Price of dependence: stochastic submodular maximization with dependent items

In this paper, we study the stochastic submodular maximization problem with dependent items subject to downward-closed and prefix-closed constraints. The input of our problem is a finite set of items, and each item is in a particular state from a set of possible states. After picking an item, we are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 39; no. 2; pp. 305 - 314
Main Author: Tang, Shaojie
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2020
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the stochastic submodular maximization problem with dependent items subject to downward-closed and prefix-closed constraints. The input of our problem is a finite set of items, and each item is in a particular state from a set of possible states. After picking an item, we are able to observe its state. We assume a monotone and submodular utility function over items and states, and our objective is to select a group of items adaptively so as to maximize the expected utility. Previous studies on stochastic submodular maximization often assume that items’ states are independent, however, this assumption may not hold in general. This motivates us to study the stochastic submodular maximization problem with dependent items. We first introduce the concept of degree of independence to capture the degree to which one item’s state is dependent on others’. Then we propose a non-adaptive policy that approximates the optimal adaptive policy within a factor of α 1 - e - κ 2 + κ 18 m 2 - κ + 2 3 m κ where the value of α is depending on the type of constraints, e.g., α = 1 for matroid constraint, κ is the degree of independence, e.g., κ = 1 for independent items, and m is the number of items. We also analyze the adaptivity gap, i.e., the ratio of the values of best adaptive policy and best non-adaptive policy, of our problem with prefix-closed constraints.
AbstractList In this paper, we study the stochastic submodular maximization problem with dependent items subject to downward-closed and prefix-closed constraints. The input of our problem is a finite set of items, and each item is in a particular state from a set of possible states. After picking an item, we are able to observe its state. We assume a monotone and submodular utility function over items and states, and our objective is to select a group of items adaptively so as to maximize the expected utility. Previous studies on stochastic submodular maximization often assume that items’ states are independent, however, this assumption may not hold in general. This motivates us to study the stochastic submodular maximization problem with dependent items. We first introduce the concept of degree of independence to capture the degree to which one item’s state is dependent on others’. Then we propose a non-adaptive policy that approximates the optimal adaptive policy within a factor of α1-e-κ2+κ18m2-κ+23mκ where the value of α is depending on the type of constraints, e.g., α=1 for matroid constraint, κ is the degree of independence, e.g., κ=1 for independent items, and m is the number of items. We also analyze the adaptivity gap, i.e., the ratio of the values of best adaptive policy and best non-adaptive policy, of our problem with prefix-closed constraints.
In this paper, we study the stochastic submodular maximization problem with dependent items subject to downward-closed and prefix-closed constraints. The input of our problem is a finite set of items, and each item is in a particular state from a set of possible states. After picking an item, we are able to observe its state. We assume a monotone and submodular utility function over items and states, and our objective is to select a group of items adaptively so as to maximize the expected utility. Previous studies on stochastic submodular maximization often assume that items’ states are independent, however, this assumption may not hold in general. This motivates us to study the stochastic submodular maximization problem with dependent items. We first introduce the concept of degree of independence to capture the degree to which one item’s state is dependent on others’. Then we propose a non-adaptive policy that approximates the optimal adaptive policy within a factor of α 1 - e - κ 2 + κ 18 m 2 - κ + 2 3 m κ where the value of α is depending on the type of constraints, e.g., α = 1 for matroid constraint, κ is the degree of independence, e.g., κ = 1 for independent items, and m is the number of items. We also analyze the adaptivity gap, i.e., the ratio of the values of best adaptive policy and best non-adaptive policy, of our problem with prefix-closed constraints.
Author Tang, Shaojie
Author_xml – sequence: 1
  givenname: Shaojie
  orcidid: 0000-0001-9261-5210
  surname: Tang
  fullname: Tang, Shaojie
  email: shaojie.tang@utdallas.edu
  organization: University of Texas at Dallas
BookMark eNp9kElPwzAQhS1UJNrCH-AUibPBS7xxQxWbVAkOcLYcx6aumqTYjlh-PaFBIHHoad7hffNm3gxM2q51AJxidI4REhcJIykkRFhBhEqBID8AU8wEhURKPhk0lQRyhdgRmKW0RggNupyC5WMM1hWdL2q3dW3tWusui5Q7uzIpB1ukvmq6ut-YWDTmPTTh0-TQtcVbyKtfJhchuyYdg0NvNsmd_Mw5eL65flrcweXD7f3iagktxSpDjjkXsiKY1MqxqmSYMVpjpoz1gltWUYEqqwyX3paSMOY59oZ45JRHitd0Ds7GvdvYvfYuZb3u-tgOkZrQkhLBaIkHFxldNnYpRef1NobGxA-Nkf5uTY-t6aE1vWtN8wGS_yAb8u7jHE3Y7EfpiKYhp31x8e-qPdQXr_CDkg
CitedBy_id crossref_primary_10_1016_j_tcs_2022_09_022
crossref_primary_10_1007_s10878_022_00965_9
crossref_primary_10_1016_j_tcs_2020_11_007
Cites_doi 10.1137/110839655
10.1023/B:JOCO.0000038913.96607.c2
10.1287/mnsc.2015.2254
10.1137/080733991
10.1287/moor.2015.0766
10.1137/1.9781611974782.111
10.24963/ijcai.2017/546
10.1145/3084041.3084043
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
DBID AAYXX
CITATION
DOI 10.1007/s10878-019-00470-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 314
ExternalDocumentID 10_1007_s10878_019_00470_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-616678b212d9e5b451553d159acf76c5b370bc9a68fc48255f61fa2f0e9f096d3
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511607600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Wed Sep 17 23:56:51 EDT 2025
Sat Nov 29 04:54:26 EST 2025
Tue Nov 18 22:15:14 EST 2025
Fri Feb 21 02:33:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Approximate algorithms
Stochastic optimization
Submodular maximization
Dependent variables
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-616678b212d9e5b451553d159acf76c5b370bc9a68fc48255f61fa2f0e9f096d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9261-5210
PQID 2343275341
PQPubID 2043856
PageCount 10
ParticipantIDs proquest_journals_2343275341
crossref_primary_10_1007_s10878_019_00470_6
crossref_citationtrail_10_1007_s10878_019_00470_6
springer_journals_10_1007_s10878_019_00470_6
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hellerstein, Kletenik, Lin (CR11) 2015
Asadpour, Nazerzadeh (CR3) 2015; 62
CR5
Golovin, Krause (CR9) 2011; 42
Ageev, Sviridenko (CR2) 2004; 8
CR8
Chekuri, Vondrák, Zenklusen (CR7) 2014; 43
Adamczyk, Sviridenko, Ward (CR1) 2016; 41
CR13
CR12
Calinescu, Chekuri, Pál, Vondrák (CR6) 2011; 40
CR10
Asadpour, Nazerzadeh, Saberi (CR4) 2008
D Golovin (470_CR9) 2011; 42
G Calinescu (470_CR6) 2011; 40
Arash Asadpour (470_CR4) 2008
C Chekuri (470_CR7) 2014; 43
M Adamczyk (470_CR1) 2016; 41
470_CR12
470_CR13
470_CR10
AA Ageev (470_CR2) 2004; 8
470_CR8
A Asadpour (470_CR3) 2015; 62
470_CR5
Lisa Hellerstein (470_CR11) 2015
References_xml – volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  end-page: 1879
  ident: CR7
  article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes
  publication-title: SIAM J Comput
  doi: 10.1137/110839655
– volume: 8
  start-page: 307
  issue: 3
  year: 2004
  end-page: 328
  ident: CR2
  article-title: Pipage rounding: a new method of constructing algorithms with proven performance guarantee
  publication-title: J Comb Optim
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: CR12
– ident: CR13
– ident: CR10
– start-page: 235
  year: 2015
  end-page: 248
  ident: CR11
  article-title: Discrete Stochastic Submodular Maximization: Adaptive vs. Non-adaptive vs. Offline
  publication-title: Lecture Notes in Computer Science
– volume: 62
  start-page: 2374
  issue: 8
  year: 2015
  end-page: 2391
  ident: CR3
  article-title: Maximizing stochastic monotone submodular functions
  publication-title: Manag Sci
  doi: 10.1287/mnsc.2015.2254
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  end-page: 1766
  ident: CR6
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– start-page: 477
  year: 2008
  end-page: 489
  ident: CR4
  article-title: Stochastic Submodular Maximization
  publication-title: Lecture Notes in Computer Science
– ident: CR5
– ident: CR8
– volume: 42
  start-page: 427
  year: 2011
  end-page: 486
  ident: CR9
  article-title: Adaptive submodularity: theory and applications in active learning and stochastic optimization
  publication-title: J Artif Intell Res
– volume: 41
  start-page: 1022
  issue: 3
  year: 2016
  end-page: 1038
  ident: CR1
  article-title: Submodular stochastic probing on matroids
  publication-title: Math Oper Res
  doi: 10.1287/moor.2015.0766
– ident: 470_CR8
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 470_CR7
  publication-title: SIAM J Comput
  doi: 10.1137/110839655
– start-page: 235
  volume-title: Lecture Notes in Computer Science
  year: 2015
  ident: 470_CR11
– volume: 42
  start-page: 427
  year: 2011
  ident: 470_CR9
  publication-title: J Artif Intell Res
– ident: 470_CR10
  doi: 10.1137/1.9781611974782.111
– volume: 41
  start-page: 1022
  issue: 3
  year: 2016
  ident: 470_CR1
  publication-title: Math Oper Res
  doi: 10.1287/moor.2015.0766
– volume: 8
  start-page: 307
  issue: 3
  year: 2004
  ident: 470_CR2
  publication-title: J Comb Optim
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– volume: 62
  start-page: 2374
  issue: 8
  year: 2015
  ident: 470_CR3
  publication-title: Manag Sci
  doi: 10.1287/mnsc.2015.2254
– start-page: 477
  volume-title: Lecture Notes in Computer Science
  year: 2008
  ident: 470_CR4
– ident: 470_CR5
– ident: 470_CR13
  doi: 10.24963/ijcai.2017/546
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 470_CR6
  publication-title: SIAM J Comput
  doi: 10.1137/080733991
– ident: 470_CR12
  doi: 10.1145/3084041.3084043
SSID ssj0009054
Score 2.2542312
Snippet In this paper, we study the stochastic submodular maximization problem with dependent items subject to downward-closed and prefix-closed constraints. The input...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms Combinatorics
Convex and Discrete Geometry
Dependent variables
Expected utility
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Price of dependence: stochastic submodular maximization with dependent items
URI https://link.springer.com/article/10.1007/s10878-019-00470-6
https://www.proquest.com/docview/2343275341
Volume 39
WOSCitedRecordID wos000511607600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-LqKjl400KfaetNxMWDLuKLvZU8UXB3ZVvFn-8km25XUUGPpUkoM0lnviTzfQCHYciFFDL1VMYRoAgReJzpwItownSS5yrMpRWbSHu9rN_Pr11RWFnfdq-PJO2feqbYLTNssKboxo9TBD3zsIDhLjPL8eb2oaHa9ZOJlC3mjoj9Elcq8_0Yn8NRk2N-ORa10aa7-r_vXIMVl12S08l0WIc5NdyA5RnOQXy6mhK1lptwaWXfyUiTWg1XqBOCCaF4ZIbBmZQYL0fS3FUlA_b-NHBlm8Ts3077VMQKum3Bfff87uzCcwILnsCVVyFspBirOEYvmauEx0buJZKY4DChUyoSHqU-FzmjmRYxQslE00CzUPsq1wh9ZLQNreFoqHaAyDRmmcLBogjBdkw5-sVo4JgdJsb8sA1BbedCOPZxI4LxXDS8ycZuBdqtsHYraBuOpn1eJtwbv7bu1O4r3Dosi9DUzSIii4M2HNfual7_PNru35rvwVJogLi9zt2BVjV-VfuwKN6qp3J8YOfnB2fG3ZE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60CurBt1itmoM3Xdj3w5uIUrEtolV6W_LEgm2lu4o_30m6262igh6XTcIySXbmS2a-D-DYdRkXXESWjBkCFM4di1HlWF4YUBUkiXQTYcQmok4n7vWS26IoLCuz3csrSfOnnil2izUbrC66sf0IQc88LPjosXQi3939Y0W1awcTKVuMHRH7BUWpzPdjfHZHVYz55VrUeJurtf995zqsFtElOZ8shw2Yk8NNWJnhHMSn9pSoNduClpF9JyNFSjVcLs8IBoT8iWoGZ5KhvxwJnatKBvS9PyjKNok-v532yYkRdNuGh6vL7kXTKgQWLI47L0fYGKKvYui9RCID5mu5F09ggEO5ikIeMC-yGU9oGCvuI5QMVOgo6ipbJgqhj_B2oDYcDeUuEBH5NJY4mOch2PZDlsSanM7TJ0yU2m4dnNLOKS_Yx7UIxnNa8SZru6Vot9TYLQ3rcDLt8zLh3vi1daOcvrTYh1nq6rpZRGS-U4fTcrqq1z-Ptve35kew1Oy2W2nrunOzD8uuBuUmtbsBtXz8Kg9gkb_l_Wx8aNbqB9OJ4HU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5807Le2_gm6lCcY-CFvZU0Fxy4C2sVf74nvaxTVBAfS5NQThLO-dJ83wdwbNsxF1wEhgxjBCicW0bMlGU4vseUR6m0qcjMJoJOJ-z1aHeGxZ_ddi9_SeacBq3SNEybY6GaM8S3UCvDagKO6QYIgOZhwdWmQRqv3z9Vsruml9vaYh2JONAraDPfj_E5NVX15pdfpFnmaa39_5vXYbWoOsl5vkw2YE4ON2FlRosQn-6mAq7JFrQzO3gyUqR0yeXyjGChyJ-ZVnYmCebRkdB3WMmAvfcHBZ2T6HPdaZ-UZEZv2_DYunq4uDYK4wWD445MEU76mMNizGqCSi92tQ2MI7DwYVwFPvdiJzBjTpkfKu4ixPSUbylmK1NShZBIODtQG46GcheICFwWShzMcRCEu35MQy1a5-iTJ8ZMuw5WGfOIF6rk2hzjJar0lHXcIoxblMUt8utwMu0zzjU5fm3dKKcyKvZnEtmaT4tIzbXqcFpOXfX659H2_tb8CJa6l62ofdO53YdlW2P17MZ3A2rp5FUewCJ_S_vJ5DBbth9-MelZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Price+of+dependence%3A+stochastic+submodular+maximization+with+dependent+items&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Tang%2C+Shaojie&rft.date=2020-02-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=39&rft.issue=2&rft.spage=305&rft.epage=314&rft_id=info:doi/10.1007%2Fs10878-019-00470-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_019_00470_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon