Deep intrusion net: an efficient framework for network intrusion detection using hybrid deep TCN and GRU with integral features

In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks Jg. 31; H. 2; S. 1255 - 1278
Hauptverfasser: Rani, Y. Alekya, Reddy, E. Sreenivasa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2025
Springer Nature B.V
Schlagworte:
ISSN:1022-0038, 1572-8196
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious activities or threats as well as protect the insecurity among individual privacy. Moreover, many existing research works are explored to detect the network intrusion model but it fails to protect the target network efficiently based on the statistical features. A major issue in the designed model is regarded as the robustness or generalization that has the capability to control the working performance when the data is attained from various distributions. To handle all the difficulties, a new meta-heuristic hybrid-based deep learning model is introduced to detect the intrusion. Initially, the input data is garnered from the standard data sources. It is then undergone the pre-processing phase, which is accomplished through duplicate removal, replacing the NAN values, and normalization. With the resultant of pre-processed data, the auto encoder is utilized for extracting the significant features. To further improve the performance, it requires choosing the optimal features with the help of an Improved chimp optimization algorithm known as IChOA. Subsequently, the optimal features are subjected to the newly developed hybrid deep learning model. The hybrid model is built by incorporating the deep temporal convolution network and gated recurrent unit, and it is termed as DINet, in which the hyper parameters are tuned by an improved IChOA algorithm for attaining optimal solutions. Finally, the proposed detection model is evaluated and compared with the former detection approaches. The analysis shows the developed model is suggested to provide 97% in terms of accuracy and precision. Thus, the enhanced model elucidates that to effectively detect malware, which tends to improve data transmission significantly and securely.
AbstractList In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover, the network intrusion detection systems become an important tool thus, it has the ability to safeguard the source data from all malicious activities or threats as well as protect the insecurity among individual privacy. Moreover, many existing research works are explored to detect the network intrusion model but it fails to protect the target network efficiently based on the statistical features. A major issue in the designed model is regarded as the robustness or generalization that has the capability to control the working performance when the data is attained from various distributions. To handle all the difficulties, a new meta-heuristic hybrid-based deep learning model is introduced to detect the intrusion. Initially, the input data is garnered from the standard data sources. It is then undergone the pre-processing phase, which is accomplished through duplicate removal, replacing the NAN values, and normalization. With the resultant of pre-processed data, the auto encoder is utilized for extracting the significant features. To further improve the performance, it requires choosing the optimal features with the help of an Improved chimp optimization algorithm known as IChOA. Subsequently, the optimal features are subjected to the newly developed hybrid deep learning model. The hybrid model is built by incorporating the deep temporal convolution network and gated recurrent unit, and it is termed as DINet, in which the hyper parameters are tuned by an improved IChOA algorithm for attaining optimal solutions. Finally, the proposed detection model is evaluated and compared with the former detection approaches. The analysis shows the developed model is suggested to provide 97% in terms of accuracy and precision. Thus, the enhanced model elucidates that to effectively detect malware, which tends to improve data transmission significantly and securely.
Author Rani, Y. Alekya
Reddy, E. Sreenivasa
Author_xml – sequence: 1
  givenname: Y. Alekya
  surname: Rani
  fullname: Rani, Y. Alekya
  email: alekya.rani14@gmail.com
  organization: Computer Science Engineering (AI & ML), CVR College of Engineering
– sequence: 2
  givenname: E. Sreenivasa
  surname: Reddy
  fullname: Reddy, E. Sreenivasa
  organization: Computer Science Engineering, Acharya Nagarjuna University
BookMark eNp9kE9rGzEQxUVIIM6fL5CToOdtR9pdSdtbcZu0EBIIyVnI0shRamtdSSbk1K9ebVww5OCTnmbm92Z4Z-Q4jhEJuWLwmQHIL5kxLkUDvGugVQCNPCIz1kveKDaI46qB8wZq75Sc5fwCAKodhhn5-x1xQ0MsaZvDGGnE8pWaSNH7YAPGQn0ya3wd02_qxzT13_WecFjQlknVf1zS57dFCq6Wq-_j_K6aOXrz8ERfQ3meMFwms6IeTdkmzBfkxJtVxsv_7zl5uv7xOP_Z3N7f_Jp_u21sy4bS9N470UsnFDpmlVGuawclemesYg6s7FUtttLLTnrngbGOS24XID1fqB7ac_Jp57tJ458t5qJfxm2KdaVumRAD60Qn6hTfTdk05pzQ600Ka5PeNAM9Ba13QesatH4PWssKqQ-QDcVMiZRkwuow2u7QXPfEJab9VQeofzX4ldc
CitedBy_id crossref_primary_10_1038_s41598_025_95011_z
crossref_primary_10_3390_s25051578
crossref_primary_10_1007_s13198_025_02861_x
Cites_doi 10.1109/ICIT58056.2023.10226123
10.1109/TITS.2020.3027390
10.1016/j.procs.2018.04.298
10.1016/j.comnet.2021.108117
10.1016/j.eswa.2020.113338
10.1109/ACCESS.2019.2933165
10.1109/ACCESS.2021.3051074
10.1016/j.jisa.2021.102899
10.1109/ACCESS.2019.2923814
10.1016/j.cose.2023.103567
10.1016/j.compag.2023.108583
10.1016/j.eswa.2021.115782
10.1109/ACCESS.2019.2905633
10.1109/TSMC.2020.2968516
10.1109/TITS.2021.3055351
10.1016/j.procs.2018.05.069
10.1109/TCSS.2021.3063538
10.1109/ACCESS.2020.2972627
10.1109/ACCESS.2019.2899721
10.26599/BDMA.2020.9020003
10.1109/ACCESS.2017.2780250
10.26599/TST.2020.9010022
10.1016/j.infsof.2023.107241
10.1109/LNET.2019.2901792
10.1109/ACCESS.2021.3137318
10.1109/JSAC.2021.3087242
10.1109/ACCESS.2019.2903723
10.1016/j.comcom.2021.07.016
10.1109/ICECOS.2018.8605181
10.1016/j.cam.2023.115532
10.1016/j.ins.2021.05.016
10.1007/s11831-021-09694-4
10.1016/j.csite.2021.101250
10.1109/TNSE.2020.2990984
10.1109/TII.2021.3133300
10.1080/25742558.2018.1483565
10.1007/s00500-020-04954-0
10.1109/ACCESS.2018.2863036
10.1016/j.jnca.2023.103784
10.1016/j.cose.2023.103587
10.1109/ACCESS.2020.3019973
10.1016/0893-6080(95)00025-U
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11276-024-03800-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1572-8196
EndPage 1278
ExternalDocumentID 10_1007_s11276_024_03800_7
GroupedDBID -ET
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
85S
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADL
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETEA
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFOHR
AFQWF
AFWIH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
KZ1
LAK
LLZTM
M0C
M2P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AHWEU
AIXLP
CITATION
PQGLB
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c319t-5ffd657d68ed1c8a8d439865dac81d0c7588a837f747fdf0114272cb07f2b8503
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284610000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1022-0038
IngestDate Wed Nov 05 03:06:47 EST 2025
Sat Nov 29 04:44:29 EST 2025
Tue Nov 18 21:44:22 EST 2025
Thu May 22 04:38:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Auto encoder
Gated recurrent unit
Detected intrusion outcomes
Deep intrusion net
Intrusion detection
Improved chimp optimization algorithm
Deep temporal convolution network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5ffd657d68ed1c8a8d439865dac81d0c7588a837f747fdf0114272cb07f2b8503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3166914646
PQPubID 26318
PageCount 24
ParticipantIDs proquest_journals_3166914646
crossref_primary_10_1007_s11276_024_03800_7
crossref_citationtrail_10_1007_s11276_024_03800_7
springer_journals_10_1007_s11276_024_03800_7
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of Mobile Communication, Computation and Information
PublicationTitle Wireless networks
PublicationTitleAbbrev Wireless Netw
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References C Yin (3800_CR42) 2020; 52
H Jia (3800_CR14) 2021; 178
L Nie (3800_CR15) 2020; 7
L Yu (3800_CR19) 2021; 194
MW Goudreau (3800_CR36) 1995; 8
E Alhajjar (3800_CR20) 2021; 186
Z Wang (3800_CR3) 2021; 9
Y Zhang (3800_CR16) 2019; 7
T Su (3800_CR22) 2020; 8
J Nasiri (3800_CR34) 2018; 5
AV Turukmane (3800_CR37) 2024; 137
L Nie (3800_CR6) 2022; 9
NB Singh (3800_CR25) 2021; 61
S Naseer (3800_CR9) 2018; 6
Y Zhang (3800_CR11) 2019; 7
L Yang (3800_CR12) 2020; 8
HV Vo (3800_CR38) 2024; 136
J Alikhanov (3800_CR5) 2022; 10
W Wang (3800_CR24) 2018; 6
M Ghalambaz (3800_CR33) 2021; 27
J Shu (3800_CR8) 2021; 22
3800_CR27
P Hewage (3800_CR28) 2020; 24
S Otoum (3800_CR1) 2019; 1
SM Kasongo (3800_CR7) 2019; 7
MH Haghighat (3800_CR21) 2021; 26
FA Khan (3800_CR23) 2019; 7
AG Gad (3800_CR32) 2022; 29
B Hu (3800_CR13) 2022; 18
S Latif (3800_CR39) 2024; 221
X Zhang (3800_CR40) 2024; 438
S Indolia (3800_CR35) 2018; 132
H Yang (3800_CR10) 2019; 7
A Hrusto (3800_CR26) 2023; 160
G Andresini (3800_CR18) 2021; 569
3800_CR30
G Xie (3800_CR4) 2021; 22
D Han (3800_CR17) 2021; 39
G Shen (3800_CR29) 2018; 131
M Khishea (3800_CR31) 2020; 149
W Zhong (3800_CR2) 2020; 3
T Zhang (3800_CR41) 2024; 217
References_xml – ident: 3800_CR27
  doi: 10.1109/ICIT58056.2023.10226123
– volume: 22
  start-page: 4519
  issue: 7
  year: 2021
  ident: 3800_CR8
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2020.3027390
– volume: 131
  start-page: 895
  year: 2018
  ident: 3800_CR29
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.04.298
– volume: 194
  start-page: 108117
  year: 2021
  ident: 3800_CR19
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2021.108117
– volume: 149
  start-page: 113338
  year: 2020
  ident: 3800_CR31
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113338
– volume: 7
  start-page: 119904
  year: 2019
  ident: 3800_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933165
– volume: 9
  start-page: 16062
  year: 2021
  ident: 3800_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051074
– volume: 61
  start-page: 102899
  year: 2021
  ident: 3800_CR25
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2021.102899
– volume: 7
  start-page: 82624
  year: 2019
  ident: 3800_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923814
– volume: 136
  start-page: 103567
  year: 2024
  ident: 3800_CR38
  publication-title: Computers and Security
  doi: 10.1016/j.cose.2023.103567
– volume: 217
  start-page: 108583
  year: 2024
  ident: 3800_CR41
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2023.108583
– volume: 186
  start-page: 115782
  year: 2021
  ident: 3800_CR20
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115782
– volume: 7
  start-page: 38597
  year: 2019
  ident: 3800_CR7
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905633
– volume: 52
  start-page: 112
  issue: 1
  year: 2020
  ident: 3800_CR42
  publication-title: IEEE Transactions on Systems Man and Cybernetics Systems
  doi: 10.1109/TSMC.2020.2968516
– volume: 22
  start-page: 4467
  issue: 7
  year: 2021
  ident: 3800_CR4
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2021.3055351
– volume: 132
  start-page: 679
  year: 2018
  ident: 3800_CR35
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.05.069
– volume: 9
  start-page: 134
  issue: 1
  year: 2022
  ident: 3800_CR6
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2021.3063538
– volume: 8
  start-page: 29575
  year: 2020
  ident: 3800_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 7
  start-page: 30373
  year: 2019
  ident: 3800_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899721
– volume: 3
  start-page: 181
  issue: 3
  year: 2020
  ident: 3800_CR2
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2020.9020003
– volume: 6
  start-page: 1792
  year: 2018
  ident: 3800_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780250
– volume: 26
  start-page: 484
  issue: 4
  year: 2021
  ident: 3800_CR21
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2020.9010022
– volume: 160
  start-page: 107241
  year: 2023
  ident: 3800_CR26
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2023.107241
– volume: 1
  start-page: 68
  issue: 2
  year: 2019
  ident: 3800_CR1
  publication-title: IEEE Networking Letters
  doi: 10.1109/LNET.2019.2901792
– volume: 10
  start-page: 5801
  year: 2022
  ident: 3800_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3137318
– volume: 39
  start-page: 2632
  issue: 8
  year: 2021
  ident: 3800_CR17
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2021.3087242
– volume: 7
  start-page: 31711
  year: 2019
  ident: 3800_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2903723
– volume: 178
  start-page: 131
  year: 2021
  ident: 3800_CR14
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2021.07.016
– ident: 3800_CR30
  doi: 10.1109/ICECOS.2018.8605181
– volume: 438
  start-page: 115532
  year: 2024
  ident: 3800_CR40
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2023.115532
– volume: 569
  start-page: 706
  year: 2021
  ident: 3800_CR18
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2021.05.016
– volume: 29
  start-page: 2531
  year: 2022
  ident: 3800_CR32
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-021-09694-4
– volume: 27
  start-page: 101250
  year: 2021
  ident: 3800_CR33
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101250
– volume: 7
  start-page: 2219
  issue: 4
  year: 2020
  ident: 3800_CR15
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2020.2990984
– volume: 18
  start-page: 4286
  issue: 6
  year: 2022
  ident: 3800_CR13
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2021.3133300
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 3800_CR34
  publication-title: Cogent Mathematics and Statistics
  doi: 10.1080/25742558.2018.1483565
– volume: 24
  start-page: 16453
  year: 2020
  ident: 3800_CR28
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-04954-0
– volume: 6
  start-page: 48231
  year: 2018
  ident: 3800_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863036
– volume: 221
  start-page: 103784
  year: 2024
  ident: 3800_CR39
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2023.103784
– volume: 137
  start-page: 103587
  year: 2024
  ident: 3800_CR37
  publication-title: Computers and Security
  doi: 10.1016/j.cose.2023.103587
– volume: 8
  start-page: 170128
  year: 2020
  ident: 3800_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019973
– volume: 8
  start-page: 793
  issue: 5
  year: 1995
  ident: 3800_CR36
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00025-U
SSID ssj0008399
Score 2.444815
Snippet In recent times, the several cyber attacks are occurred on the network and thus, essential tools are needed for detecting intrusion over the network. Moreover,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1255
SubjectTerms Algorithms
Communications Engineering
Computer Communication Networks
Control systems
Cybersecurity
Data transmission
Deep learning
Electrical Engineering
Engineering
Heuristic methods
Intrusion detection systems
IT in Business
Machine learning
Networks
Optimization
Original Paper
Performance enhancement
Robust control
Standard data
Target detection
Title Deep intrusion net: an efficient framework for network intrusion detection using hybrid deep TCN and GRU with integral features
URI https://link.springer.com/article/10.1007/s11276-024-03800-7
https://www.proquest.com/docview/3166914646
Volume 31
WOSCitedRecordID wos001284610000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1572-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008399
  issn: 1022-0038
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWGoetmM2VF4DqlBpq25R4gdUqkJFIiQm_jpnN2kAARJskWOfIp_tO-fu-w6hY6mEMiYyxDDBSWh8RkRAQyIZ9XQqApk6LMzwlne70Wgk7kpQWF5lu1chSXdS12A3z-c2YTYk7QDcHMIX0RKYu8gWbOjdD-fnL5h84WKccM2yga8SKvO9jM_mqPYxv4RFnbW5Wv_fd26gtdK7xOez5bCJFnS2hVY_cA5uo7cLrad4nFmwBegEZ7o4w0mGteOSABOETZWvhcGhte_dcz1C6cLlb2XYJs0_4MdXi_qCZpDb73RBmMLXvQG2v3hxSUcxwUY7CtF8Bw2uLvudG1JWYSAStmdBqDGKUa5YpJUnoyRS4MNEjKpEgq_blnDhgMaAG7iYGGUcOJf7Mm1z46cRbQe7qJE9ZXoP4VRSlgRhElI_DTXjQpskSRXXVMswEX4TeZUyYllSlNtKGZO4Jle2kxvD5MZucmPeRCfzMdMZQcevvVuVjuNys-Zx4DEmwGKErIlOK53Wr3-Wtv-37gdoxbfVg13Odws1QG36EC3Ll2KcPx-5RfwOEyfsdQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC58gXpQV1ccnznszQ1Md-fR8SbjE8dh0VG8Nd15rIK04gyCJ_-6lUy3vYor6K3Jo2hSSaqSqu8LwC9tlHEuddQJJSlzsaAq4YxqwSNbqEQXAQtz2ZW9Xnp1pf5UoLBBne1ehyTDTt2A3aJY-oRZRtsJujlUjsMkQ4vlGfPPzi9f9180-SrEOPGY5QNfFVTmYxlvzVHjY74LiwZrczD_vf9cgLnKuyS7o-nwA8ZsuQiz_3AOLsHznrX35Kb0YAvUCSntcIfkJbGBSwJNEHF1vhZBh9bXh--mh7HDkL9VEp80_5dcP3nUFxaj3H6nh8IMOTy7IP6Kl1R0FLfE2UAhOvgJFwf7_c4RrV5hoBqX55By54zg0ojUmkineWrQh0kFN7lGX7et8cCBhYl0eDBxxgVwrox10ZYuLlLeTpZhorwr7QqQQnORJyxnPC6YFVJZl-eFkZZbzXIVtyCqlZHpiqLcv5RxmzXkyn5wMxzcLAxuJluw_drnfkTQ8Wnr9VrHWbVYB1kSCaHQYjDRgt-1Tpvq_0tb_VrzLZg-6p92s-5x72QNZmL_knDI_16HCVSh3YAp_Ti8GTxshgn9AjCP71k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9t3TTBwz6ZKGPMD3sbFk3ij3hvE10HAlVotBVvUeIPVqkKFY2QeOJf5-wmTYfGpGlvkWNfIp-du8vd72eAz9oo41zqqBNKUuZiQVXCGdWCR7ZQiS4CFmZyKofD9OJCna2h-EO1e5OSXGIaPEtTWR3MjTtogW9RLH3xLKO9BF0eKp_CM-YL6X28fj5ZfYvR_KuQ78SQyyfBatjMn2X8bppaf_NBijRYnsGr_3_n1_Cy9jrJt-UyeQNPbPkWNte4CN_BXd_aOZmWHoSBuiKlrb6SvCQ2cEzgY4hr6rgIOrr-frhuRxhbhbqukvhi-kvy69ajwbAZ5Y4OhyjMkB8_x8T_-iU1TcWMOBuoRRdbMB58Hx0e0fp0Bqpx21aUO2cEl0ak1kQ6zVODvk0quMk1-sA9jYEINibSYcDijAugXRnroiddXKS8l7yHTnlV2m0gheYiT1jOeFwwK6SyLs8LIy23muUq7kLUKCbTNXW5P0FjlrWky35yM5zcLExuJrvwZTVmviTu-Gvv3UbfWb2JF1kSCaHQkjDRhf1Gv-3tx6Xt_Fv3T_DirD_ITo-HJx9gI_YHDIey8F3ooAbtR3iub6rp4novrO17Fwf4PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+intrusion+net%3A+an+efficient+framework+for+network+intrusion+detection+using+hybrid+deep+TCN+and+GRU+with+integral+features&rft.jtitle=Wireless+networks&rft.au=Rani%2C+Y.+Alekya&rft.au=Reddy%2C+E.+Sreenivasa&rft.date=2025-02-01&rft.issn=1022-0038&rft.eissn=1572-8196&rft_id=info:doi/10.1007%2Fs11276-024-03800-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11276_024_03800_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-0038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-0038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-0038&client=summon