Deep intrusion net: an efficient framework for network intrusion detection using hybrid deep TCN and GRU with integral features
In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious ac...
Gespeichert in:
| Veröffentlicht in: | Wireless networks Jg. 31; H. 2; S. 1255 - 1278 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.02.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1022-0038, 1572-8196 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious activities or threats as well as protect the insecurity among individual privacy. Moreover, many existing research works are explored to detect the network intrusion model but it fails to protect the target network efficiently based on the statistical features. A major issue in the designed model is regarded as the robustness or generalization that has the capability to control the working performance when the data is attained from various distributions. To handle all the difficulties, a new meta-heuristic hybrid-based deep learning model is introduced to detect the intrusion. Initially, the input data is garnered from the standard data sources. It is then undergone the pre-processing phase, which is accomplished through duplicate removal, replacing the NAN values, and normalization. With the resultant of pre-processed data, the auto encoder is utilized for extracting the significant features. To further improve the performance, it requires choosing the optimal features with the help of an Improved chimp optimization algorithm known as IChOA. Subsequently, the optimal features are subjected to the newly developed hybrid deep learning model. The hybrid model is built by incorporating the deep temporal convolution network and gated recurrent unit, and it is termed as DINet, in which the hyper parameters are tuned by an improved IChOA algorithm for attaining optimal solutions. Finally, the proposed detection model is evaluated and compared with the former detection approaches. The analysis shows the developed model is suggested to provide 97% in terms of accuracy and precision. Thus, the enhanced model elucidates that to effectively detect malware, which tends to improve data transmission significantly and securely. |
|---|---|
| AbstractList | In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious activities or threats as well as protect the insecurity among individual privacy. Moreover, many existing research works are explored to detect the network intrusion model but it fails to protect the target network efficiently based on the statistical features. A major issue in the designed model is regarded as the robustness or generalization that has the capability to control the working performance when the data is attained from various distributions. To handle all the difficulties, a new meta-heuristic hybrid-based deep learning model is introduced to detect the intrusion. Initially, the input data is garnered from the standard data sources. It is then undergone the pre-processing phase, which is accomplished through duplicate removal, replacing the NAN values, and normalization. With the resultant of pre-processed data, the auto encoder is utilized for extracting the significant features. To further improve the performance, it requires choosing the optimal features with the help of an Improved chimp optimization algorithm known as IChOA. Subsequently, the optimal features are subjected to the newly developed hybrid deep learning model. The hybrid model is built by incorporating the deep temporal convolution network and gated recurrent unit, and it is termed as DINet, in which the hyper parameters are tuned by an improved IChOA algorithm for attaining optimal solutions. Finally, the proposed detection model is evaluated and compared with the former detection approaches. The analysis shows the developed model is suggested to provide 97% in terms of accuracy and precision. Thus, the enhanced model elucidates that to effectively detect malware, which tends to improve data transmission significantly and securely. |
| Author | Rani, Y. Alekya Reddy, E. Sreenivasa |
| Author_xml | – sequence: 1 givenname: Y. Alekya surname: Rani fullname: Rani, Y. Alekya email: alekya.rani14@gmail.com organization: Computer Science Engineering (AI & ML), CVR College of Engineering – sequence: 2 givenname: E. Sreenivasa surname: Reddy fullname: Reddy, E. Sreenivasa organization: Computer Science Engineering, Acharya Nagarjuna University |
| BookMark | eNp9kE9rGzEQxUVIIM6fL5CToOdtR9pdSdtbcZu0EBIIyVnI0shRamtdSSbk1K9ebVww5OCTnmbm92Z4Z-Q4jhEJuWLwmQHIL5kxLkUDvGugVQCNPCIz1kveKDaI46qB8wZq75Sc5fwCAKodhhn5-x1xQ0MsaZvDGGnE8pWaSNH7YAPGQn0ya3wd02_qxzT13_WecFjQlknVf1zS57dFCq6Wq-_j_K6aOXrz8ERfQ3meMFwms6IeTdkmzBfkxJtVxsv_7zl5uv7xOP_Z3N7f_Jp_u21sy4bS9N470UsnFDpmlVGuawclemesYg6s7FUtttLLTnrngbGOS24XID1fqB7ac_Jp57tJ458t5qJfxm2KdaVumRAD60Qn6hTfTdk05pzQ600Ka5PeNAM9Ba13QesatH4PWssKqQ-QDcVMiZRkwuow2u7QXPfEJab9VQeofzX4ldc |
| CitedBy_id | crossref_primary_10_1038_s41598_025_95011_z crossref_primary_10_3390_s25051578 crossref_primary_10_1007_s13198_025_02861_x |
| Cites_doi | 10.1109/ICIT58056.2023.10226123 10.1109/TITS.2020.3027390 10.1016/j.procs.2018.04.298 10.1016/j.comnet.2021.108117 10.1016/j.eswa.2020.113338 10.1109/ACCESS.2019.2933165 10.1109/ACCESS.2021.3051074 10.1016/j.jisa.2021.102899 10.1109/ACCESS.2019.2923814 10.1016/j.cose.2023.103567 10.1016/j.compag.2023.108583 10.1016/j.eswa.2021.115782 10.1109/ACCESS.2019.2905633 10.1109/TSMC.2020.2968516 10.1109/TITS.2021.3055351 10.1016/j.procs.2018.05.069 10.1109/TCSS.2021.3063538 10.1109/ACCESS.2020.2972627 10.1109/ACCESS.2019.2899721 10.26599/BDMA.2020.9020003 10.1109/ACCESS.2017.2780250 10.26599/TST.2020.9010022 10.1016/j.infsof.2023.107241 10.1109/LNET.2019.2901792 10.1109/ACCESS.2021.3137318 10.1109/JSAC.2021.3087242 10.1109/ACCESS.2019.2903723 10.1016/j.comcom.2021.07.016 10.1109/ICECOS.2018.8605181 10.1016/j.cam.2023.115532 10.1016/j.ins.2021.05.016 10.1007/s11831-021-09694-4 10.1016/j.csite.2021.101250 10.1109/TNSE.2020.2990984 10.1109/TII.2021.3133300 10.1080/25742558.2018.1483565 10.1007/s00500-020-04954-0 10.1109/ACCESS.2018.2863036 10.1016/j.jnca.2023.103784 10.1016/j.cose.2023.103587 10.1109/ACCESS.2020.3019973 10.1016/0893-6080(95)00025-U |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11276-024-03800-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1572-8196 |
| EndPage | 1278 |
| ExternalDocumentID | 10_1007_s11276_024_03800_7 |
| GroupedDBID | -ET -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 85S 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAHTB AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPEJ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACM ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADL ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETEA AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFWIH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW KZ1 LAK LLZTM M0C M2P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c319t-5ffd657d68ed1c8a8d439865dac81d0c7588a837f747fdf0114272cb07f2b8503 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284610000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1022-0038 |
| IngestDate | Wed Nov 05 03:06:47 EST 2025 Sat Nov 29 04:44:29 EST 2025 Tue Nov 18 21:44:22 EST 2025 Thu May 22 04:38:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Auto encoder Gated recurrent unit Detected intrusion outcomes Deep intrusion net Intrusion detection Improved chimp optimization algorithm Deep temporal convolution network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5ffd657d68ed1c8a8d439865dac81d0c7588a837f747fdf0114272cb07f2b8503 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3166914646 |
| PQPubID | 26318 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3166914646 crossref_primary_10_1007_s11276_024_03800_7 crossref_citationtrail_10_1007_s11276_024_03800_7 springer_journals_10_1007_s11276_024_03800_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of Mobile Communication, Computation and Information |
| PublicationTitle | Wireless networks |
| PublicationTitleAbbrev | Wireless Netw |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | C Yin (3800_CR42) 2020; 52 H Jia (3800_CR14) 2021; 178 L Nie (3800_CR15) 2020; 7 L Yu (3800_CR19) 2021; 194 MW Goudreau (3800_CR36) 1995; 8 E Alhajjar (3800_CR20) 2021; 186 Z Wang (3800_CR3) 2021; 9 Y Zhang (3800_CR16) 2019; 7 T Su (3800_CR22) 2020; 8 J Nasiri (3800_CR34) 2018; 5 AV Turukmane (3800_CR37) 2024; 137 L Nie (3800_CR6) 2022; 9 NB Singh (3800_CR25) 2021; 61 S Naseer (3800_CR9) 2018; 6 Y Zhang (3800_CR11) 2019; 7 L Yang (3800_CR12) 2020; 8 HV Vo (3800_CR38) 2024; 136 J Alikhanov (3800_CR5) 2022; 10 W Wang (3800_CR24) 2018; 6 M Ghalambaz (3800_CR33) 2021; 27 J Shu (3800_CR8) 2021; 22 3800_CR27 P Hewage (3800_CR28) 2020; 24 S Otoum (3800_CR1) 2019; 1 SM Kasongo (3800_CR7) 2019; 7 MH Haghighat (3800_CR21) 2021; 26 FA Khan (3800_CR23) 2019; 7 AG Gad (3800_CR32) 2022; 29 B Hu (3800_CR13) 2022; 18 S Latif (3800_CR39) 2024; 221 X Zhang (3800_CR40) 2024; 438 S Indolia (3800_CR35) 2018; 132 H Yang (3800_CR10) 2019; 7 A Hrusto (3800_CR26) 2023; 160 G Andresini (3800_CR18) 2021; 569 3800_CR30 G Xie (3800_CR4) 2021; 22 D Han (3800_CR17) 2021; 39 G Shen (3800_CR29) 2018; 131 M Khishea (3800_CR31) 2020; 149 W Zhong (3800_CR2) 2020; 3 T Zhang (3800_CR41) 2024; 217 |
| References_xml | – ident: 3800_CR27 doi: 10.1109/ICIT58056.2023.10226123 – volume: 22 start-page: 4519 issue: 7 year: 2021 ident: 3800_CR8 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2020.3027390 – volume: 131 start-page: 895 year: 2018 ident: 3800_CR29 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.04.298 – volume: 194 start-page: 108117 year: 2021 ident: 3800_CR19 publication-title: Computer Networks doi: 10.1016/j.comnet.2021.108117 – volume: 149 start-page: 113338 year: 2020 ident: 3800_CR31 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113338 – volume: 7 start-page: 119904 year: 2019 ident: 3800_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933165 – volume: 9 start-page: 16062 year: 2021 ident: 3800_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051074 – volume: 61 start-page: 102899 year: 2021 ident: 3800_CR25 publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2021.102899 – volume: 7 start-page: 82624 year: 2019 ident: 3800_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923814 – volume: 136 start-page: 103567 year: 2024 ident: 3800_CR38 publication-title: Computers and Security doi: 10.1016/j.cose.2023.103567 – volume: 217 start-page: 108583 year: 2024 ident: 3800_CR41 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2023.108583 – volume: 186 start-page: 115782 year: 2021 ident: 3800_CR20 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115782 – volume: 7 start-page: 38597 year: 2019 ident: 3800_CR7 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905633 – volume: 52 start-page: 112 issue: 1 year: 2020 ident: 3800_CR42 publication-title: IEEE Transactions on Systems Man and Cybernetics Systems doi: 10.1109/TSMC.2020.2968516 – volume: 22 start-page: 4467 issue: 7 year: 2021 ident: 3800_CR4 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2021.3055351 – volume: 132 start-page: 679 year: 2018 ident: 3800_CR35 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.05.069 – volume: 9 start-page: 134 issue: 1 year: 2022 ident: 3800_CR6 publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2021.3063538 – volume: 8 start-page: 29575 year: 2020 ident: 3800_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972627 – volume: 7 start-page: 30373 year: 2019 ident: 3800_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2899721 – volume: 3 start-page: 181 issue: 3 year: 2020 ident: 3800_CR2 publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2020.9020003 – volume: 6 start-page: 1792 year: 2018 ident: 3800_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780250 – volume: 26 start-page: 484 issue: 4 year: 2021 ident: 3800_CR21 publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2020.9010022 – volume: 160 start-page: 107241 year: 2023 ident: 3800_CR26 publication-title: Information and Software Technology doi: 10.1016/j.infsof.2023.107241 – volume: 1 start-page: 68 issue: 2 year: 2019 ident: 3800_CR1 publication-title: IEEE Networking Letters doi: 10.1109/LNET.2019.2901792 – volume: 10 start-page: 5801 year: 2022 ident: 3800_CR5 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3137318 – volume: 39 start-page: 2632 issue: 8 year: 2021 ident: 3800_CR17 publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2021.3087242 – volume: 7 start-page: 31711 year: 2019 ident: 3800_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2903723 – volume: 178 start-page: 131 year: 2021 ident: 3800_CR14 publication-title: Computer Communications doi: 10.1016/j.comcom.2021.07.016 – ident: 3800_CR30 doi: 10.1109/ICECOS.2018.8605181 – volume: 438 start-page: 115532 year: 2024 ident: 3800_CR40 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2023.115532 – volume: 569 start-page: 706 year: 2021 ident: 3800_CR18 publication-title: Information Sciences doi: 10.1016/j.ins.2021.05.016 – volume: 29 start-page: 2531 year: 2022 ident: 3800_CR32 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-021-09694-4 – volume: 27 start-page: 101250 year: 2021 ident: 3800_CR33 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101250 – volume: 7 start-page: 2219 issue: 4 year: 2020 ident: 3800_CR15 publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2020.2990984 – volume: 18 start-page: 4286 issue: 6 year: 2022 ident: 3800_CR13 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3133300 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 3800_CR34 publication-title: Cogent Mathematics and Statistics doi: 10.1080/25742558.2018.1483565 – volume: 24 start-page: 16453 year: 2020 ident: 3800_CR28 publication-title: Soft Computing doi: 10.1007/s00500-020-04954-0 – volume: 6 start-page: 48231 year: 2018 ident: 3800_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863036 – volume: 221 start-page: 103784 year: 2024 ident: 3800_CR39 publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2023.103784 – volume: 137 start-page: 103587 year: 2024 ident: 3800_CR37 publication-title: Computers and Security doi: 10.1016/j.cose.2023.103587 – volume: 8 start-page: 170128 year: 2020 ident: 3800_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019973 – volume: 8 start-page: 793 issue: 5 year: 1995 ident: 3800_CR36 publication-title: Neural Networks doi: 10.1016/0893-6080(95)00025-U |
| SSID | ssj0008399 |
| Score | 2.444815 |
| Snippet | In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1255 |
| SubjectTerms | Algorithms Communications Engineering Computer Communication Networks Control systems Cybersecurity Data transmission Deep learning Electrical Engineering Engineering Heuristic methods Intrusion detection systems IT in Business Machine learning Networks Optimization Original Paper Performance enhancement Robust control Standard data Target detection |
| Title | Deep intrusion net: an efficient framework for network intrusion detection using hybrid deep TCN and GRU with integral features |
| URI | https://link.springer.com/article/10.1007/s11276-024-03800-7 https://www.proquest.com/docview/3166914646 |
| Volume | 31 |
| WOSCitedRecordID | wos001284610000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1572-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008399 issn: 1022-0038 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWGoetmM2VF4DqlBpq25R4gdUqkJFIiQm_jpnN2kAARJskWOfIp_tO-fu-w6hY6mEMiYyxDDBSWh8RkRAQyIZ9XQqApk6LMzwlne70Wgk7kpQWF5lu1chSXdS12A3z-c2YTYk7QDcHMIX0RKYu8gWbOjdD-fnL5h84WKccM2yga8SKvO9jM_mqPYxv4RFnbW5Wv_fd26gtdK7xOez5bCJFnS2hVY_cA5uo7cLrad4nFmwBegEZ7o4w0mGteOSABOETZWvhcGhte_dcz1C6cLlb2XYJs0_4MdXi_qCZpDb73RBmMLXvQG2v3hxSUcxwUY7CtF8Bw2uLvudG1JWYSAStmdBqDGKUa5YpJUnoyRS4MNEjKpEgq_blnDhgMaAG7iYGGUcOJf7Mm1z46cRbQe7qJE9ZXoP4VRSlgRhElI_DTXjQpskSRXXVMswEX4TeZUyYllSlNtKGZO4Jle2kxvD5MZucmPeRCfzMdMZQcevvVuVjuNys-Zx4DEmwGKErIlOK53Wr3-Wtv-37gdoxbfVg13Odws1QG36EC3Ll2KcPx-5RfwOEyfsdQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC58gXpQV1ccnznszQ1Md-fR8SbjE8dh0VG8Nd15rIK04gyCJ_-6lUy3vYor6K3Jo2hSSaqSqu8LwC9tlHEuddQJJSlzsaAq4YxqwSNbqEQXAQtz2ZW9Xnp1pf5UoLBBne1ehyTDTt2A3aJY-oRZRtsJujlUjsMkQ4vlGfPPzi9f9180-SrEOPGY5QNfFVTmYxlvzVHjY74LiwZrczD_vf9cgLnKuyS7o-nwA8ZsuQiz_3AOLsHznrX35Kb0YAvUCSntcIfkJbGBSwJNEHF1vhZBh9bXh--mh7HDkL9VEp80_5dcP3nUFxaj3H6nh8IMOTy7IP6Kl1R0FLfE2UAhOvgJFwf7_c4RrV5hoBqX55By54zg0ojUmkineWrQh0kFN7lGX7et8cCBhYl0eDBxxgVwrox10ZYuLlLeTpZhorwr7QqQQnORJyxnPC6YFVJZl-eFkZZbzXIVtyCqlZHpiqLcv5RxmzXkyn5wMxzcLAxuJluw_drnfkTQ8Wnr9VrHWbVYB1kSCaHQYjDRgt-1Tpvq_0tb_VrzLZg-6p92s-5x72QNZmL_knDI_16HCVSh3YAp_Ti8GTxshgn9AjCP71k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9t3TTBwz6ZKGPMD3sbFk3ij3hvE10HAlVotBVvUeIPVqkKFY2QeOJf5-wmTYfGpGlvkWNfIp-du8vd72eAz9oo41zqqBNKUuZiQVXCGdWCR7ZQiS4CFmZyKofD9OJCna2h-EO1e5OSXGIaPEtTWR3MjTtogW9RLH3xLKO9BF0eKp_CM-YL6X28fj5ZfYvR_KuQ78SQyyfBatjMn2X8bppaf_NBijRYnsGr_3_n1_Cy9jrJt-UyeQNPbPkWNte4CN_BXd_aOZmWHoSBuiKlrb6SvCQ2cEzgY4hr6rgIOrr-frhuRxhbhbqukvhi-kvy69ajwbAZ5Y4OhyjMkB8_x8T_-iU1TcWMOBuoRRdbMB58Hx0e0fp0Bqpx21aUO2cEl0ak1kQ6zVODvk0quMk1-sA9jYEINibSYcDijAugXRnroiddXKS8l7yHTnlV2m0gheYiT1jOeFwwK6SyLs8LIy23muUq7kLUKCbTNXW5P0FjlrWky35yM5zcLExuJrvwZTVmviTu-Gvv3UbfWb2JF1kSCaHQkjDRhf1Gv-3tx6Xt_Fv3T_DirD_ITo-HJx9gI_YHDIey8F3ooAbtR3iub6rp4novrO17Fwf4PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+intrusion+net%3A+an+efficient+framework+for+network+intrusion+detection+using+hybrid+deep+TCN+and+GRU+with+integral+features&rft.jtitle=Wireless+networks&rft.au=Rani%2C+Y.+Alekya&rft.au=Reddy%2C+E.+Sreenivasa&rft.date=2025-02-01&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007%2Fs11276-024-03800-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11276_024_03800_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-0038&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-0038&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-0038&client=summon |