A novel image compression model by adaptive vector quantization: modified rider optimization algorithm
In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image q...
Uložené v:
| Vydané v: | Sadhana (Bangalore) Ročník 45; číslo 1 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New Delhi
Springer India
01.12.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0256-2499, 0973-7677 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the
Linde–Buzo–Gray algorithm
. As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated. |
|---|---|
| AbstractList | In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm. As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated. In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image data. For the earlier few decades, more analysts have evolved skillful image compression schemes to enhance the compression rates and the image quality. In this work, Vector Quantization is used, which uses the Linde–Buzo–Gray algorithm . As a novel intention, the codebooks are optimized by an improved optimization algorithm. In this approach, the database image is firstly separated into a set of blocks, i.e., pixels, and these sets of blocks are referred to as vectors. Then a suitable codeword is selected for each vector such that is the closest representation of that input vector. The encoder generates a codebook by mapping the vectors on the basis of these code words, and the compression of the vectors takes place. The encoder then sends a compressed stream of these vectors by pointing out their indices from the codebook to the decoder through a channel. The decoder then decodes the index to find out the compressed vector and places it on the image. For attaining a better image compression effect, the codebook is optimized using the Best Fitness Updated Rider Optimization Algorithm. The optimization of codebooks is done so that the summation of the compression ratio and the error difference between the original and decompressed images has to be minimized. Moreover, the proposed model is scruntized with other existing algorithms, and the experimental outcomes are validated. |
| ArticleNumber | 232 |
| Author | Chavan, Pramod Rani, B Sheela Murugan, M Chavan, Pratibha Pramod |
| Author_xml | – sequence: 1 givenname: Pratibha Pramod surname: Chavan fullname: Chavan, Pratibha Pramod organization: Sathyabama Institute of Science and Technology (Deemed to be University), Department of E&TC Engineering, Trinity College of Engineering and Research – sequence: 2 givenname: B Sheela surname: Rani fullname: Rani, B Sheela email: sheelarani@sathyabama.ac.in organization: Sathyabama Institute of Science and Technology (Deemed to be University) – sequence: 3 givenname: M surname: Murugan fullname: Murugan, M organization: ECE Department, SRM Valliammai Engineering College – sequence: 4 givenname: Pramod surname: Chavan fullname: Chavan, Pramod organization: Department of E&TC Engineering, K J College of Engineering and Management Research |
| BookMark | eNp9kMtKAzEUhoMoWKsv4CrgevTkMpOJuyLeQHCj65DJZGpKZ9ImaUGf3rRTEFx0lZB837n8F-h08INF6JrALQEQd5FQ4FUBFAognFWFPEETkIIVohLiNN9pWRWUS3mOLmJcAFABNZugboYHv7VL7Ho9t9j4fhVsjM4PuPdtfm--sW71KrmtxVtrkg94vdFDcj86Zep-h7nO2RYH19qAfUb7wyfWy7kPLn31l-is08torw7nFH0-PX48vBRv78-vD7O3wjAiU1F2ZdOAAUaqVjfUgKiBt5VkxEBpuSQldIIy0YCUlBvNOGuZJbUuwdama9gU3Yx1V8GvNzYmtfCbMOSWinJOaK5U00zRkTLBxxhsp1Yh7x--FQG1y1ONeaqcp9rnqWSW6n-ScWm_ZgraLY-rbFRj7jPMbfib6oj1C13zjTY |
| CitedBy_id | crossref_primary_10_1007_s11042_022_11952_x crossref_primary_10_1007_s00500_023_09361_9 crossref_primary_10_1155_2022_7140552 crossref_primary_10_32604_cmc_2023_031817 crossref_primary_10_1007_s00500_023_08060_9 crossref_primary_10_1142_S0219649224500503 |
| Cites_doi | 10.1049/trit.2018.1040 10.1016/j.ins.2018.08.067 10.1016/j.image.2017.03.011 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2013.06.001 10.1016/j.ejca.2018.08.009 10.1016/j.jvcir.2016.09.008 10.1016/j.optcom.2017.12.040 10.1016/j.eswa.2016.02.047 10.1016/j.jsv.2016.11.006 10.1016/j.asoc.2018.09.025 10.1016/j.compeleceng.2016.12.012 10.1016/j.advengsoft.2016.01.008 10.1016/j.patrec.2018.09.013 10.1016/j.neucom.2016.06.050 10.1016/j.proeng.2017.09.598 10.1016/j.ijleo.2014.06.054 10.1109/ACCESS.2018.2867110 10.1016/j.ijleo.2017.08.007 10.1016/j.chaos.2017.11.013 10.1016/j.sigpro.2018.04.014 10.1016/j.jvcir.2017.01.021 10.1016/j.asej.2016.09.009 10.1016/j.aeue.2017.01.008 10.1016/j.optlastec.2019.01.039 10.1016/j.dsp.2017.02.008 10.36478/jeasci.2019.2642.2647 10.1109/TIM.2018.2836058 10.1016/j.neucom.2018.02.094 10.1016/j.bspc.2017.04.006 10.1016/j.ijleo.2015.07.005 10.1016/j.jvcir.2015.03.006 10.5120/7369-0.137 10.1080/1206212X.2019.1651987 10.1016/j.micpro.2016.08.004 |
| ContentType | Journal Article |
| Copyright | Indian Academy of Sciences 2020 Indian Academy of Sciences 2020. |
| Copyright_xml | – notice: Indian Academy of Sciences 2020 – notice: Indian Academy of Sciences 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12046-020-01436-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 0973-7677 |
| ExternalDocumentID | 10_1007_s12046_020_01436_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ H13 HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RAB RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ABJCF ABRTQ ADHKG AEUYN AFDZB AFFHD AFKRA AFOHR AGQPQ AHPBZ ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ KB. M7S OVT PDBOC PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c319t-5f5bb0c0316dab2c07804d6931c05e49150f7237b09924ca343d3e18a50e8cfb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571547200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0256-2499 |
| IngestDate | Thu Sep 25 00:47:07 EDT 2025 Tue Nov 18 22:46:26 EST 2025 Sat Nov 29 05:51:12 EST 2025 Fri Feb 21 02:49:03 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | vector quantization Linde–Buzo–Gray rider optimization algorithm Image compression codebook fitness |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5f5bb0c0316dab2c07804d6931c05e49150f7237b09924ca343d3e18a50e8cfb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2441293182 |
| PQPubID | 2043821 |
| ParticipantIDs | proquest_journals_2441293182 crossref_primary_10_1007_s12046_020_01436_9 crossref_citationtrail_10_1007_s12046_020_01436_9 springer_journals_10_1007_s12046_020_01436_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20201200 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Published by the Indian Academy of Sciences |
| PublicationTitle | Sadhana (Bangalore) |
| PublicationTitleAbbrev | Sādhanā |
| PublicationYear | 2020 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Pang, Zhou, Hu, Hu, El-Rafei (CR1) 2019; 473 Chaurasia, Chaurasia (CR8) 2016; 41 Huang, He, Xiang, Wen, Zhang (CR17) 2018; 150 Binu, Kariyappa (CR34) 2019; 68 Ernawan, Kabir, Zamli (CR2) 2017; 148 Hussain, Al-Fayadh, Radi (CR9) 2018; 300 Ji, Zhang (CR14) 2017; 62 Gong, Qiu, Deng, Zhou (CR13) 2019; 115 Fister, Fister, Yang, Brest (CR21) 2013; 13 CR35 Fonseca, Ferreira, Madeiro (CR30) 2018; 73 CR31 Huang, Liu, Ren, Yu, Lai (CR20) 2017; 64 Roy, Kumar, Chanda, Chaudhuri, Banerjee (CR3) 2018; 106 Zhou, Zhang, Wu, Pei, Yang (CR37) 2014; 125 Rashid, Miri, Woungang (CR16) 2016; 27–28 Lalwani, Sharma, Verma, Kumar (CR27) 2019; 4 Vishwakarma, Yerpude (CR26) 2014; 3 Chiranjeevi, Jena (CR39) 2018; 9 Karimi, Samavi, Soroushmehr, Shirani, Najarian (CR28) 2016; 56 Kumar, Fred, Kumar, Varghese, Daniel (CR29) 2017 George, Rajakumar, Suresh (CR25) 2012; 488 Brahimi, Laouir, Boubchir, Ali-Chérif (CR4) 2017; 73 Fu, Yi, Luo (CR12) 2018; 116 Zhu, Zeng, Gabbouj (CR38) 2015; 30 Mirjalili, Mirjalili, Lewis (CR23) 2014; 69 Li, Lo (CR36) 2017; 44 El-Tokhy (CR32) 2020; 29 Skorsetz, Artal, Bueno (CR15) 2018; 422 Balleyguier, Cousin, Dunant, Attard, Arfi-Rouche (CR18) 2018; 103 Turcza, Duplaga (CR6) 2017; 38 Zhang, Xia (CR22) 2017; 389 Xiao, Lu, Zhang, Li, Wang (CR5) 2016; 214 Mirjalili, Lewis (CR10) 2016; 95 Dimauro, Caivano, Girardi (CR11) 2018; 6 Alturki, Alrobaian (CR33) 2019; 14 Zuo, Lan, Deng, Yao, Wang (CR7) 2015; 126 Gashnikov (CR24) 2017; 201 Liu, Huang, Ren, Yu, Lai (CR19) 2017; 55 H Liu (1436_CR19) 2017; 55 SN Kumar (1436_CR29) 2017 Z Zuo (1436_CR7) 2015; 126 C Balleyguier (1436_CR18) 2018; 103 M Skorsetz (1436_CR15) 2018; 422 MV Gashnikov (1436_CR24) 2017; 201 D Binu (1436_CR34) 2019; 68 CS Fonseca (1436_CR30) 2018; 73 XX Ji (1436_CR14) 2017; 62 SK Roy (1436_CR3) 2018; 106 H Huang (1436_CR17) 2018; 150 T Brahimi (1436_CR4) 2017; 73 1436_CR31 I Fister (1436_CR21) 2013; 13 G Dimauro (1436_CR11) 2018; 6 S Mirjalili (1436_CR10) 2016; 95 S Mirjalili (1436_CR23) 2014; 69 P Turcza (1436_CR6) 2017; 38 B Xiao (1436_CR5) 2016; 214 S Lalwani (1436_CR27) 2019; 4 1436_CR35 N Zhou (1436_CR37) 2014; 125 J Zhang (1436_CR22) 2017; 389 B Vishwakarma (1436_CR26) 2014; 3 K-K Huang (1436_CR20) 2017; 64 F Rashid (1436_CR16) 2016; 27–28 A Alturki (1436_CR33) 2019; 14 C-Y Pang (1436_CR1) 2019; 473 N Karimi (1436_CR28) 2016; 56 V Chaurasia (1436_CR8) 2016; 41 F Ernawan (1436_CR2) 2017; 148 A George (1436_CR25) 2012; 488 C Fu (1436_CR12) 2018; 116 S Zhu (1436_CR38) 2015; 30 AJ Hussain (1436_CR9) 2018; 300 L Gong (1436_CR13) 2019; 115 P Li (1436_CR36) 2017; 44 K Chiranjeevi (1436_CR39) 2018; 9 MS El-Tokhy (1436_CR32) 2020; 29 |
| References_xml | – volume: 4 start-page: 92 issue: 2 year: 2019 end-page: 100 ident: CR27 article-title: Efficient discrete firefly algorithm for Ctrie based caching of multiple sequence alignment on optimally scheduled parallel machines publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.1040 – volume: 473 start-page: 121 year: 2019 end-page: 141 ident: CR1 article-title: Signal and image compression using quantum discrete cosine transform publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.08.067 – volume: 55 start-page: 1 year: 2017 end-page: 9 ident: CR19 article-title: Quadtree coding with adaptive scanning order for space-borne image compression publication-title: Signal. Proecess. Image Commun. doi: 10.1016/j.image.2017.03.011 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR23 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: CR21 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – volume: 103 start-page: 137 year: 2018 end-page: 142 ident: CR18 article-title: Patient-assisted compression helps for image quality reduction dose and improves patient experience in mammography publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2018.08.009 – volume: 41 start-page: 87 year: 2016 end-page: 95 ident: CR8 article-title: Statistical feature extraction based technique for fast fractal image compression publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2016.09.008 – volume: 422 start-page: 44 year: 2018 end-page: 51 ident: CR15 article-title: Improved multiphoton imaging in biological samples by using variable pulse compression and wavefront assessment publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.12.040 – volume: 56 start-page: 360 year: 2016 end-page: 367 ident: CR28 article-title: Toward practical guideline for design of image compression algorithms for biomedical applications publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2016.02.047 – volume: 389 start-page: 153 year: 2017 end-page: 167 ident: CR22 article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.11.006 – volume: 29 start-page: 023003 issue: 2 year: 2020 ident: CR32 article-title: Ultimate neutron and x-ray radiography images compression using artificial bee colony and firefly optimization algorithms publication-title: J. Electron. Imaging – ident: CR35 – volume: 73 start-page: 958 year: 2018 end-page: 968 ident: CR30 article-title: Vector quantization codebook design based on fish school search algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.025 – volume: 62 start-page: 473 year: 2017 end-page: 484 ident: CR14 article-title: An adaptive SAR image compression method publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2016.12.012 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR10 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 116 start-page: 65 year: 2018 end-page: 71 ident: CR12 article-title: Hyperspectral image compression based on simultaneous sparse representation and general-pixels publication-title: Pattern Recognit Lett. doi: 10.1016/j.patrec.2018.09.013 – volume: 214 start-page: 587 year: 2016 end-page: 593 ident: CR5 article-title: Lossless image compression based on integer discrete Tchebichef transform publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.050 – volume: 201 start-page: 196 year: 2017 end-page: 205 ident: CR24 article-title: Minimizing the entropy of quantized post-interpolation residuals for hierarchical image compression publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.598 – volume: 125 start-page: 5075 issue: 18 year: 2014 end-page: 5080 ident: CR37 article-title: Novel hybrid image compression–encryption algorithm based on compressive sensing publication-title: Optik Int. J. Light Electr. Opt. doi: 10.1016/j.ijleo.2014.06.054 – volume: 6 start-page: 46968 year: 2018 end-page: 46975 ident: CR11 article-title: A new method and a non-invasive device to estimate anemia based on digital images of the conjunctiva publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867110 – volume: 148 start-page: 106 year: 2017 end-page: 119 ident: CR2 article-title: An efficient image compression technique using Tchebichef bit allocation publication-title: Optim. Int. J. Light Electr. Optim. doi: 10.1016/j.ijleo.2017.08.007 – volume: 106 start-page: 16 year: 2018 end-page: 22 ident: CR3 article-title: Fractal image compression using upper bound on scaling parameter publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.11.013 – volume: 150 start-page: 183 year: 2018 end-page: 190 ident: CR17 article-title: A compression-diffusion-permutation strategy for securing image publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.04.014 – ident: CR31 – volume: 44 start-page: 61 year: 2017 end-page: 71 ident: CR36 article-title: Joint image compression and encryption based on order-8 alternating transforms publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2017.01.021 – volume: 9 start-page: 1417 year: 2018 end-page: 1431 ident: CR39 article-title: Image compression based on vector quantization using cuckoo search optimization technique publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.09.009 – volume: 73 start-page: 183 year: 2017 end-page: 192 ident: CR4 article-title: An improved wavelet-based image coder for embedded greyscale and colour image compression publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.01.008 – volume: 115 start-page: 257 year: 2019 end-page: 267 ident: CR13 article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.01.039 – volume: 64 start-page: 96 year: 2017 end-page: 106 ident: CR20 article-title: Remote sensing image compression based on binary tree and optimized truncation publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2017.02.008 – volume: 14 start-page: 2642 year: 2019 end-page: 2647 ident: CR33 article-title: A novel lossless image compression technique based on firefly optimization algorithm publication-title: J. Eng. Appl. Sci. doi: 10.36478/jeasci.2019.2642.2647 – volume: 68 start-page: 2 issue: 1 year: 2019 end-page: 26 ident: CR34 article-title: RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits publication-title: IEE Trans. Instrum. Meas doi: 10.1109/TIM.2018.2836058 – volume: 300 start-page: 44 year: 2018 end-page: 69 ident: CR9 article-title: Image compression techniques: a survey in lossless and lossy algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.094 – year: 2017 ident: CR29 publication-title: BAT Optimization-Based Vector Quantization Algorithm for Compression of CT Medical Images – volume: 38 start-page: 1 year: 2017 end-page: 8 ident: CR6 article-title: Near-lossless energy-efficient image compression algorithm for wireless capsule endoscopy publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.04.006 – volume: 27–28 start-page: 54 year: 2016 end-page: 64 ident: CR16 article-title: Secure image deduplication through image compression publication-title: J. Inf. Secur. Appl. – volume: 126 start-page: 2825 issue: 21 year: 2015 end-page: 2831 ident: CR7 article-title: An improved medical image compression technique with lossless region of interest publication-title: Optim Int. J. Light Electron. Optim. doi: 10.1016/j.ijleo.2015.07.005 – volume: 3 start-page: 1721 issue: 5 year: 2014 end-page: 1725 ident: CR26 article-title: A new method for noisy image segmentation using firefly algorithm publication-title: Int. J. Sci. Res. (IJSR) – volume: 30 start-page: 94 year: 2015 end-page: 105 ident: CR38 article-title: Adaptive sampling for compressed sensing based image compression publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.03.006 – volume: 488 start-page: 23 year: 2012 end-page: 28 ident: CR25 article-title: Markov random field based image restoration with aid of local and global features publication-title: Int. J. Comput. Appl. doi: 10.5120/7369-0.137 – volume: 422 start-page: 44 year: 2018 ident: 1436_CR15 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.12.040 – volume: 56 start-page: 360 year: 2016 ident: 1436_CR28 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2016.02.047 – volume: 201 start-page: 196 year: 2017 ident: 1436_CR24 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.598 – volume: 473 start-page: 121 year: 2019 ident: 1436_CR1 publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.08.067 – volume: 14 start-page: 2642 year: 2019 ident: 1436_CR33 publication-title: J. Eng. Appl. Sci. doi: 10.36478/jeasci.2019.2642.2647 – volume: 30 start-page: 94 year: 2015 ident: 1436_CR38 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.03.006 – volume: 64 start-page: 96 year: 2017 ident: 1436_CR20 publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2017.02.008 – volume: 389 start-page: 153 year: 2017 ident: 1436_CR22 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.11.006 – ident: 1436_CR31 doi: 10.1080/1206212X.2019.1651987 – volume: 68 start-page: 2 issue: 1 year: 2019 ident: 1436_CR34 publication-title: IEE Trans. Instrum. Meas doi: 10.1109/TIM.2018.2836058 – volume: 55 start-page: 1 year: 2017 ident: 1436_CR19 publication-title: Signal. Proecess. Image Commun. doi: 10.1016/j.image.2017.03.011 – volume: 6 start-page: 46968 year: 2018 ident: 1436_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867110 – volume: 214 start-page: 587 year: 2016 ident: 1436_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.050 – volume: 126 start-page: 2825 issue: 21 year: 2015 ident: 1436_CR7 publication-title: Optim Int. J. Light Electron. Optim. doi: 10.1016/j.ijleo.2015.07.005 – volume: 27–28 start-page: 54 year: 2016 ident: 1436_CR16 publication-title: J. Inf. Secur. Appl. – volume: 13 start-page: 34 year: 2013 ident: 1436_CR21 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – volume: 38 start-page: 1 year: 2017 ident: 1436_CR6 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.04.006 – volume: 4 start-page: 92 issue: 2 year: 2019 ident: 1436_CR27 publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/trit.2018.1040 – volume: 9 start-page: 1417 year: 2018 ident: 1436_CR39 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.09.009 – volume: 150 start-page: 183 year: 2018 ident: 1436_CR17 publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.04.014 – volume: 103 start-page: 137 year: 2018 ident: 1436_CR18 publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2018.08.009 – volume: 300 start-page: 44 year: 2018 ident: 1436_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.094 – volume: 95 start-page: 51 year: 2016 ident: 1436_CR10 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 73 start-page: 183 year: 2017 ident: 1436_CR4 publication-title: AEU Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.01.008 – volume: 44 start-page: 61 year: 2017 ident: 1436_CR36 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2017.01.021 – volume: 29 start-page: 023003 issue: 2 year: 2020 ident: 1436_CR32 publication-title: J. Electron. Imaging – volume: 73 start-page: 958 year: 2018 ident: 1436_CR30 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.025 – volume: 62 start-page: 473 year: 2017 ident: 1436_CR14 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2016.12.012 – volume: 69 start-page: 46 year: 2014 ident: 1436_CR23 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 148 start-page: 106 year: 2017 ident: 1436_CR2 publication-title: Optim. Int. J. Light Electr. Optim. doi: 10.1016/j.ijleo.2017.08.007 – volume: 3 start-page: 1721 issue: 5 year: 2014 ident: 1436_CR26 publication-title: Int. J. Sci. Res. (IJSR) – volume: 488 start-page: 23 year: 2012 ident: 1436_CR25 publication-title: Int. J. Comput. Appl. doi: 10.5120/7369-0.137 – volume: 116 start-page: 65 year: 2018 ident: 1436_CR12 publication-title: Pattern Recognit Lett. doi: 10.1016/j.patrec.2018.09.013 – volume: 106 start-page: 16 year: 2018 ident: 1436_CR3 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.11.013 – volume: 115 start-page: 257 year: 2019 ident: 1436_CR13 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.01.039 – volume-title: BAT Optimization-Based Vector Quantization Algorithm for Compression of CT Medical Images year: 2017 ident: 1436_CR29 – volume: 41 start-page: 87 year: 2016 ident: 1436_CR8 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2016.09.008 – ident: 1436_CR35 doi: 10.1016/j.micpro.2016.08.004 – volume: 125 start-page: 5075 issue: 18 year: 2014 ident: 1436_CR37 publication-title: Optik Int. J. Light Electr. Opt. doi: 10.1016/j.ijleo.2014.06.054 |
| SSID | ssj0027083 |
| Score | 2.2658753 |
| Snippet | In recent days over the internet, the uploading of enormous new images is being made every day, and they necessitate large storage to accumulate the image... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Adaptive algorithms Coders Compression ratio Engineering Image compression Image enhancement Image quality Mapping Optimization Optimization algorithms Vector quantization |
| Title | A novel image compression model by adaptive vector quantization: modified rider optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s12046-020-01436-9 https://www.proquest.com/docview/2441293182 |
| Volume | 45 |
| WOSCitedRecordID | wos000571547200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 0973-7677 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027083 issn: 0256-2499 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAY4AYDJQDBxBEapu0TbkhxMQJIV7arUrSBiZtHWxjEv8ep0spIECCc9woiuP4c2N_BtgPVaZlzjzKMx1RLgJOpecryrQXZyxXQhpeNpuILy9Fp5NcuaKwUZXtXj1Jljd1XewWYCxHbbhjOekimszCPLo7YRs2XN_c12GWNyXfRGdOMbhIXKnM93N8dkc1xvzyLFp6m_bK_9a5CssOXZLT6XFYg5m8aMDSB87BBqw5ax6RA0c5fbgO5pQUg0neI90-3i_E5plP82MLUrbKIeqVyEw-2buRTMof_eT5BZXiqjhPrFjXIJwlQ1vXRwYo2neDRPYeBsPu-LG_AXft89uzC-o6MFCNpjmmoQmV8jQafpRJFaD-hMezKGG-9sKcJ4gmTRywWCHODLiWjDNUsC9k6OVCG8U2Ya4YFPkWkNholQgmLXsONzwRvgmMisJQKIOgUTbBrxSRakdPbrtk9NKaWNlubIobm5YbmyZNOHr_5mlKzvGrdKvSb-oMdZQiurGIB6OsJhxX-qyHf55t-2_iO7AY2CNRJsK0YG48fMl3YUFPxt3RcK88wG_nSumS |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xkoDD8hbd5eEDBxBYSmIncfaGVotAQIV4iVtkOzFUatPSlkr77xmnzgYQIMHZE8vyeDzfxDPfAOyEKtMyZx7lmY4oFwGn0vMVZdqLM5YrIQ0vm03Ezaa4u0suXFHYoMp2r54ky5u6LnYLMJajNtyxnHQRTSZhmqPHsoz5l1e3dZjljck30ZlTDC4SVyrz_hyv3VGNMd88i5be5mjhe-tchB8OXZLD8XFYgom8WIb5F5yDy7DkrHlAdh3l9N4KmENSdEd5m7Q6eL8Qm2c-zo8tSNkqh6h_RGayZ-9GMip_9JPHJ1SKq-L8bcVaBuEs6du6PtJF0Y4bJLJ93-23hg-dVbg5-nv955i6DgxUo2kOaWhCpTyNhh9lUgWoP-HxLEqYr70w5wmiSRMHLFaIMwOuJeMMFewLGXq50EaxNZgqukW-DiQ2WiWCScueww1PhG8Co6IwFMogaJQN8CtFpNrRk9suGe20Jla2G5vixqblxqZJA_b_f9Mbk3N8Kr1R6Td1hjpIEd1YxINRVgMOKn3Wwx_P9vNr4tswe3x9fpaenTRPf8FcYI9HmRSzAVPD_lO-CTN6NGwN-lvlYX4G4lbsdg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED5BmdD2wNayaYVu8wMPILCWxE7i8FYB1aahqtIA9S2ynXir1KZdm1bi3--cuGQgQEI8-2JFd2ffd_LddwCvQpVpmTOP8kxHlIuAU-n5ijLtxRnLlZCGV8Mm4uFQjMfJ6EEXf1Xtvn2SrHsaLEtTUZ4vMnPeNL4FmNdRm_pYfrqIJo_hCbeF9DZfv_7WpFxeTcSJgZ1iopG4tpnf7_FzaGrw5i9PpFXkGez__z8fwDOHOkm_dpM2PMqLDuw94CLsQNud8hV57aio3zwH0yfFfJNPyWSG9w6x9ed13WxBqhE6RH0nMpMLe2eSTfUAQO7WaCzX3fneik0MwlyytP1-ZI6iM7dI5PRmvpyUt7ND-Dr49OXDBXWTGajGI1vS0IRKeRovhCiTKkC7Co9nUcJ87YU5TxBlmjhgsUL8GXAtGWdoeF_I0MuFNoodQauYF_kxkNholQgmLasONzwRvgmMisJQKINgUnbB3xol1Y623E7PmKYN4bJVbIqKTSvFpkkX3v74ZlGTdvxVure1deoO8CpF1GOREGZfXXi3tW2z_OfdXvyb-Bk8HX0cpJ8vh1cvYTew3lHVyvSgVS7X-Qns6E05WS1PK7--B6rl9Vo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+compression+model+by+adaptive+vector+quantization%3A+modified+rider+optimization+algorithm&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Chavan%2C+Pratibha+Pramod&rft.au=Rani%2C+B+Sheela&rft.au=Murugan%2C+M&rft.au=Chavan%2C+Pramod&rft.date=2020-12-01&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-020-01436-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12046_020_01436_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon |