A novel image compression model by adaptive vector quantization: modified rider optimization algorithm

In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image q...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sadhana (Bangalore) Ročník 45; číslo 1
Hlavní autoři: Chavan, Pratibha Pramod, Rani, B Sheela, Murugan, M, Chavan, Pramod
Médium: Journal Article
Jazyk:angličtina
Vydáno: New Delhi Springer India 01.12.2020
Springer Nature B.V
Témata:
ISSN:0256-2499, 0973-7677
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm . As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated.
AbstractList In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm. As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated.
In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm . As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated.
ArticleNumber 232
Author Chavan, Pramod
Rani, B Sheela
Murugan, M
Chavan, Pratibha Pramod
Author_xml – sequence: 1
  givenname: Pratibha Pramod
  surname: Chavan
  fullname: Chavan, Pratibha Pramod
  organization: Sathyabama Institute of Science and Technology (Deemed to be University), Department of E&TC Engineering, Trinity College of Engineering and Research
– sequence: 2
  givenname: B Sheela
  surname: Rani
  fullname: Rani, B Sheela
  email: sheelarani@sathyabama.ac.in
  organization: Sathyabama Institute of Science and Technology (Deemed to be University)
– sequence: 3
  givenname: M
  surname: Murugan
  fullname: Murugan, M
  organization: ECE Department, SRM Valliammai Engineering College
– sequence: 4
  givenname: Pramod
  surname: Chavan
  fullname: Chavan, Pramod
  organization: Department of E&TC Engineering, K J College of Engineering and Management Research
BookMark eNp9kMtKAzEUhoMoWKsv4CrgevTkMpOJuyLeQHCj65DJZGpKZ9ImaUGf3rRTEFx0lZB837n8F-h08INF6JrALQEQd5FQ4FUBFAognFWFPEETkIIVohLiNN9pWRWUS3mOLmJcAFABNZugboYHv7VL7Ho9t9j4fhVsjM4PuPdtfm--sW71KrmtxVtrkg94vdFDcj86Zep-h7nO2RYH19qAfUb7wyfWy7kPLn31l-is08torw7nFH0-PX48vBRv78-vD7O3wjAiU1F2ZdOAAUaqVjfUgKiBt5VkxEBpuSQldIIy0YCUlBvNOGuZJbUuwdama9gU3Yx1V8GvNzYmtfCbMOSWinJOaK5U00zRkTLBxxhsp1Yh7x--FQG1y1ONeaqcp9rnqWSW6n-ScWm_ZgraLY-rbFRj7jPMbfib6oj1C13zjTY
CitedBy_id crossref_primary_10_1007_s11042_022_11952_x
crossref_primary_10_1007_s00500_023_09361_9
crossref_primary_10_1155_2022_7140552
crossref_primary_10_32604_cmc_2023_031817
crossref_primary_10_1007_s00500_023_08060_9
crossref_primary_10_1142_S0219649224500503
Cites_doi 10.1049/trit.2018.1040
10.1016/j.ins.2018.08.067
10.1016/j.image.2017.03.011
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2013.06.001
10.1016/j.ejca.2018.08.009
10.1016/j.jvcir.2016.09.008
10.1016/j.optcom.2017.12.040
10.1016/j.eswa.2016.02.047
10.1016/j.jsv.2016.11.006
10.1016/j.asoc.2018.09.025
10.1016/j.compeleceng.2016.12.012
10.1016/j.advengsoft.2016.01.008
10.1016/j.patrec.2018.09.013
10.1016/j.neucom.2016.06.050
10.1016/j.proeng.2017.09.598
10.1016/j.ijleo.2014.06.054
10.1109/ACCESS.2018.2867110
10.1016/j.ijleo.2017.08.007
10.1016/j.chaos.2017.11.013
10.1016/j.sigpro.2018.04.014
10.1016/j.jvcir.2017.01.021
10.1016/j.asej.2016.09.009
10.1016/j.aeue.2017.01.008
10.1016/j.optlastec.2019.01.039
10.1016/j.dsp.2017.02.008
10.36478/jeasci.2019.2642.2647
10.1109/TIM.2018.2836058
10.1016/j.neucom.2018.02.094
10.1016/j.bspc.2017.04.006
10.1016/j.ijleo.2015.07.005
10.1016/j.jvcir.2015.03.006
10.5120/7369-0.137
10.1080/1206212X.2019.1651987
10.1016/j.micpro.2016.08.004
ContentType Journal Article
Copyright Indian Academy of Sciences 2020
Indian Academy of Sciences 2020.
Copyright_xml – notice: Indian Academy of Sciences 2020
– notice: Indian Academy of Sciences 2020.
DBID AAYXX
CITATION
DOI 10.1007/s12046-020-01436-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_020_01436_9
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
H13
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RAB
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABJCF
ABRTQ
ADHKG
AEUYN
AFDZB
AFFHD
AFKRA
AFOHR
AGQPQ
AHPBZ
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
OVT
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-5f5bb0c0316dab2c07804d6931c05e49150f7237b09924ca343d3e18a50e8cfb3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571547200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0256-2499
IngestDate Thu Sep 25 00:47:07 EDT 2025
Tue Nov 18 22:46:26 EST 2025
Sat Nov 29 05:51:12 EST 2025
Fri Feb 21 02:49:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords vector quantization
Linde–Buzo–Gray
rider optimization algorithm
Image compression
codebook
fitness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5f5bb0c0316dab2c07804d6931c05e49150f7237b09924ca343d3e18a50e8cfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2441293182
PQPubID 2043821
ParticipantIDs proquest_journals_2441293182
crossref_primary_10_1007_s12046_020_01436_9
crossref_citationtrail_10_1007_s12046_020_01436_9
springer_journals_10_1007_s12046_020_01436_9
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2020
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Pang, Zhou, Hu, Hu, El-Rafei (CR1) 2019; 473
Chaurasia, Chaurasia (CR8) 2016; 41
Huang, He, Xiang, Wen, Zhang (CR17) 2018; 150
Binu, Kariyappa (CR34) 2019; 68
Ernawan, Kabir, Zamli (CR2) 2017; 148
Hussain, Al-Fayadh, Radi (CR9) 2018; 300
Ji, Zhang (CR14) 2017; 62
Gong, Qiu, Deng, Zhou (CR13) 2019; 115
Fister, Fister, Yang, Brest (CR21) 2013; 13
CR35
Fonseca, Ferreira, Madeiro (CR30) 2018; 73
CR31
Huang, Liu, Ren, Yu, Lai (CR20) 2017; 64
Roy, Kumar, Chanda, Chaudhuri, Banerjee (CR3) 2018; 106
Zhou, Zhang, Wu, Pei, Yang (CR37) 2014; 125
Rashid, Miri, Woungang (CR16) 2016; 27–28
Lalwani, Sharma, Verma, Kumar (CR27) 2019; 4
Vishwakarma, Yerpude (CR26) 2014; 3
Chiranjeevi, Jena (CR39) 2018; 9
Karimi, Samavi, Soroushmehr, Shirani, Najarian (CR28) 2016; 56
Kumar, Fred, Kumar, Varghese, Daniel (CR29) 2017
George, Rajakumar, Suresh (CR25) 2012; 488
Brahimi, Laouir, Boubchir, Ali-Chérif (CR4) 2017; 73
Fu, Yi, Luo (CR12) 2018; 116
Zhu, Zeng, Gabbouj (CR38) 2015; 30
Mirjalili, Mirjalili, Lewis (CR23) 2014; 69
Li, Lo (CR36) 2017; 44
El-Tokhy (CR32) 2020; 29
Skorsetz, Artal, Bueno (CR15) 2018; 422
Balleyguier, Cousin, Dunant, Attard, Arfi-Rouche (CR18) 2018; 103
Turcza, Duplaga (CR6) 2017; 38
Zhang, Xia (CR22) 2017; 389
Xiao, Lu, Zhang, Li, Wang (CR5) 2016; 214
Mirjalili, Lewis (CR10) 2016; 95
Dimauro, Caivano, Girardi (CR11) 2018; 6
Alturki, Alrobaian (CR33) 2019; 14
Zuo, Lan, Deng, Yao, Wang (CR7) 2015; 126
Gashnikov (CR24) 2017; 201
Liu, Huang, Ren, Yu, Lai (CR19) 2017; 55
H Liu (1436_CR19) 2017; 55
SN Kumar (1436_CR29) 2017
Z Zuo (1436_CR7) 2015; 126
C Balleyguier (1436_CR18) 2018; 103
M Skorsetz (1436_CR15) 2018; 422
MV Gashnikov (1436_CR24) 2017; 201
D Binu (1436_CR34) 2019; 68
CS Fonseca (1436_CR30) 2018; 73
XX Ji (1436_CR14) 2017; 62
SK Roy (1436_CR3) 2018; 106
H Huang (1436_CR17) 2018; 150
T Brahimi (1436_CR4) 2017; 73
1436_CR31
I Fister (1436_CR21) 2013; 13
G Dimauro (1436_CR11) 2018; 6
S Mirjalili (1436_CR10) 2016; 95
S Mirjalili (1436_CR23) 2014; 69
P Turcza (1436_CR6) 2017; 38
B Xiao (1436_CR5) 2016; 214
S Lalwani (1436_CR27) 2019; 4
1436_CR35
N Zhou (1436_CR37) 2014; 125
J Zhang (1436_CR22) 2017; 389
B Vishwakarma (1436_CR26) 2014; 3
K-K Huang (1436_CR20) 2017; 64
F Rashid (1436_CR16) 2016; 27–28
A Alturki (1436_CR33) 2019; 14
C-Y Pang (1436_CR1) 2019; 473
N Karimi (1436_CR28) 2016; 56
V Chaurasia (1436_CR8) 2016; 41
F Ernawan (1436_CR2) 2017; 148
A George (1436_CR25) 2012; 488
C Fu (1436_CR12) 2018; 116
S Zhu (1436_CR38) 2015; 30
AJ Hussain (1436_CR9) 2018; 300
L Gong (1436_CR13) 2019; 115
P Li (1436_CR36) 2017; 44
K Chiranjeevi (1436_CR39) 2018; 9
MS El-Tokhy (1436_CR32) 2020; 29
References_xml – volume: 4
  start-page: 92
  issue: 2
  year: 2019
  end-page: 100
  ident: CR27
  article-title: Efficient discrete firefly algorithm for Ctrie based caching of multiple sequence alignment on optimally scheduled parallel machines
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.1040
– volume: 473
  start-page: 121
  year: 2019
  end-page: 141
  ident: CR1
  article-title: Signal and image compression using quantum discrete cosine transform
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.08.067
– volume: 55
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR19
  article-title: Quadtree coding with adaptive scanning order for space-borne image compression
  publication-title: Signal. Proecess. Image Commun.
  doi: 10.1016/j.image.2017.03.011
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR23
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: CR21
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– volume: 103
  start-page: 137
  year: 2018
  end-page: 142
  ident: CR18
  article-title: Patient-assisted compression helps for image quality reduction dose and improves patient experience in mammography
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2018.08.009
– volume: 41
  start-page: 87
  year: 2016
  end-page: 95
  ident: CR8
  article-title: Statistical feature extraction based technique for fast fractal image compression
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2016.09.008
– volume: 422
  start-page: 44
  year: 2018
  end-page: 51
  ident: CR15
  article-title: Improved multiphoton imaging in biological samples by using variable pulse compression and wavefront assessment
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.12.040
– volume: 56
  start-page: 360
  year: 2016
  end-page: 367
  ident: CR28
  article-title: Toward practical guideline for design of image compression algorithms for biomedical applications
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.047
– volume: 389
  start-page: 153
  year: 2017
  end-page: 167
  ident: CR22
  article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.11.006
– volume: 29
  start-page: 023003
  issue: 2
  year: 2020
  ident: CR32
  article-title: Ultimate neutron and x-ray radiography images compression using artificial bee colony and firefly optimization algorithms
  publication-title: J. Electron. Imaging
– ident: CR35
– volume: 73
  start-page: 958
  year: 2018
  end-page: 968
  ident: CR30
  article-title: Vector quantization codebook design based on fish school search algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.025
– volume: 62
  start-page: 473
  year: 2017
  end-page: 484
  ident: CR14
  article-title: An adaptive SAR image compression method
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2016.12.012
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR10
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 116
  start-page: 65
  year: 2018
  end-page: 71
  ident: CR12
  article-title: Hyperspectral image compression based on simultaneous sparse representation and general-pixels
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/j.patrec.2018.09.013
– volume: 214
  start-page: 587
  year: 2016
  end-page: 593
  ident: CR5
  article-title: Lossless image compression based on integer discrete Tchebichef transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.050
– volume: 201
  start-page: 196
  year: 2017
  end-page: 205
  ident: CR24
  article-title: Minimizing the entropy of quantized post-interpolation residuals for hierarchical image compression
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.598
– volume: 125
  start-page: 5075
  issue: 18
  year: 2014
  end-page: 5080
  ident: CR37
  article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing
  publication-title: Optik Int. J. Light Electr. Opt.
  doi: 10.1016/j.ijleo.2014.06.054
– volume: 6
  start-page: 46968
  year: 2018
  end-page: 46975
  ident: CR11
  article-title: A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867110
– volume: 148
  start-page: 106
  year: 2017
  end-page: 119
  ident: CR2
  article-title: An efficient image compression technique using Tchebichef bit allocation
  publication-title: Optim. Int. J. Light Electr. Optim.
  doi: 10.1016/j.ijleo.2017.08.007
– volume: 106
  start-page: 16
  year: 2018
  end-page: 22
  ident: CR3
  article-title: Fractal image compression using upper bound on scaling parameter
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.11.013
– volume: 150
  start-page: 183
  year: 2018
  end-page: 190
  ident: CR17
  article-title: A compression-diffusion-permutation strategy for securing image
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.014
– ident: CR31
– volume: 44
  start-page: 61
  year: 2017
  end-page: 71
  ident: CR36
  article-title: Joint image compression and encryption based on order-8 alternating transforms
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2017.01.021
– volume: 9
  start-page: 1417
  year: 2018
  end-page: 1431
  ident: CR39
  article-title: Image compression based on vector quantization using cuckoo search optimization technique
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.09.009
– volume: 73
  start-page: 183
  year: 2017
  end-page: 192
  ident: CR4
  article-title: An improved wavelet-based image coder for embedded greyscale and colour image compression
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2017.01.008
– volume: 115
  start-page: 257
  year: 2019
  end-page: 267
  ident: CR13
  article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.01.039
– volume: 64
  start-page: 96
  year: 2017
  end-page: 106
  ident: CR20
  article-title: Remote sensing image compression based on binary tree and optimized truncation
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.02.008
– volume: 14
  start-page: 2642
  year: 2019
  end-page: 2647
  ident: CR33
  article-title: A novel lossless image compression technique based on firefly optimization algorithm
  publication-title: J. Eng. Appl. Sci.
  doi: 10.36478/jeasci.2019.2642.2647
– volume: 68
  start-page: 2
  issue: 1
  year: 2019
  end-page: 26
  ident: CR34
  article-title: RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits
  publication-title: IEE Trans. Instrum. Meas
  doi: 10.1109/TIM.2018.2836058
– volume: 300
  start-page: 44
  year: 2018
  end-page: 69
  ident: CR9
  article-title: Image compression techniques: a survey in lossless and lossy algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.094
– year: 2017
  ident: CR29
  publication-title: BAT Optimization-Based Vector Quantization Algorithm for Compression of CT Medical Images
– volume: 38
  start-page: 1
  year: 2017
  end-page: 8
  ident: CR6
  article-title: Near-lossless energy-efficient image compression algorithm for wireless capsule endoscopy
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.04.006
– volume: 27–28
  start-page: 54
  year: 2016
  end-page: 64
  ident: CR16
  article-title: Secure image deduplication through image compression
  publication-title: J. Inf. Secur. Appl.
– volume: 126
  start-page: 2825
  issue: 21
  year: 2015
  end-page: 2831
  ident: CR7
  article-title: An improved medical image compression technique with lossless region of interest
  publication-title: Optim Int. J. Light Electron. Optim.
  doi: 10.1016/j.ijleo.2015.07.005
– volume: 3
  start-page: 1721
  issue: 5
  year: 2014
  end-page: 1725
  ident: CR26
  article-title: A new method for noisy image segmentation using firefly algorithm
  publication-title: Int. J. Sci. Res. (IJSR)
– volume: 30
  start-page: 94
  year: 2015
  end-page: 105
  ident: CR38
  article-title: Adaptive sampling for compressed sensing based image compression
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.03.006
– volume: 488
  start-page: 23
  year: 2012
  end-page: 28
  ident: CR25
  article-title: Markov random field based image restoration with aid of local and global features
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/7369-0.137
– volume: 422
  start-page: 44
  year: 2018
  ident: 1436_CR15
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.12.040
– volume: 56
  start-page: 360
  year: 2016
  ident: 1436_CR28
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.047
– volume: 201
  start-page: 196
  year: 2017
  ident: 1436_CR24
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.598
– volume: 473
  start-page: 121
  year: 2019
  ident: 1436_CR1
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.08.067
– volume: 14
  start-page: 2642
  year: 2019
  ident: 1436_CR33
  publication-title: J. Eng. Appl. Sci.
  doi: 10.36478/jeasci.2019.2642.2647
– volume: 30
  start-page: 94
  year: 2015
  ident: 1436_CR38
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.03.006
– volume: 64
  start-page: 96
  year: 2017
  ident: 1436_CR20
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.02.008
– volume: 389
  start-page: 153
  year: 2017
  ident: 1436_CR22
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.11.006
– ident: 1436_CR31
  doi: 10.1080/1206212X.2019.1651987
– volume: 68
  start-page: 2
  issue: 1
  year: 2019
  ident: 1436_CR34
  publication-title: IEE Trans. Instrum. Meas
  doi: 10.1109/TIM.2018.2836058
– volume: 55
  start-page: 1
  year: 2017
  ident: 1436_CR19
  publication-title: Signal. Proecess. Image Commun.
  doi: 10.1016/j.image.2017.03.011
– volume: 6
  start-page: 46968
  year: 2018
  ident: 1436_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867110
– volume: 214
  start-page: 587
  year: 2016
  ident: 1436_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.050
– volume: 126
  start-page: 2825
  issue: 21
  year: 2015
  ident: 1436_CR7
  publication-title: Optim Int. J. Light Electron. Optim.
  doi: 10.1016/j.ijleo.2015.07.005
– volume: 27–28
  start-page: 54
  year: 2016
  ident: 1436_CR16
  publication-title: J. Inf. Secur. Appl.
– volume: 13
  start-page: 34
  year: 2013
  ident: 1436_CR21
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– volume: 38
  start-page: 1
  year: 2017
  ident: 1436_CR6
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.04.006
– volume: 4
  start-page: 92
  issue: 2
  year: 2019
  ident: 1436_CR27
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/trit.2018.1040
– volume: 9
  start-page: 1417
  year: 2018
  ident: 1436_CR39
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.09.009
– volume: 150
  start-page: 183
  year: 2018
  ident: 1436_CR17
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.04.014
– volume: 103
  start-page: 137
  year: 2018
  ident: 1436_CR18
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2018.08.009
– volume: 300
  start-page: 44
  year: 2018
  ident: 1436_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.094
– volume: 95
  start-page: 51
  year: 2016
  ident: 1436_CR10
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 73
  start-page: 183
  year: 2017
  ident: 1436_CR4
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2017.01.008
– volume: 44
  start-page: 61
  year: 2017
  ident: 1436_CR36
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2017.01.021
– volume: 29
  start-page: 023003
  issue: 2
  year: 2020
  ident: 1436_CR32
  publication-title: J. Electron. Imaging
– volume: 73
  start-page: 958
  year: 2018
  ident: 1436_CR30
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.025
– volume: 62
  start-page: 473
  year: 2017
  ident: 1436_CR14
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2016.12.012
– volume: 69
  start-page: 46
  year: 2014
  ident: 1436_CR23
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 148
  start-page: 106
  year: 2017
  ident: 1436_CR2
  publication-title: Optim. Int. J. Light Electr. Optim.
  doi: 10.1016/j.ijleo.2017.08.007
– volume: 3
  start-page: 1721
  issue: 5
  year: 2014
  ident: 1436_CR26
  publication-title: Int. J. Sci. Res. (IJSR)
– volume: 488
  start-page: 23
  year: 2012
  ident: 1436_CR25
  publication-title: Int. J. Comput. Appl.
  doi: 10.5120/7369-0.137
– volume: 116
  start-page: 65
  year: 2018
  ident: 1436_CR12
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/j.patrec.2018.09.013
– volume: 106
  start-page: 16
  year: 2018
  ident: 1436_CR3
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.11.013
– volume: 115
  start-page: 257
  year: 2019
  ident: 1436_CR13
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.01.039
– volume-title: BAT Optimization-Based Vector Quantization Algorithm for Compression of CT Medical Images
  year: 2017
  ident: 1436_CR29
– volume: 41
  start-page: 87
  year: 2016
  ident: 1436_CR8
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2016.09.008
– ident: 1436_CR35
  doi: 10.1016/j.micpro.2016.08.004
– volume: 125
  start-page: 5075
  issue: 18
  year: 2014
  ident: 1436_CR37
  publication-title: Optik Int. J. Light Electr. Opt.
  doi: 10.1016/j.ijleo.2014.06.054
SSID ssj0027083
Score 2.2659736
Snippet In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptive algorithms
Coders
Compression ratio
Engineering
Image compression
Image enhancement
Image quality
Mapping
Optimization
Optimization algorithms
Vector quantization
Title A novel image compression model by adaptive vector quantization: modified rider optimization algorithm
URI https://link.springer.com/article/10.1007/s12046-020-01436-9
https://www.proquest.com/docview/2441293182
Volume 45
WOSCitedRecordID wos000571547200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0256-2499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADsAFiMFAOHEAQqW365DYhJk4T4qXdqjRpYdLWju4h8e9x2pQCAiQ4x40iP2K7sT8DHJuxdNHvSOpErsAExWM0sBmjDkf3k0hXYYYXwya8ft8fDIIb3RQ2rardqyfJ4qaum90szOWoSncUJp1Lg2VYQXfnq4ENt3ePdZpllOCb6MwpJheBbpX5fo_P7qiOMb88ixbeprf5v3NuwYaOLkm3VIcmLMVpC9Y_YA62oKmteUpONOT06TYkXZJmi3hEhmO8X4iqMy_rY1NSjMoh0Svhkk_U3UgWxY9-8jJHoeguzgtFNkwwnCW56usjGZKO9SLho6csH86exzvw0Lu6v7ymegIDFWiaM-okThQZAg3flTyyhKHgiqQbMFMYTmwHGE0mnsW8CONMyxac2Uyy2PS5Y8S-SCK2C400S-M9IJH0DUdyn9smV2lagJmZIbnjcz9BNnltMCtBhELDk6spGaOwBlZWjA2RsWHB2DBow9n7N5MSnONX6k4l31Ab6jTE6EZFPKiSbTiv5Fkv_7zb_t_ID2DNUipRFMJ0oDHL5_EhrIrFbDjNjwoFfgPTi-gZ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FdSDb3F11Rw8KBpomz69LaIo6iK-8FbSpNXCbnfdF_jvnbSpVVFBz5mGMI_MTDPzDcCuGUsX_Y6kTuQKTFA8RgObMepwdD-JdBVmeD5swmu1_MfH4Fo3hQ3KavfySTK_qatmNwtzOarSHYVJ59JgEqZs9FgKMf_m9qFKs4wCfBOdOcXkItCtMt_v8dkdVTHml2fR3NucLvzvnIswr6NL0izUYQkm4mwZ5j5gDi7DkrbmAdnTkNP7K5A0SdYdx22SdvB-IarOvKiPzUg-KodEr4RL3lN3IxnnP_rJywiFors4jxRZmmA4S_qqr490kbSjFwlvP3X76fC5swr3pyd3x2dUT2CgAk1zSJ3EiSJDoOG7kkeWMBRckXQDZgrDie0Ao8nEs5gXYZxp2YIzm0kWmz53jNgXScTWoJZ1s3gdSCR9w5Hc57bJVZoWYGZmSO743E-QTV4dzFIQodDw5GpKRjusgJUVY0NkbJgzNgzqcPD-Ta8A5_iVulHKN9SGOggxulERD6pkHQ5LeVbLP--28TfyHZg5u7u6DC_PWxebMGsp9ciLYhpQG_ZH8RZMi_EwHfS3c2V-A7zr6v0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IXpQWxXrcw8eFF2aZPP0JmpRlFLwQW9hs5tooU1rGwv-e2eTrVFRQTzvZAkzszvzsTPfAOybsXQx7kjqRK5AgOIxGtiMUYdj-EmkqzjD82ETXrPpt9tB60MXf17tPnmSLHoaFEtTmtUHMqmXjW8W4jqqoI_ip3NpMA2ztiqkV3j99qGEXEZBxImBnSLQCHTbzPd7fA5NZb755Yk0jzyN5f__8wos6ayTnBZuUoGpOK3C4gcuwipU9CkfkQNNRX24CskpSfvjuEs6Pbx3iKo_L-pmU5KP0CHRK-GSD9SdScb5AwB5fkFj6e7OEyXWSTDNJUPV70f6KNrTi4R3H_vDTvbUW4P7xsXd2SXVkxmowCObUSdxosgQeCG4kkeWMBSNkXQDZgrDie0As8zEs5gXYf5p2YIzm0kWmz53jNgXScTWYSbtp_EGkEj6hiO5z22TK_gWIGIzJHd87ieoJq8G5sQoodC05Wp6RjcsCZeVYkNUbJgrNgxqcPT-zaAg7fhVenti61Af4FGIWY_KhNBVa3A8sW25_PNum38T34P51nkjvLlqXm_BgqW8I6-V2YaZbPgS78CcGGed0XA39-s3abPz4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+compression+model+by+adaptive+vector+quantization%3A+modified+rider+optimization+algorithm&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Chavan%2C+Pratibha+Pramod&rft.au=Rani%2C+B+Sheela&rft.au=Murugan%2C+M&rft.au=Chavan%2C+Pramod&rft.date=2020-12-01&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-020-01436-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12046_020_01436_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon