Relative density-based clustering algorithm for identifying diverse density clusters effectively

Clustering is an important part of data mining. The existing clustering algorithm failed in the data set with uneven density distribution. In this paper, we propose a novel clustering algorithm relative density-based clustering algorithm for identifying diverse density clusters effectively called ID...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 33; číslo 16; s. 10141 - 10157
Hlavní autori: Wang, Yuying, Yang, Youlong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.08.2021
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering is an important part of data mining. The existing clustering algorithm failed in the data set with uneven density distribution. In this paper, we propose a novel clustering algorithm relative density-based clustering algorithm for identifying diverse density clusters effectively called IDDC. It can effectively identify clusters in data sets with different densities and can also handle outliers. We first compute relative density for each data point. Then, the density peak points are screened and the initial clusters are obtained according to these peak points. The strategy for assigning the remaining points is to find unallocated points from the perspective of the cluster, which can effectively identify different density. In experiments, we compare the proposed algorithm IDDC with some existing algorithms on synthetic and real-world data sets. The results show that IDDC performs better than those existing algorithms, especially clustering on data set with uneven density distribution.
AbstractList Clustering is an important part of data mining. The existing clustering algorithm failed in the data set with uneven density distribution. In this paper, we propose a novel clustering algorithm relative density-based clustering algorithm for identifying diverse density clusters effectively called IDDC. It can effectively identify clusters in data sets with different densities and can also handle outliers. We first compute relative density for each data point. Then, the density peak points are screened and the initial clusters are obtained according to these peak points. The strategy for assigning the remaining points is to find unallocated points from the perspective of the cluster, which can effectively identify different density. In experiments, we compare the proposed algorithm IDDC with some existing algorithms on synthetic and real-world data sets. The results show that IDDC performs better than those existing algorithms, especially clustering on data set with uneven density distribution.
Author Yang, Youlong
Wang, Yuying
Author_xml – sequence: 1
  givenname: Yuying
  orcidid: 0000-0001-8325-1814
  surname: Wang
  fullname: Wang, Yuying
  email: wangyuying@stu.xidian.edu.cn
  organization: School of Mathematics and Statistics, Xidian University
– sequence: 2
  givenname: Youlong
  surname: Yang
  fullname: Yang, Youlong
  organization: School of Mathematics and Statistics, Xidian University
BookMark eNp9kE1LAzEQhoNUsFX_gKcFz6uTr93sUYpfUBBEzzHdndSU7W5NUmH_vVnqB3hoYMhh3meSeWZk0vUdEnJB4YoClNcBQDKaw1iyLMucHZEpFZznHKSakClUIrUKwU_ILIQ1AIhCySl5e8bWRPeJWYNdcHHIlyZgk9XtLkT0rltlpl313sX3TWZ7n7mUi84OY6dJnA-_6A8UMrQW63FqO5yRY2vagOff9yl5vbt9mT_ki6f7x_nNIq85rWIusUKrjJDAEItSFVJRMKKu02JIqW3QCG4bng4qIynllC0LTBspVamK8lNyuZ-79f3HDkPU637nu_SkZlJUQjFgZUqxfar2fQgerd56tzF-0BT0aFLvTWoYazSpWYLUP6h2MUnru-iNaw-jfI-G7egS_d-vDlBfDuOLPA
CitedBy_id crossref_primary_10_1016_j_ins_2022_11_091
crossref_primary_10_1007_s00357_024_09475_1
crossref_primary_10_3389_fams_2025_1598165
crossref_primary_10_1016_j_measurement_2025_118869
crossref_primary_10_1016_j_neucom_2024_127329
crossref_primary_10_1016_j_eswa_2021_116143
crossref_primary_10_3389_fphy_2025_1623161
crossref_primary_10_1016_j_ins_2024_120380
crossref_primary_10_7717_peerj_cs_1921
crossref_primary_10_1155_2021_1336900
crossref_primary_10_1016_j_engappai_2024_108883
crossref_primary_10_1007_s10115_023_02038_7
crossref_primary_10_1016_j_eswa_2023_121860
crossref_primary_10_1016_j_neucom_2025_131435
crossref_primary_10_1109_ACCESS_2023_3329429
crossref_primary_10_1109_ACCESS_2025_3563990
Cites_doi 10.1016/j.ins.2018.03.031
10.1109/TPAMI.2002.1033218
10.1109/T-C.1971.223083
10.1007/s00357-006-0017-z
10.1016/j.knosys.2016.02.001
10.1186/1471-2105-8-3
10.1016/j.patrec.2009.09.011
10.1016/j.ins.2016.08.009
10.1016/j.knosys.2018.06.021
10.1007/11590316_1
10.1016/j.patcog.2007.04.010
10.1016/j.ins.2016.03.011
10.1109/TNN.2005.845141
10.1016/j.knosys.2019.105454.
10.1109/TPAMI.2010.231
10.4249/scholarpedia.1883
10.1016/j.ejor.2006.09.023
10.1109/TNNLS.2013.2293795
10.1145/1217299.1217303
10.1007/BF01908601
10.1126/science.1242072
10.1016/j.knosys.2017.11.025
10.1007/s00778-010-0189-3
10.1109/MDM.2008.17
10.1002/9780470050118
10.1007/s10489-018-1238-7
10.1007/978-3-642-37401-2_78
10.1145/342009.335388
10.1016/j.patrec.2016.05.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-021-05777-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 10157
ExternalDocumentID 10_1007_s00521_021_05777_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61573266
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-5e9ef8a4502ee67865810a4cc005e11fdea43fd3333e8a511312b6e0648898913
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628486900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 00:42:59 EST 2025
Sat Nov 29 02:59:20 EST 2025
Tue Nov 18 21:31:35 EST 2025
Fri Feb 21 02:48:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Allocation strategy
nearest neighbors
Relative density
Density-based clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5e9ef8a4502ee67865810a4cc005e11fdea43fd3333e8a511312b6e0648898913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8325-1814
PQID 2549482027
PQPubID 2043988
PageCount 17
ParticipantIDs proquest_journals_2549482027
crossref_primary_10_1007_s00521_021_05777_2
crossref_citationtrail_10_1007_s00521_021_05777_2
springer_journals_10_1007_s00521_021_05777_2
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Cheng, Zhang, Huang (CR7) 2020; 193
Huang, Ye, Zhang (CR19) 2014; 25
Baulieu (CR3) 1989; 6
Cai, He, Han, Huang (CR6) 2011; 33
CR39
Rodriguez, Laio (CR29) 2014; 344
CR14
CR12
CR11
CR10
CR32
Jain (CR20) 2010; 31
Albatineh, Niewiadomska-Bugaj, Mihalko (CR1) 2006; 23
Liu, Wang, Yu (CR23) 2018; 450
Peterson (CR27) 2009; 4
Bartel, Mucha, Dolata (CR2) 2003; 48
Hong, Yeung (CR18) 2008; 41
Jain, Law (CR21) 2005; 3776
Gionis, Mannila, Tsaparas (CR15) 2007; 1
Du, Ding, Jia (CR9) 2016; 99
Zahn, Zahn (CR37) 1971; 20
Xiao, Zhou, Zhang, Hui, Yang (CR33) 2016; 44
Xie, Gao, Xie (CR35) 2016; 354
CR4
Zhou, Si, Zhang, Zheng (CR38) 2018; 159
Olafsson, Li, Wu (CR26) 2008; 187
Xie, Xiong, Zhang, Feng, Ma (CR34) 2018; 142
CR28
CR25
CR24
Chen, Tang, Zhou, Wang, Du, Wang, Pei (CR36) 2018; 433
CR22
Veenman, Reinders, Backer (CR31) 2002; 24
Fu, Medico (CR13) 2007; 8
Friedman, Hastie, Tibshirani (CR5) 2009
Han, Kamber, Jian (CR16) 2011; 5
He, Wu, Cai (CR17) 2007; 24
Rui, Wunsch (CR30) 2005; 16
Deng, He, Han (CR8) 2011; 20
HG Bartel (5777_CR2) 2003; 48
A Gionis (5777_CR15) 2007; 1
J Han (5777_CR16) 2011; 5
5777_CR39
5777_CR4
Y Chen (5777_CR36) 2018; 433
D Cai (5777_CR6) 2011; 33
M Du (5777_CR9) 2016; 99
R Liu (5777_CR23) 2018; 450
D Cheng (5777_CR7) 2020; 193
AK Jain (5777_CR21) 2005; 3776
L He (5777_CR17) 2007; 24
Z Zhou (5777_CR38) 2018; 159
AN Albatineh (5777_CR1) 2006; 23
C Deng (5777_CR8) 2011; 20
CJ Veenman (5777_CR31) 2002; 24
A Rodriguez (5777_CR29) 2014; 344
Xu Rui (5777_CR30) 2005; 16
5777_CR14
L Xiao (5777_CR33) 2016; 44
5777_CR12
5777_CR11
5777_CR10
5777_CR32
L Fu (5777_CR13) 2007; 8
J Friedman (5777_CR5) 2009
5777_CR28
S Olafsson (5777_CR26) 2008; 187
FB Baulieu (5777_CR3) 1989; 6
CT Zahn (5777_CR37) 1971; 20
C Hong (5777_CR18) 2008; 41
AK Jain (5777_CR20) 2010; 31
X Huang (5777_CR19) 2014; 25
LE Peterson (5777_CR27) 2009; 4
J Xie (5777_CR34) 2018; 142
J Xie (5777_CR35) 2016; 354
5777_CR25
5777_CR24
5777_CR22
References_xml – ident: CR22
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: CR23
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.031
– volume: 44
  start-page: 23
  issue: 12
  year: 2016
  end-page: 28
  ident: CR33
  article-title: Study of reactive power control partitioning method with spectral cluster analysis based on PCA
  publication-title: Shaanxi Electr Power
– volume: 24
  start-page: 1273
  issue: 9
  year: 2002
  end-page: 1280
  ident: CR31
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1033218
– volume: 20
  start-page: 68
  issue: 1
  year: 1971
  end-page: 86
  ident: CR37
  article-title: Graph-theoretical methods for detecting and describing gestalt clusters
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223083
– volume: 23
  start-page: 301
  issue: 2
  year: 2006
  end-page: 313
  ident: CR1
  article-title: On similarity indices and correction for chance agreement
  publication-title: J Classif
  doi: 10.1007/s00357-006-0017-z
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 99
  start-page: 135
  issue: may1
  year: 2016
  end-page: 145
  ident: CR9
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 8
  start-page: 1
  year: 2007
  end-page: 15
  ident: CR13
  article-title: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-3
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  ident: CR20
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume: 5
  start-page: 1
  issue: 4
  year: 2011
  end-page: 18
  ident: CR16
  article-title: Data mining: concepts and techniques: concepts and techniques
  publication-title: Data Min Concepts Models Methods Algorithms Second Ed
– volume: 433
  start-page: 510
  year: 2018
  end-page: 26
  ident: CR36
  article-title: Decentralized clustering by finding loose and distributed density cores
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.08.009
– ident: CR12
– volume: 159
  start-page: 309
  year: 2018
  end-page: 320
  ident: CR38
  article-title: Robust clustering by identifying the veins of clusters based on kernel density estimation
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.06.021
– volume: 3776
  start-page: 1
  year: 2005
  end-page: 10
  ident: CR21
  article-title: Data clustering: a user’s dilemma
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/11590316_1
– ident: CR10
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  end-page: 203
  ident: CR18
  article-title: Robust path-based spectral clustering
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.04.010
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: CR35
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.03.011
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  end-page: 678
  ident: CR30
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– volume: 48
  start-page: 1070
  issue: 48
  year: 2003
  end-page: 1070
  ident: CR2
  article-title: On a modification of a graph theory based partitioning method in cluster analysis
  publication-title: Match Commun Math Comput Chem
– volume: 193
  start-page: 105454
  year: 2020
  ident: CR7
  article-title: Dense members of local cores-based density peaks clustering algorithm
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105454.
– ident: CR25
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  end-page: 1560
  ident: CR6
  article-title: Graph regularized non-negative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: CR27
  article-title: K-nearest neighbor
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 187
  start-page: 1429
  issue: 3
  year: 2008
  end-page: 1448
  ident: CR26
  article-title: Operations research and data mining
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.09.023
– year: 2009
  ident: CR5
  publication-title: The elements of statistical learning
– volume: 24
  start-page: 10
  issue: 1
  year: 2007
  end-page: 13
  ident: CR17
  article-title: Survey of clustering algorithms in data mining
  publication-title: Appl Res Comput
– ident: CR11
– volume: 25
  start-page: 1433
  issue: 8
  year: 2014
  end-page: 1446
  ident: CR19
  article-title: Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2293795
– volume: 1
  start-page: 4-es
  issue: 1
  year: 2007
  ident: CR15
  article-title: Clustering aggregation
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/1217299.1217303
– volume: 6
  start-page: 233
  issue: 1
  year: 1989
  end-page: 246
  ident: CR3
  article-title: A classification of presence/absence based dissimilarity coefficients
  publication-title: J Classif
  doi: 10.1007/BF01908601
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  end-page: 1496
  ident: CR29
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: CR32
– volume: 142
  start-page: 58
  year: 2018
  end-page: 70
  ident: CR34
  article-title: Density core-based clustering algorithm with dynamic scanning radius
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.11.025
– ident: CR28
– ident: CR24
– volume: 20
  start-page: 21
  issue: 1
  year: 2011
  end-page: 33
  ident: CR8
  article-title: Speed up kernel discriminant analysis
  publication-title: Vldb J
  doi: 10.1007/s00778-010-0189-3
– ident: 5777_CR14
  doi: 10.1109/MDM.2008.17
– volume: 159
  start-page: 309
  year: 2018
  ident: 5777_CR38
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.06.021
– volume: 3776
  start-page: 1
  year: 2005
  ident: 5777_CR21
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/11590316_1
– volume: 44
  start-page: 23
  issue: 12
  year: 2016
  ident: 5777_CR33
  publication-title: Shaanxi Electr Power
– ident: 5777_CR32
  doi: 10.1002/9780470050118
– ident: 5777_CR25
– volume: 354
  start-page: 19
  year: 2016
  ident: 5777_CR35
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.03.011
– ident: 5777_CR12
  doi: 10.1007/s10489-018-1238-7
– volume: 1
  start-page: 4-es
  issue: 1
  year: 2007
  ident: 5777_CR15
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/1217299.1217303
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 5777_CR27
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1883
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 5777_CR30
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.845141
– volume: 142
  start-page: 58
  year: 2018
  ident: 5777_CR34
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.11.025
– volume: 23
  start-page: 301
  issue: 2
  year: 2006
  ident: 5777_CR1
  publication-title: J Classif
  doi: 10.1007/s00357-006-0017-z
– volume: 20
  start-page: 68
  issue: 1
  year: 1971
  ident: 5777_CR37
  publication-title: IEEE Trans Comput
  doi: 10.1109/T-C.1971.223083
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 5777_CR29
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 25
  start-page: 1433
  issue: 8
  year: 2014
  ident: 5777_CR19
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2293795
– volume: 99
  start-page: 135
  issue: may1
  year: 2016
  ident: 5777_CR9
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 5
  start-page: 1
  issue: 4
  year: 2011
  ident: 5777_CR16
  publication-title: Data Min Concepts Models Methods Algorithms Second Ed
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  ident: 5777_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.04.010
– ident: 5777_CR10
– volume: 193
  start-page: 105454
  year: 2020
  ident: 5777_CR7
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105454.
– volume: 8
  start-page: 1
  year: 2007
  ident: 5777_CR13
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-3
– ident: 5777_CR28
– volume: 187
  start-page: 1429
  issue: 3
  year: 2008
  ident: 5777_CR26
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.09.023
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 5777_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– ident: 5777_CR22
– volume-title: The elements of statistical learning
  year: 2009
  ident: 5777_CR5
– ident: 5777_CR24
  doi: 10.1007/978-3-642-37401-2_78
– volume: 48
  start-page: 1070
  issue: 48
  year: 2003
  ident: 5777_CR2
  publication-title: Match Commun Math Comput Chem
– volume: 433
  start-page: 510
  year: 2018
  ident: 5777_CR36
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.08.009
– volume: 450
  start-page: 200
  year: 2018
  ident: 5777_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.031
– volume: 20
  start-page: 21
  issue: 1
  year: 2011
  ident: 5777_CR8
  publication-title: Vldb J
  doi: 10.1007/s00778-010-0189-3
– volume: 24
  start-page: 10
  issue: 1
  year: 2007
  ident: 5777_CR17
  publication-title: Appl Res Comput
– ident: 5777_CR11
– ident: 5777_CR4
  doi: 10.1145/342009.335388
– ident: 5777_CR39
  doi: 10.1016/j.patrec.2016.05.007
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 5777_CR20
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume: 24
  start-page: 1273
  issue: 9
  year: 2002
  ident: 5777_CR31
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2002.1033218
– volume: 6
  start-page: 233
  issue: 1
  year: 1989
  ident: 5777_CR3
  publication-title: J Classif
  doi: 10.1007/BF01908601
SSID ssj0004685
Score 2.351637
Snippet Clustering is an important part of data mining. The existing clustering algorithm failed in the data set with uneven density distribution. In this paper, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10141
SubjectTerms Algorithms
Artificial Intelligence
Clustering
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data mining
Data Mining and Knowledge Discovery
Data points
Datasets
Density
Density distribution
Image Processing and Computer Vision
Original Article
Outliers (statistics)
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7Q4MCF8RSDgXLgBpGWJl3aI0JMnCYkHtqttEkKk8qG1m7S_j12-hggQIJKOeXR1k5iO_lsE3ImpLKB1Iql1guZTJTHklAJ5hu_L1OQJ6FXJptQw2EwGoW3lVNYXqPd6ytJt1M3zm54ggmmLxZfKcVg4133MdoM2uh3jx-8IV0iTrBbENMjReUq8_0Yn8XRSsf8ci3qpM2g_b_v3CZblXZJL8vpsEPW7GSXtOvMDbRayHvkqcTALSw1CGAvlgylmaE6m2PgBHgdjbPn6WxcvLxSUGvp2PnzOp8oahyUo-lad8ppiQ2B2my5Tx4G1_dXN6zKtcA0LMKC-Ta0aRBLv-dZCwIMFBPei6XW8DeW89TYWIrUCHhsEIOWJriX9C3QN8AElFwckNZkOrGHhKYmVEkI-4BMY8kTHsNkkE6xE33jG90hvCZ5pKtA5JgPI4uaEMqOhFEPC5Iw8jrkvOnzVobh-LV1t-ZkVC3JPEJLWAZ41tMhFzXnVtU_j3b0t-bHZNNzzEeQYJe0itncnpANvSjG-ezUTdV3w0nhwg
  priority: 102
  providerName: Springer Nature
Title Relative density-based clustering algorithm for identifying diverse density clusters effectively
URI https://link.springer.com/article/10.1007/s00521-021-05777-2
https://www.proquest.com/docview/2549482027
Volume 33
WOSCitedRecordID wos000628486900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcODCeIrxUg7cIGJt06U9IUBDnKZpPIS4lDZJYdIYj3VI-_fYaboBElyolB6a5qHYiZ3E9gdwEAhpIqEkz40fc5FJn2exDHiow5bIUZ7Efgk2ITud6O4u7roDt5Ezq6zWRLtQ6xdFZ-THtJEREW3VT17fOKFG0e2qg9CYhwWKVIZ8vnDW7nR7XzwjLSgn7mHIvkcEzm3GOs_RiSh-pRRKKbn_XTTN9M0fV6RW8lzU_9vnFVh2Oic7LZlkFebMcA3qFZ4Dc9N7HR5Ky7gPwzSZtRcTTjJOMzUYUzgF7BxLB4_YQPH0zFDZZX3r5Ws9pZi2Bh7TolWhESstRjB3MNmAm4v29fkldwgMXOHULHhoYpNHqQibvjEo1lBd8ZqpUArHznherk0qglwH-JgoRd0t8PysZXCkI4Kl9IJNqA1fhmYLWK5jmcW4Oog8FV7mpcgiwqp7QUuHWjXAqwY_US48OaFkDJJpYGVLsKRJiQiW-A04nJZ5LYNz_Pn3bkWlxE3UUTIjUQOOKjrPsn-vbfvv2nZgybesRaaCu1Ar3sdmDxbVR9Efve87Nt2H-W54j-_e1e0n9AfvQg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUoleSnmp20LrA5zAYmM76-SAEFAQCFihCiRuIbEdWGm7UDZQ7Z_iNzLjJLsFCW4cGimXOLZk-_M87Bl_ACtSaRcpo3nuRMxVpgXPYi15aMO2ylGfxKIkm9CdTnRxEZ9OwGOdC0NhlbVM9ILa3hjaI98gR0ZF5Kpv3f7hxBpFp6s1hUYJiyM3_Isu22Dz8CfO76oQ-3tnuwe8YhXgBuFW8NDFLo9SFbaEcyiqUQUHrVQZg3h0QZBblyqZW4mPi1K0R2QgsrZD1R0R1WIgsd1JmFJStcMGTO3sdU5__ZOJ6UlA0WeieCIlqzQdn6xHO7D4ld5Qa83Fc1U4tm9fHMl6Tbc_87-N0Wf4VNnUbLtcBLMw4fpzMFPzVbBKfM3DZRn59-CYpbD9YshJh1tmevd0XQQOBkt7V9ih4vo3Q2OedX0Ws88EY9YHsIyq1pUGrIyIwdLecAHO36Wfi9Do3_TdF2C5jXUWo_RTeaqCLEhxCShvzsq2Da1pQlBPdmKq69eJBaSXjC6O9gBJWvQSQBLRhLVRndvy8pE3_16qUZFUgmiQjCHRhPUaV-Pi11v7-nZrP2D64OzkODk-7Bx9g4_Cw5rCIpegUdzdu2X4YB6K7uDue7VEGFy-N-KeAI1WR5o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxfuJ0ah5807ClTZf2UdShKGP4xd5q2yQ6qN3YusH-ey_px6aoIBbylI-2l0vuLvndHUInNuPSZREnSloeYSG3SOhxmzjCaTEF8sSzsmQTvNNxez2vu-DFb9DuxZVk5tOgozQlaWMoVKN0fNOnmWAG6-JwzglswssMLBkN6rp_eF7wjDRJOcGG0fgeZuduM9-P8Vk0zfXNL1ekRvK0q___5g20nmud-Dxjk020JJMtVC0yOuB8gW-jlwwbN5VYaGB7OiNaygkcxRMdUAFejYP4dTDqp2_vGNRd3Dd-vsZXCgsD8Si7Fp3GOMOMQG0820FP7avHi2uS52AgESzOlDjSk8oNmNO0pATBBgoLbQYsiuBvJKVKyIDZStjwSDcA7c2mVtiSQGtXJ6ak9i6qJINE7iGshMdDD_YHpgJGQxoAkzCj8Nkt4YiohmhBfj_KA5TrPBmxX4ZWNiT0m7poEvpWDZ2WfYZZeI5fW9eLWfXzpTr2tYXMXH0GVENnxSzOq38ebf9vzY_Ravey7d_ddG4P0Jpl-EDjCOuoko4m8hCtRNO0Px4dGQ7-AEoL7Yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relative+density-based+clustering+algorithm+for+identifying+diverse+density+clusters+effectively&rft.jtitle=Neural+computing+%26+applications&rft.au=Wang%2C+Yuying&rft.au=Yang%2C+Youlong&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=16&rft.spage=10141&rft.epage=10157&rft_id=info:doi/10.1007%2Fs00521-021-05777-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon