An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

Given a set of n sites in the plane, the order- k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order- k Voronoi diagram arises for the k -nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica Jg. 81; H. 6; S. 2317 - 2345
Hauptverfasser: Bohler, Cecilia, Klein, Rolf, Liu, Chih-Hung
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2019
Springer Nature B.V
Schlagworte:
ISSN:0178-4617, 1432-0541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given a set of n sites in the plane, the order- k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order- k Voronoi diagram arises for the k -nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order- k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order- k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O ( k ( n - k ) log 2 n + n log 3 n ) steps, where O ( k ( n - k ) ) is the number of faces in the worst case. This result applies to disjoint line segments in the L p norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the L 1 or Euclidean metric before.
AbstractList Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O(k(n-k)log2n+nlog3n) steps, where O(k(n-k)) is the number of faces in the worst case. This result applies to disjoint line segments in the Lp norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean metric before.
Given a set of n sites in the plane, the order- k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order- k Voronoi diagram arises for the k -nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order- k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order- k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O ( k ( n - k ) log 2 n + n log 3 n ) steps, where O ( k ( n - k ) ) is the number of faces in the worst case. This result applies to disjoint line segments in the L p norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the L 1 or Euclidean metric before.
Author Bohler, Cecilia
Liu, Chih-Hung
Klein, Rolf
Author_xml – sequence: 1
  givenname: Cecilia
  surname: Bohler
  fullname: Bohler, Cecilia
  organization: Department of Computer Science, University of Bonn
– sequence: 2
  givenname: Rolf
  surname: Klein
  fullname: Klein, Rolf
  organization: Department of Computer Science, University of Bonn
– sequence: 3
  givenname: Chih-Hung
  orcidid: 0000-0001-9683-5982
  surname: Liu
  fullname: Liu, Chih-Hung
  email: chih-hung.liu@inf.ethz.ch
  organization: Department of Computer Science, ETH Zürich
BookMark eNp9kMFKAzEQhoNUsK2-gKcFz9Ekm2y2x6VWKxQKol5DuplsU7pJTbYHfXq3riB48DSX_5v555ugkQ8eELqm5JYSIu8SIVzkmNASEyLyAsszNKY8Z5gITkdoTKgsMS-ovECTlHaEUCZnxRitKp8trHW1A99lz9qb0LpPMFm1b0J03bbNbIjZ0jVbiHgdDcSs2qQu6rrL3kIMPrjs3ukm6jZdonOr9wmufuYUvT4sXuZLvFo_Ps2rFa5zOuuwgNIQgI0oaCEZgJFWGG51KUjf2FJRUiAzCQYYcCMYKzS3ptgwndeccZlP0c2w9xDD-xFSp3bhGH1_UjFGef83paJPlUOqjiGlCFbVrtOdC75v7_aKEnVypwZ3qnenvt2p0wH2Bz1E1-r48T-UD1Dqw76B-NvqH-oLnP2CqA
CitedBy_id crossref_primary_10_1007_s10898_024_01386_0
crossref_primary_10_1007_s00454_022_00463_z
crossref_primary_10_1155_2020_7898230
crossref_primary_10_1137_20M1388371
Cites_doi 10.1007/BF02187740
10.1109/TC.1987.5009474
10.1137/S0097539798349188
10.1137/0217010
10.1142/S0218195914600115
10.1137/S0097539795281840
10.1007/s00453-014-9950-0
10.1142/S0218195992000214
10.1016/j.comgeo.2015.04.008
10.1007/BF02574703
10.1016/0925-7721(93)90033-3
10.1016/j.comgeo.2016.08.004
10.1007/s00454-016-9784-4
10.1016/j.comgeo.2009.03.002
10.1007/s00453-004-1095-0
10.1007/3-540-52055-4
10.1142/S0218195901000663
10.1007/BF02187876
10.1007/BF02187879
10.1137/0222077
10.1007/BF01228508
10.1137/1.9781611973105.117
10.1007/3-540-50728-0_61
10.1145/304893.304993
10.1007/978-3-642-31155-0_6
10.1145/323233.323264
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-018-00536-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 2345
ExternalDocumentID 10_1007_s00453_018_00536_7
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DE)
  grantid: Kl 655/19
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABFSI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
E.L
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
ID FETCH-LOGICAL-c319t-5e8d0eeb561672eed7f5d4fa850432f1581e097ede2e4d5226a4fd6b2a3c42473
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465544600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sun Nov 09 08:51:39 EST 2025
Tue Nov 18 22:20:54 EST 2025
Sat Nov 29 02:20:28 EST 2025
Fri Feb 21 02:43:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Order
Computational geometry
Voronoi diagrams
Randomized geometric algorithms
Abstract Voronoi diagrams
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5e8d0eeb561672eed7f5d4fa850432f1581e097ede2e4d5226a4fd6b2a3c42473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9683-5982
PQID 2214143115
PQPubID 2043795
PageCount 29
ParticipantIDs proquest_journals_2214143115
crossref_citationtrail_10_1007_s00453_018_00536_7
crossref_primary_10_1007_s00453_018_00536_7
springer_journals_10_1007_s00453_018_00536_7
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Klein, Langetepe, Nilforoushan (CR20) 2009; 42
Clarkson (CR14) 1987; 2
Klein, Mehlhorn, Meiser (CR21) 1993; 3
CR18
CR16
CR13
Clarkson, Shor (CR15) 1989; 4
Mehlhorn, Meiser, Rasch (CR24) 2001; 11
Bohler, Cheilaris, Klein, Liu, Papadopoulou, Zavershynskyi (CR3) 2015; 48
Bohler, Klein (CR4) 2014; 24
Lee (CR22) 1982; 31
Aurenhammer, Schwarzkopf (CR2) 1992; 2
Haussler, Welzl (CR17) 1987; 2
Boissonnat, Devillers, Teillaud (CR7) 1993; 9
Agarwal, de Berg, Matousek, Schwarzkopf (CR1) 1998; 27
Chan, Tsakalidis (CR9) 2016; 56
CR5
CR28
Klein (CR19) 1989
Papadopoulou, Zavershynskyi (CR27) 2016; 74
Chazelle, Edelsbrunner (CR11) 1987; 36
CR23
Tarjan, Van Wyk (CR29) 1988; 17
Bohler, Liu, Papadopoulou, Zavershynskyi (CR6) 2016; 59
Chan (CR8) 2000; 30
Papadopoulou (CR26) 2004; 40
Mulmuley (CR25) 1994
Chazelle (CR10) 1991; 6
Chazelle, Edelsbrunner, Guibas, Sharir, Snoeyink (CR12) 1993; 22
536_CR28
TM Chan (536_CR9) 2016; 56
KL Clarkson (536_CR14) 1987; 2
B Chazelle (536_CR12) 1993; 22
536_CR23
F Aurenhammer (536_CR2) 1992; 2
TM Chan (536_CR8) 2000; 30
B Chazelle (536_CR11) 1987; 36
B Chazelle (536_CR10) 1991; 6
R Klein (536_CR20) 2009; 42
D Haussler (536_CR17) 1987; 2
DT Lee (536_CR22) 1982; 31
RE Tarjan (536_CR29) 1988; 17
C Bohler (536_CR6) 2016; 59
K Mehlhorn (536_CR24) 2001; 11
536_CR18
C Bohler (536_CR4) 2014; 24
536_CR13
536_CR16
536_CR5
J-D Boissonnat (536_CR7) 1993; 9
K Mulmuley (536_CR25) 1994
R Klein (536_CR21) 1993; 3
R Klein (536_CR19) 1989
E Papadopoulou (536_CR27) 2016; 74
E Papadopoulou (536_CR26) 2004; 40
PK Agarwal (536_CR1) 1998; 27
C Bohler (536_CR3) 2015; 48
KL Clarkson (536_CR15) 1989; 4
References_xml – ident: CR18
– volume: 4
  start-page: 387
  year: 1989
  end-page: 421
  ident: CR15
  article-title: Application of random sampling in computational geometry, II.
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187740
– volume: 36
  start-page: 1349
  issue: 11
  year: 1987
  end-page: 1354
  ident: CR11
  article-title: An improved algorithm for constructing -th-order Voronoi diagrams
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1987.5009474
– ident: CR16
– volume: 30
  start-page: 561
  issue: 2
  year: 2000
  end-page: 575
  ident: CR8
  article-title: Random sampling, halfspace range reporting, and construction of ( )-levels in three dimensions
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539798349188
– volume: 17
  start-page: 143
  issue: 1
  year: 1988
  end-page: 178
  ident: CR29
  article-title: An -time algorithm for triangulating a simple polygon
  publication-title: SIAM J. Comput.
  doi: 10.1137/0217010
– volume: 24
  start-page: 347
  issue: 4
  year: 2014
  end-page: 372
  ident: CR4
  article-title: Abstract Voronoi diagrams with disconnected regions
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195914600115
– year: 1994
  ident: CR25
  publication-title: Computational Geometry: An Introduction Through Randomized Algorithms
– volume: 27
  start-page: 654
  issue: 3
  year: 1998
  end-page: 667
  ident: CR1
  article-title: Constructing levels in arrangements and higher order Voronoi diagrams
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795281840
– ident: CR23
– volume: 74
  start-page: 415
  issue: 1
  year: 2016
  end-page: 439
  ident: CR27
  article-title: On higher order Voronoi diagrams of line segments
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9950-0
– volume: 2
  start-page: 363
  issue: 4
  year: 1992
  end-page: 381
  ident: CR2
  article-title: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195992000214
– volume: 48
  start-page: 539
  issue: 8
  year: 2015
  end-page: 551
  ident: CR3
  article-title: On the complexity of higher order abstract Voronoi diagrams
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2015.04.008
– volume: 6
  start-page: 485
  year: 1991
  end-page: 524
  ident: CR10
  article-title: Triangulating a simple polygon in linear time
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574703
– volume: 3
  start-page: 157
  year: 1993
  end-page: 184
  ident: CR21
  article-title: Randomized incremental construction of abstract Voronoi diagrams
  publication-title: Comput. Geom.
  doi: 10.1016/0925-7721(93)90033-3
– volume: 59
  start-page: 26
  year: 2016
  end-page: 38
  ident: CR6
  article-title: A randomized divide and conquer algorithm for higher-order abstract Voronoi diagrams
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2016.08.004
– volume: 56
  start-page: 866
  issue: 4
  year: 2016
  end-page: 881
  ident: CR9
  article-title: Optimal deterministic algorithms for 2-d and 3-d shallow cuttings
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-016-9784-4
– ident: CR13
– volume: 42
  start-page: 885
  issue: 9
  year: 2009
  end-page: 902
  ident: CR20
  article-title: Abstract Voronoi diagrams revisited
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2009.03.002
– volume: 40
  start-page: 63
  issue: 2
  year: 2004
  end-page: 82
  ident: CR26
  article-title: The Hausdorff Voronoi diagram of point clusters in the plane
  publication-title: Algorithmica
  doi: 10.1007/s00453-004-1095-0
– year: 1989
  ident: CR19
  publication-title: Concrete and Abstract Voronoi Diagrams
  doi: 10.1007/3-540-52055-4
– volume: 11
  start-page: 583
  issue: 6
  year: 2001
  end-page: 616
  ident: CR24
  article-title: Furthest site abstract Voronoi diagrams
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195901000663
– volume: 2
  start-page: 127
  year: 1987
  end-page: 151
  ident: CR17
  article-title: Epsilon-nets and simplex range queries
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187876
– volume: 2
  start-page: 195
  year: 1987
  end-page: 222
  ident: CR14
  article-title: New applications of random sampling in computational geometry
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187879
– ident: CR5
– volume: 31
  start-page: 478
  issue: 6
  year: 1982
  end-page: 487
  ident: CR22
  article-title: On k-nearest neighbor Voronoi diagrams in the plane
  publication-title: IEEE Trans. Comput.
– volume: 22
  start-page: 1286
  issue: 6
  year: 1993
  end-page: 1302
  ident: CR12
  article-title: Computing a face in an arrangement of line segments and related problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222077
– ident: CR28
– volume: 9
  start-page: 329
  issue: 4
  year: 1993
  end-page: 356
  ident: CR7
  article-title: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis
  publication-title: Algorithmica
  doi: 10.1007/BF01228508
– volume: 3
  start-page: 157
  year: 1993
  ident: 536_CR21
  publication-title: Comput. Geom.
  doi: 10.1016/0925-7721(93)90033-3
– volume-title: Concrete and Abstract Voronoi Diagrams
  year: 1989
  ident: 536_CR19
  doi: 10.1007/3-540-52055-4
– volume: 30
  start-page: 561
  issue: 2
  year: 2000
  ident: 536_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539798349188
– volume-title: Computational Geometry: An Introduction Through Randomized Algorithms
  year: 1994
  ident: 536_CR25
– volume: 56
  start-page: 866
  issue: 4
  year: 2016
  ident: 536_CR9
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-016-9784-4
– volume: 40
  start-page: 63
  issue: 2
  year: 2004
  ident: 536_CR26
  publication-title: Algorithmica
  doi: 10.1007/s00453-004-1095-0
– volume: 74
  start-page: 415
  issue: 1
  year: 2016
  ident: 536_CR27
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9950-0
– volume: 59
  start-page: 26
  year: 2016
  ident: 536_CR6
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2016.08.004
– ident: 536_CR5
– volume: 36
  start-page: 1349
  issue: 11
  year: 1987
  ident: 536_CR11
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1987.5009474
– volume: 2
  start-page: 195
  year: 1987
  ident: 536_CR14
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187879
– ident: 536_CR23
  doi: 10.1137/1.9781611973105.117
– volume: 31
  start-page: 478
  issue: 6
  year: 1982
  ident: 536_CR22
  publication-title: IEEE Trans. Comput.
– volume: 42
  start-page: 885
  issue: 9
  year: 2009
  ident: 536_CR20
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2009.03.002
– ident: 536_CR18
  doi: 10.1007/3-540-50728-0_61
– ident: 536_CR28
  doi: 10.1145/304893.304993
– volume: 9
  start-page: 329
  issue: 4
  year: 1993
  ident: 536_CR7
  publication-title: Algorithmica
  doi: 10.1007/BF01228508
– volume: 6
  start-page: 485
  year: 1991
  ident: 536_CR10
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574703
– ident: 536_CR16
  doi: 10.1007/978-3-642-31155-0_6
– volume: 17
  start-page: 143
  issue: 1
  year: 1988
  ident: 536_CR29
  publication-title: SIAM J. Comput.
  doi: 10.1137/0217010
– volume: 2
  start-page: 363
  issue: 4
  year: 1992
  ident: 536_CR2
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195992000214
– volume: 11
  start-page: 583
  issue: 6
  year: 2001
  ident: 536_CR24
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195901000663
– volume: 2
  start-page: 127
  year: 1987
  ident: 536_CR17
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187876
– volume: 48
  start-page: 539
  issue: 8
  year: 2015
  ident: 536_CR3
  publication-title: Comput. Geom.
  doi: 10.1016/j.comgeo.2015.04.008
– ident: 536_CR13
  doi: 10.1145/323233.323264
– volume: 27
  start-page: 654
  issue: 3
  year: 1998
  ident: 536_CR1
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795281840
– volume: 24
  start-page: 347
  issue: 4
  year: 2014
  ident: 536_CR4
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195914600115
– volume: 22
  start-page: 1286
  issue: 6
  year: 1993
  ident: 536_CR12
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222077
– volume: 4
  start-page: 387
  year: 1989
  ident: 536_CR15
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02187740
SSID ssj0012796
Score 2.2556314
Snippet Given a set of n sites in the plane, the order- k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The...
Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2317
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Axioms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Mathematics of Computing
Randomization
Theory of Computation
Voronoi graphs
Title An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
URI https://link.springer.com/article/10.1007/s00453-018-00536-7
https://www.proquest.com/docview/2214143115
Volume 81
WOSCitedRecordID wos000465544600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sNQ4TuyMEbRiqAoqUHWLHD8gUpugJjDw67HzaAUCJJjjONE9fF9yd98BcB5oRbmjXeQYrIwIwRJxoRmSnGMP08Bzy-z5ZEhHIzadBnd1U1jeVLs3KcnypF42u1n0YWt_GLKW4yO6DjZMuGPWHcf3k2XuwDyhzFA65vuImABdt8p8v8fncLTCmF_SomW0GbT_9547YLtGlzCszGEXrKl0D7SbyQ2wduR9MAxT2C_JI0zMgWOeymyevCsJw9lTtkiK5zk0YBZWRSDo1tJzwjC2f0VEASeW9CBL4HXCbWlXfgAeB_2HqxtUz1VAwjhcgTzFZE-p2EAnn2ITJKn2JNGcWTYzrB2POaoXUCUVVkRagMaJln6MuSsIJtQ9BK00S9URgBYgSldqTIQk0ig4psxnVHDtxZ70cQc4jXgjUZOO29kXs2hJl1yKKzLiikpxRbQDLpb3vFSUG7-u7jZai2r3yyOMHWKAoEG7HXDZaGl1-efdjv-2_ARsGQAVVKVjXdAqFq_qFGyKtyLJF2elWX4A5P7afg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFH_RaaIX52ecTu3BmzaRUigcF90y45xmzmU3UmirJBszAz3419sy2KJREz1TCnkffT947_0ewKmvJOOWsrGlsTKmlAjMI-VhwTlxCPMdO8-eDzqs2_WGQ_--aApLy2r3MiWZn9TzZjeDPkztj4eN5biYLcMK1RHLFPL1Hgbz3IF-Qp6htPT3EdUBumiV-X6Pz-FogTG_pEXzaNOq_u89N2GjQJeoMTOHLViSyTZUy8kNqHDkHeg0EtTMySN0zEE9nojJOH6XAjVGT5NpnD2PkQazaFYEgu8MPSdqhOavSJShgSE9mMToKuamtCvdhcdWs3_ZxsVcBRxph8uwIz1xIWWooZPLiA6STDmCKu4ZNjOiLMez5IXPpJBEUmEAGqdKuCHhdkQJZfYeVJJJIvcBGYAobKEIjQQVWsEh81yPRVw5oSNcUgOrFG8QFaTjZvbFKJjTJefiCrS4glxcAavB2fyelxnlxq-r66XWgsL90oAQi2ogqNFuDc5LLS0u_7zbwd-Wn8Bau3_bCTrX3ZtDWNdgyp-VkdWhkk1f5RGsRm9ZnE6PcxP9ACuS3WI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CXHhjRgMyIEbRNA0bdpjxTaBmMbEY-JWpU0ClaBFW-HAryfpi4cACXFu6lS2I3-p7c8A-76SjFvKxpbGyphSIjCPlYcF58QhzHfsIns-6rPBwLu99YcfuviLavc6JVn2NBiWpjQ_ehLqqGl8M0jE1AF52HiRi9k0zFIzNMjc169GTR5B71ZkKy19V6I6WFdtM9_L-Bya3vHmlxRpEXl6S___5mVYrFAnCko3WYEpma7CUj3RAVUHfA36QYq6BamElosueSqyx-RVChQ83GXjJL9_RBrkorI4BF8Y2k4UROZvSZyjkSFDyBLUSbgp-Zqsw02ve31yiqt5CzjWBzHHjvTEsZSRhlQuIzp4MuUIqrhnWM6IshzPksc-k0ISSYUBbpwq4UaE2zEllNkbMJNmqdwEZICjsIUiNBZUaMNHzHM9FnPlRI5wSQusWtVhXJGRm5kYD2FDo1yoK9TqCgt1hawFB807TyUVx6-r27UFw-pYTkJCLKoBokbBLTisLfb--GdpW39bvgfzw04v7J8NzrdhQWMsv6wua8NMPn6WOzAXv-TJZLxbeOsbb_bmRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Randomized+Algorithm+for+Higher-Order+Abstract+Voronoi+Diagrams&rft.jtitle=Algorithmica&rft.au=Bohler%2C+Cecilia&rft.au=Klein%2C+Rolf&rft.au=Liu%2C+Chih-Hung&rft.date=2019-06-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=81&rft.issue=6&rft.spage=2317&rft.epage=2345&rft_id=info:doi/10.1007%2Fs00453-018-00536-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_018_00536_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon