Cluster Head Selection in Heterogeneous Wireless Sensor Network Using a New Evolutionary Algorithm

In wireless sensor network (WSN), limited energy resources with the nodes is a complex challenge as far as data routing, collecting and aggregating the data is concerned as all these processes are energy demanding. Network lifetime, stability period, and potential of the WSN are some of the paramete...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Wireless personal communications Ročník 119; číslo 1; s. 585 - 616
Hlavní autoři: Chauhan, Sumika, Singh, Manmohan, Aggarwal, Ashwani Kumar
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2021
Springer Nature B.V
Témata:
ISSN:0929-6212, 1572-834X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In wireless sensor network (WSN), limited energy resources with the nodes is a complex challenge as far as data routing, collecting and aggregating the data is concerned as all these processes are energy demanding. Network lifetime, stability period, and potential of the WSN are some of the parameters which are to be maximized subject to the constraints. The cluster head selection in the heterogeneous wireless sensor network has not been explored much and needs to be improved further to discover the potential of WSN in this area. In this study, optimal cluster head selection in heterogeneous wireless sensor network through Diversity-Driven Multi-Parent Evolutionary Algorithm with Adaptive Non-Uniform Mutation has been suggested. The efficacy of the proposed technique is tested on Classical Benchmark Functions, and obtained results are compared with the state of the art of algorithms. This algorithm is also validated on a heterogeneous wireless sensor network with cluster head selection as a multi-objective optimization problem. The residual energy of sensor node and distance travelled are to be optimized in order to minimize the fitness function. Simulation suggested that the proposed algorithm is found to be reliable and outperforms in terms of remaining energy of nodes, alive nodes versus round, dead nodes versus rounds, the lifespan of network, throughput, and stability period.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-021-08225-5