J. Oper. Res.2017260403420361500010.1016/j.ejor.2016.12.045
FliegeJWernerRRobust multiobjective optimization & applications in portfolio optimizationEur. J. Oper. Res.2014234422433314473110.1016/j.ejor.2013.10.028
JeyakumarVLiGStrong duality in robust convex programming: complete characterizationsSIAM J. Optim.20102033843407276350910.1137/100791841
GiorgiGGuerraggioAOn the notion of tangent cone in mathematical programmingOptimization1992251123123531410.1080/02331939208843804
SunejaSKKhuranaSBhatiaMOptimality and duality in vector optimization involving generalized type I functions over conesJ. Global Optim.2011492335274051210.1007/s10898-009-9522-z
Ben-TalANemirovskiAA selected topic in robust convex optimizationMath. Programm. Ser. B.2008112125158232700410.1007/s10107-006-0092-2
Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, Vol. 39. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-50280-4
Ben-TalAGhaouiLENemirovskiARobust Optimization. Princeton Series in Applied Mathematics2009PrincetonPrinceton University Press
JeyakumarVLeeGMLiGCharacterizing robust solutions sets convex programs under data uncertaintyJ. Optim. Theory Appl.201564407435329797010.1007/s10957-014-0564-0
KimMHDuality theorem and vector saddle point theorem for robust multiobjective optimization problemsCommun. Korean Math. Soc.201328597602308560810.4134/CKMS.2013.28.3.597
LeeJHLeeGMOn optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problemsAnn. Oper. Res.2018269419438384848810.1007/s10479-016-2363-5
ClarkeFHOptimization and Nonsmooth Analysis1983New YorkViley-Interscience
ChuongTDOptimality and duality for robust multiobjective optimization problemsNonlinear Anal.2016134127143346262110.1016/j.na.2016.01.002
JeyakumarVLiGLeeGMRobust duality for generalized convex programming problems under data uncertaintyNonlinear Anal.20127513621373286134110.1016/j.na.2011.04.006
RT Rockafellar (1077_CR29) 1970
A Gopfert (1077_CR16) 2003
G Giorgi (1077_CR17) 1992; 25
H-Z Wei (1077_CR34) 2022; 71
A Ben-Tal (1077_CR3) 2008; 112
V Jeyakumar (1077_CR13) 2015; 64
NTT Thuy (1077_CR32) 2023; 72
V Jeyakumar (1077_CR15) 2012; 75
S Gunawan (1077_CR18) 2005; 29
TV Su (1077_CR30) 2016; 37
1077_CR28
1077_CR27
J Chen (1077_CR7) 2019; 181
1077_CR24
M Mond (1077_CR26) 1981
TD Chuong (1077_CR8) 2016; 134
K Klamroth (1077_CR19) 2017; 260
C Clason (1077_CR6) 2019; 68
MH Kim (1077_CR21) 2013; 28
P Wolfe (1077_CR35) 1961; 19
J Ide (1077_CR11) 2014; 80
J Wang (1077_CR33) 2023; 72
B Jiménez (1077_CR12) 2008; 57
V Jeyakumar (1077_CR14) 2010; 20
TQ Duy (1077_CR9) 2023; 7
J Fliege (1077_CR10) 2014; 234
A Ben-Tal (1077_CR2) 2009
JH Lee (1077_CR22) 2018; 269
SK Suneja (1077_CR31) 2011; 49
J-P Aubin (1077_CR1) 1990
FH Clarke (1077_CR5) 1983
GM Lee (1077_CR23) 2015; 16
K Klamroth (1077_CR20) 2013; 62
R Bokrantz (1077_CR4) 2017; 262
DT Luc (1077_CR25) 1991; 50
References_xml – reference: KlamrothKKobisESchobelATammerCA unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionalsOptimization2013625649671306096810.1080/02331934.2013.769104
– reference: ThuyNTTSuTVRobust optimality conditions and duality for nonsmooth multiobjective fractional semi-infinite programming problems with uncertain dataOptimization202372717451775460368710.1080/02331934.2022.2038154
– reference: ClasonCKhanAASamaATammerCContingent derivatives and regularization for noncoercive inverse problemsOptimization201968713371364398520110.1080/02331934.2018.1442448
– reference: GopfertARiahiHTammerCZalinescuCVariational Methods in Partially Ordered Spaces2003New YorkSpringer
– reference: RockafellarRTConvex Analysis1970PrincetonPrinceton University Press10.1515/9781400873173
– reference: WeiH-ZChenC-RLiS-JNecessary optimality conditions for nonsmooth robust optimization problemsOptimization202271718171837444824410.1080/02331934.2020.1836636
– reference: KlamrothKKobisESchobelATammerCA unified approach to uncertain optimizationEur. J. Oper. Res.2017260403420361500010.1016/j.ejor.2016.12.045
– reference: ChenJKobisEYaoJ-COptimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraintsJ. Optim. Theory Appl.2019181411436393847510.1007/s10957-018-1437-8
– reference: IdeJKobisEConcepts of efficiency for uncertain multiobjective problems based on set order relationsMath. Meth. Oper. Res.2014809912710.1007/s00186-014-0471-z
– reference: MondMWeirTGenerallized Concavity and Duality. Generallized Concavity in Optimization and Economics1981New YorkAcademic Press
– reference: JeyakumarVLiGLeeGMRobust duality for generalized convex programming problems under data uncertaintyNonlinear Anal.20127513621373286134110.1016/j.na.2011.04.006
– reference: BokrantzRFredrikssonANecessary and sufficient conditions for Pareto efficiency in robust multiobjective optimizationEur. J. Oper. Res.2017262682692365476810.1016/j.ejor.2017.04.012
– reference: ChuongTDOptimality and duality for robust multiobjective optimization problemsNonlinear Anal.2016134127143346262110.1016/j.na.2016.01.002
– reference: KimMHDuality theorem and vector saddle point theorem for robust multiobjective optimization problemsCommun. Korean Math. Soc.201328597602308560810.4134/CKMS.2013.28.3.597
– reference: WolfePA duality theorem for nonlinear programmingQ. J. Appl. Math.19611923924410.1090/qam/135625
– reference: GiorgiGGuerraggioAOn the notion of tangent cone in mathematical programmingOptimization1992251123123531410.1080/02331939208843804
– reference: JeyakumarVLeeGMLiGCharacterizing robust solutions sets convex programs under data uncertaintyJ. Optim. Theory Appl.201564407435329797010.1007/s10957-014-0564-0
– reference: JeyakumarVLiGStrong duality in robust convex programming: complete characterizationsSIAM J. Optim.20102033843407276350910.1137/100791841
– reference: LucDTContingent derivatives of set-valued maps and applications to vector optimizationMath. Program.19915099111109885010.1007/BF01594928
– reference: GunawanSAzarmSMultiobjective robust optimization using a sensitivity region conceptStruct. Multidiscrip. Optimization.200529506010.1007/s00158-004-0450-8
– reference: FliegeJWernerRRobust multiobjective optimization & applications in portfolio optimizationEur. J. Oper. Res.2014234422433314473110.1016/j.ejor.2013.10.028
– reference: JiménezBNovoVFirst order optimality conditions in vector optimization involving stable functionsOptimization2008573449471241207710.1080/02331930601120516
– reference: WangJLiS-JChenC-RRobust nonsmooth optimality conditions for multiobjective optimization problems with infinitely many uncertain constraintsOptimization202372820392067462046810.1080/02331934.2022.2046740
– reference: ClarkeFHOptimization and Nonsmooth Analysis1983New YorkViley-Interscience
– reference: Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems, Vol. 39. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-50280-4
– reference: AubinJ-PFrankowskaHSet-Valued Analysis1990BostonBirkhauser
– reference: SunejaSKKhuranaSBhatiaMOptimality and duality in vector optimization involving generalized type I functions over conesJ. Global Optim.2011492335274051210.1007/s10898-009-9522-z
– reference: Ben-TalAGhaouiLENemirovskiARobust Optimization. Princeton Series in Applied Mathematics2009PrincetonPrinceton University Press
– reference: LeeJHLeeGMOn optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problemsAnn. Oper. Res.2018269419438384848810.1007/s10479-016-2363-5
– reference: LeeGMLeeJHOn nonsmooth optimality theorems for robust multiobjective optimization problemsJ. Nonlinear Convex Anal.201516203920523422635
– reference: SuTVOptimality conditions for vector equilibrium problems in terms of contingent epiderivativesNumer. Funct. Anal. Optim.201637640665351452210.1080/01630563.2016.1155158
– reference: Ben-TalANemirovskiAA selected topic in robust convex optimizationMath. Programm. Ser. B.2008112125158232700410.1007/s10107-006-0092-2
– reference: Rodríguez - Marín, L., Sama, M.: About Contingent epiderivatives: J. Math. Anal. Appl. 327, 745–762 (2007)
– reference: Rodríguez - Marín, L., Sama, M.: Variational characterization of the contingent epiderivative: J. Math. Anal. Appl. 335, 1374–1382 (2007)
– reference: DuyTQRobust efficiency and well-posedness in uncertain vector optimization problemsOptimization202374937955455923610.1080/02331934.2022.2031189
– volume: 181
  start-page: 411
  year: 2019
  ident: 1077_CR7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-018-1437-8
– volume: 234
  start-page: 422
  year: 2014
  ident: 1077_CR10
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2013.10.028
– volume-title: Variational Methods in Partially Ordered Spaces
  year: 2003
  ident: 1077_CR16
– volume: 16
  start-page: 2039
  year: 2015
  ident: 1077_CR23
  publication-title: J. Nonlinear Convex Anal.
– volume: 50
  start-page: 99
  year: 1991
  ident: 1077_CR25
  publication-title: Math. Program.
  doi: 10.1007/BF01594928
– volume: 25
  start-page: 11
  year: 1992
  ident: 1077_CR17
  publication-title: Optimization
  doi: 10.1080/02331939208843804
– volume: 49
  start-page: 23
  year: 2011
  ident: 1077_CR31
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-009-9522-z
– ident: 1077_CR24
  doi: 10.1007/978-3-642-50280-4
– ident: 1077_CR28
  doi: 10.1016/j.jmaa.2007.01.110
– volume: 7
  start-page: 937
  issue: 4
  year: 2023
  ident: 1077_CR9
  publication-title: Optimization
  doi: 10.1080/02331934.2022.2031189
– volume: 75
  start-page: 1362
  year: 2012
  ident: 1077_CR15
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2011.04.006
– volume: 37
  start-page: 640
  year: 2016
  ident: 1077_CR30
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2016.1155158
– volume: 19
  start-page: 239
  year: 1961
  ident: 1077_CR35
  publication-title: Q. J. Appl. Math.
  doi: 10.1090/qam/135625
– volume-title: Robust Optimization. Princeton Series in Applied Mathematics
  year: 2009
  ident: 1077_CR2
– volume-title: Convex Analysis
  year: 1970
  ident: 1077_CR29
  doi: 10.1515/9781400873173
– volume: 134
  start-page: 127
  year: 2016
  ident: 1077_CR8
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2016.01.002
– volume: 20
  start-page: 3384
  year: 2010
  ident: 1077_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/100791841
– volume-title: Set-Valued Analysis
  year: 1990
  ident: 1077_CR1
– volume: 260
  start-page: 403
  year: 2017
  ident: 1077_CR19
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.12.045
– volume: 64
  start-page: 407
  year: 2015
  ident: 1077_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0564-0
– volume: 269
  start-page: 419
  year: 2018
  ident: 1077_CR22
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-016-2363-5
– volume: 57
  start-page: 449
  issue: 3
  year: 2008
  ident: 1077_CR12
  publication-title: Optimization
  doi: 10.1080/02331930601120516
– ident: 1077_CR27
  doi: 10.1016/j.jmaa.2006.04.060
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 1077_CR5
– volume: 29
  start-page: 50
  year: 2005
  ident: 1077_CR18
  publication-title: Struct. Multidiscrip. Optimization.
  doi: 10.1007/s00158-004-0450-8
– volume: 80
  start-page: 99
  year: 2014
  ident: 1077_CR11
  publication-title: Math. Meth. Oper. Res.
  doi: 10.1007/s00186-014-0471-z
– volume: 62
  start-page: 649
  issue: 5
  year: 2013
  ident: 1077_CR20
  publication-title: Optimization
  doi: 10.1080/02331934.2013.769104
– volume: 262
  start-page: 682
  year: 2017
  ident: 1077_CR4
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.04.012
– volume: 68
  start-page: 1337
  issue: 7
  year: 2019
  ident: 1077_CR6
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1442448
– volume: 72
  start-page: 1745
  issue: 7
  year: 2023
  ident: 1077_CR32
  publication-title: Optimization
  doi: 10.1080/02331934.2022.2038154
– volume: 112
  start-page: 125
  year: 2008
  ident: 1077_CR3
  publication-title: Math. Programm. Ser. B.
  doi: 10.1007/s10107-006-0092-2
– volume: 71
  start-page: 1817
  issue: 7
  year: 2022
  ident: 1077_CR34
  publication-title: Optimization
  doi: 10.1080/02331934.2020.1836636
– volume: 28
  start-page: 597
  year: 2013
  ident: 1077_CR21
  publication-title: Commun. Korean Math. Soc.
  doi: 10.4134/CKMS.2013.28.3.597
– volume-title: Generallized Concavity and Duality. Generallized Concavity in Optimization and Economics
  year: 1981
  ident: 1077_CR26
– volume: 72
  start-page: 2039
  issue: 8
  year: 2023
  ident: 1077_CR33
  publication-title: Optimization
  doi: 10.1080/02331934.2022.2046740
SSID ssj0010040
Score 2.3280847
Snippet In this paper, we study and develop robust nonsmooth optimality conditions and duality analysis for an uncertain multiobjective programming problem with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Applied mathematics
Calculus of Variations and Optimal Control; Optimization
Constraints
Convexity
Econometrics
Euclidean space
Fourier Analysis
Mathematical programming
Mathematics
Mathematics and Statistics
Multiple objective analysis
Operator Theory
Optimization
Potential Theory
Robustness
Uncertainty analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xdJQdvGmjTNukeRRQPKuJj2VtJ0lRW9iG2un_fSZruoqigvTYJITOZ75tkMgNwlBeF4FoX1OYeo7EQBZWpTqgKdWwirgLuznS7V-LmJu31Orf-UVjZRLs3V5LOUs8eu-EnKGIKur-BEHQyD4sId6kt2HB3353eHVi9dG5WmlBEM-afynw_xmc4mnHML9eiDm0u1v43z3VY9eySnNbqsAFzZrQJa55pEr-Py01YuZ5may234OlurN7KioxQA4djFB0ZoyEZOoZO0F_O67AugvyWIAzWQQTEhSKO1XNtMYkP9CpJf4QWzx5TECSeamCIhU43wDY8Xpw_nF1SX4CBatyZFeVRLBHQY3SfeaLD2EglVB7GTKaGmSCXKhcBzxlTYSBNoYzgRZgUSsWGSXTuoh1YwKmbXSBSMx0EORK-wFY1j1MuI16ge8pyhMdO0oKwkUOmfXZyWyRjkM3yKtt1zXBdM7eu2aQFx9M-L3Vujl9btxvxZn6fllmEdImFNuFNC04acc5-_zza3t-a78Mycxphg9PasFC9vpkDWNLvVb98PXT6-wHCM-x4
  priority: 102
  providerName: Springer Nature
Title Robust nonsmooth optimality conditions for uncertain multiobjective programs involving stable functions
URI https://link.springer.com/article/10.1007/s11117-024-01077-w
https://www.proquest.com/docview/3091216840
Volume 28
WOSCitedRecordID wos001287977200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1572-9281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010040
  issn: 1385-1292
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx6E9lEKLuoUiH3oDq46T2OFUtQiEBLuNFkqBS-RXKirYULKUv8_Y8e4KJLiQw0hREsvS2PN9M57MAHyxdS2FMTX1tcdoJmVNVWFyqhOTuVRoJkJM9-RQDgbF6el2GQNubUyrnNjEYKhtY3yM_GuKwMYTX5rk2_U_6rtG-dPV2EJjDhaQ2SQ-pavPy-kpgl-hweEqcoq4xuNPM92vc3hJigiFzjSTkt49BKYZ23x0QBpwZ2_ppTN-B28j4yTfuyWyDK_caAWWIvskcW-3K_CmP63g2r6HP8NG37ZjMsJVedWgOkmDxuUqsHaCPrTtUr0Icl6C0NglFpCQntjov50VJTH5qyUXI7SCPnRBkIzqS0c8nIYBPsCvvd3jnX0amzJQg7t1TEWaKQT5DF1qkZskc0pLbZOMq8Jxx6zSVjJhOdcJU67WToo6yWutM8cVOnzpKszj1N1HIMpww5hFEsh8p_OsECoVNbqs3CJkbuc9SCYaqUysWO4bZ1xWs1rLXosVarEKWqzuerA5_ea6q9fx7NvrE9VVce-21UxvPdiaKH_2-OnRPj0_2hq85mG9-QS1dZgf39y6z7Bo_o8v2psNmJO_zzZg4cfuoBzi3YGkKPtsx0v-M8jSS3mEsszPUQ6PTu4B5LP-BQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4AmoAPoojhFHEf9Ak3tNvtbu_BGKMSCMeFGDC81d3t1kDgCvTOi_-Uf6Mz2_YumsAbD_a17aQ_vpn5Zmd2BuBNUZZaOVdy6j3GpdYlN5lLuY2d9ImykQprut8GejjMTk_7Rwvwu9sLQ2WVnU0MhrqoHK2R7yTo2ERMrUk-XF1zmhpF2dVuhEYDiwP_a4ohW_1-_zP-37dC7H45_rTH26kC3CHcxlwl0qCXkhgTqtTF0hurbRFLYTIvfFQYW-hIFULYODK-tF6rMk5La6UXBiOWBOUuwgNJncWoVFAczbIWpBEhwMtSjn5UtJt0mq16eGiOHhGD90hrPv3bEc7Z7T8J2eDndlf_ty_0BB63jJp9bFTgKSz40RqstuyatbarXoNHh7MOtfUz-PG1spN6zEaodZcVwpVVaDwvQ1TCXEWJfFJIhpyeoetvCidYKL-s7HnjJVhb3FazsxFaeVqaYUi27YVnRBeCgHU4uZeXfw5L-Oh-A5hxwkVRgSQ3oknuMlMmUSWG5KJAStBPexB3CMhd25GdBoNc5PNe0oSaHFGTB9Tk0x5sz-65avqR3Hn1ZgeVvLVNdT7HSQ_edWCbn75d2ou7pb2G5b3jw0E-2B8evIQVEbBOxXibsDS-mfhX8ND9HJ_VN1tBaxh8v28Q_gGvZ1Of
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4cSAg-iCDG01P3AZ9wQ7ttd3sPxhjxIjm8XAgY4kvZ3e4aCFyRHl781_zrnN1u7yKJvPFgX9tO-uObmW92ZmcAtktrBdfaUtd7jKZCWCpznVEV69QkXEXcr-l-PRCjUX5y0h934He7F8aVVbY20RvqstJujXw3QcfGYteaZNeGsojx3uD91Q_qJki5TGs7TqOByND8mmH4Vr_b38N__Yaxwaejj59pmDBANUJvSnmSSvRYKcaHPNNxaqQSqoxTJnPDTFRKVYqIl4ypOJLGKiO4jTOrVGqYxOglQblL8EBgjOnKCcfZt3kGw2mHD_byjKJPZWHDTrNtDw9B0TtiIB8JQWd_O8UF072VnPU-b7D-P3-tx_AoMG3yoVGNDeiYySasB9ZNgk2rN-Hhl3nn2voJfD-s1E09JRPUxssKYUwqNKqXPlohunIJfqeoBLk-QUrQFFQQX5ZZqfPGe5BQ9FaTswlaf7dkQ5CEqwtDHI3wArbg-F5e_iks46ObZ0CkZjqKSiS_kZvwnuZcJtxiqM5KpAr9rAtxi4ZCh07tbmDIRbHoMe0QVCCCCo-gYtaFnfk9V02fkjuv7rWwKYLNqosFZrrwtgXe4vS_pT2_W9prWEXsFQf7o-ELWGMe9q5GrwfL0-sb8xJW9M_pWX39yisQgdP7xuAfPmtciw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+nonsmooth+optimality+conditions+for+uncertain+multiobjective+programs+involving+stable+functions&rft.jtitle=Positivity+%3A+an+international+journal+devoted+to+the+theory+and+applications+of+positivity+in+analysis&rft.au=Van+Su%2C+Tran&rft.date=2024-09-01&rft.issn=1385-1292&rft.eissn=1572-9281&rft.volume=28&rft.issue=4&rft_id=info:doi/10.1007%2Fs11117-024-01077-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11117_024_01077_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-1292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-1292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-1292&client=summon