Polynomial Approximation of Anisotropic Analytic Functions of Several Variables
Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite d...
Uloženo v:
| Vydáno v: | Constructive approximation Ročník 53; číslo 2; s. 319 - 348 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0176-4276, 1432-0940 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite dimensional polynomial spaces
P
Λ
described by lower sets
Λ
. Given a budget
n
for the dimension of
P
Λ
, we prove that certain lower sets
Λ
n
, with cardinality
n
, provide a certifiable approximation error that is in a certain sense optimal, and that these lower sets have a simple definition in terms of simplices. Our main goal is to obtain approximation results when the number of variables
d
is large and even infinite, and so we concentrate almost exclusively on the case
d
=
∞
. We also emphasize obtaining results which hold for the full range
n
≥
1
, rather than asymptotic results that only hold for
n
sufficiently large. In applications, one typically wants
n
small to comply with computational budgets. |
|---|---|
| AbstractList | Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite dimensional polynomial spaces PΛ described by lower sets Λ. Given a budget n for the dimension of PΛ, we prove that certain lower sets Λn, with cardinality n, provide a certifiable approximation error that is in a certain sense optimal, and that these lower sets have a simple definition in terms of simplices. Our main goal is to obtain approximation results when the number of variables d is large and even infinite, and so we concentrate almost exclusively on the case d=∞. We also emphasize obtaining results which hold for the full range n≥1, rather than asymptotic results that only hold for n sufficiently large. In applications, one typically wants n small to comply with computational budgets. Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions by algebraic polynomials. We introduce various anisotropic model classes based on Taylor expansions, and study their approximation by finite dimensional polynomial spaces P Λ described by lower sets Λ . Given a budget n for the dimension of P Λ , we prove that certain lower sets Λ n , with cardinality n , provide a certifiable approximation error that is in a certain sense optimal, and that these lower sets have a simple definition in terms of simplices. Our main goal is to obtain approximation results when the number of variables d is large and even infinite, and so we concentrate almost exclusively on the case d = ∞ . We also emphasize obtaining results which hold for the full range n ≥ 1 , rather than asymptotic results that only hold for n sufficiently large. In applications, one typically wants n small to comply with computational budgets. |
| Author | Bonito, Andrea Guignard, Diane Jantsch, Peter Petrova, Guergana DeVore, Ronald |
| Author_xml | – sequence: 1 givenname: Andrea surname: Bonito fullname: Bonito, Andrea organization: Department of Mathematics Texas, A&M University – sequence: 2 givenname: Ronald surname: DeVore fullname: DeVore, Ronald organization: Department of Mathematics Texas, A&M University – sequence: 3 givenname: Diane surname: Guignard fullname: Guignard, Diane organization: Department of Mathematics Texas, A&M University – sequence: 4 givenname: Peter surname: Jantsch fullname: Jantsch, Peter email: pjantsch@math.tamu.edu organization: Department of Mathematics Texas, A&M University – sequence: 5 givenname: Guergana surname: Petrova fullname: Petrova, Guergana organization: Department of Mathematics Texas, A&M University |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8GXldP0jRpL8dwKgwm-HEb0jSRjK6pSSf235uuguDFrnICz3N4zztDk8Y1GqFrDLcYgN8FgJRlCRBIoMgwTugZmmKakvilMEFTwJwllHB2gWYh7ABwlqd8irbPru4bt7eyXizb1rtvu5eddc3CmcWyscF13rVWxVnWfReH9aFRAxAG4kV_aR_Vd-mtLGsdLtG5kXXQV7_vHL2t719Xj8lm-_C0Wm4SleKiSzJNS4MzyqusqErFjOSsyiug3BBVEJJTUmkCuGKl1pUpeEEJMwpyjDXnGtI5uhn3xsifBx06sXMHHzMGQTIAyjgBGql8pJR3IXhthLLd8bzOS1sLDGKoT4z1iVifONYnBpX8U1sfq_H9aSkdpRDh5kP7v1QnrB_0zoTI |
| CitedBy_id | crossref_primary_10_1016_j_jco_2022_101726 crossref_primary_10_1038_s41598_022_10362_1 crossref_primary_10_1007_s00365_022_09569_2 crossref_primary_10_1016_j_ejc_2024_103982 crossref_primary_10_1016_j_jat_2024_106040 crossref_primary_10_1007_s40313_025_01174_5 crossref_primary_10_1007_s00365_021_09542_5 |
| Cites_doi | 10.1137/090749256 10.1016/j.matpur.2014.04.009 10.1007/978-3-319-72456-0_12 10.1007/s00211-017-0878-6 10.1016/j.jat.2016.02.006 10.1016/0022-314X(83)90002-1 10.1137/0122012 10.1007/s11139-007-9022-z 10.1051/m2an/2012027 10.1142/S0219530511001728 10.1051/m2an/2016045 10.1142/S0218202512500236 10.1017/S0962492915000033 10.1016/j.camwa.2013.03.004 10.1007/s00211-003-0492-7 10.4310/MRL.2006.v13.n6.a6 10.4064/aa142-1-3 10.1137/130905757 10.3929/ethz-b-000340651 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00365-020-09511-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1432-0940 |
| EndPage | 348 |
| ExternalDocumentID | 10_1007_s00365_020_09511_4 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c319t-5e4bf1547d59dbc6fa76d8d047f2c922842de201d6beedf979426fc0811e77e03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 183 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549320800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0176-4276 |
| IngestDate | Wed Sep 17 23:59:28 EDT 2025 Sat Nov 29 04:47:05 EST 2025 Tue Nov 18 22:40:00 EST 2025 Fri Feb 21 02:48:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 65N15 Anisotropic analyticity 41A58 41A63 Approximations and expansions 41A10 Parametric PDEs |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5e4bf1547d59dbc6fa76d8d047f2c922842de201d6beedf979426fc0811e77e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2500467204 |
| PQPubID | 2043922 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2500467204 crossref_citationtrail_10_1007_s00365_020_09511_4 crossref_primary_10_1007_s00365_020_09511_4 springer_journals_10_1007_s00365_020_09511_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Constructive approximation |
| PublicationTitleAbbrev | Constr Approx |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Tran, Webster, Zhang (CR20) 2017; 137 Cohen, DeVore, Schwab (CR14) 2011; 9 Griebel, Oettershagen (CR17) 2016; 207 Luca, Mukhopadhyay, Srinivas (CR18) 2010; 142 Beck, Nobile, Tamellini, Tempone (CR2) 2012; 22 Canfield, Erdös, Pomerance (CR10) 1983; 17 Cohen, DeVore (CR13) 2015; 24 Riordan (CR19) 1978 de Azevedo Pribitkin (CR16) 2009; 18 Beck, Nobile, Tamellini, Tempone (CR3) 2014; 67 Bieri, Andreev, Schwab (CR5) 2009; 31 Binev, Dahmen, DeVore (CR6) 2004; 97 CR22 Bachmayr, Cohen, Migliorati (CR1) 2017; 51 Beged-Dov (CR4) 1972; 22 Chkifa, Cohen, Schwab (CR12) 2015; 9 Cohen, Migliorati (CR15) 2018 Brenner, Scott (CR9) 2007 Chkifa, Cohen, DeVore, Schwab (CR11) 2013; 47 Yau, Zhang (CR21) 2006; 13 Binev, Dahmen, DeVore, Petrushev (CR7) 2002; 28 Bonito, DeVore, Nochetto (CR8) 2013; 51 A Cohen (9511_CR13) 2015; 24 S Yau (9511_CR21) 2006; 13 M Griebel (9511_CR17) 2016; 207 J Riordan (9511_CR19) 1978 P Binev (9511_CR7) 2002; 28 A Bonito (9511_CR8) 2013; 51 A Beged-Dov (9511_CR4) 1972; 22 M Bachmayr (9511_CR1) 2017; 51 J Beck (9511_CR3) 2014; 67 S Brenner (9511_CR9) 2007 A Cohen (9511_CR14) 2011; 9 W de Azevedo Pribitkin (9511_CR16) 2009; 18 A Chkifa (9511_CR12) 2015; 9 A Cohen (9511_CR15) 2018 M Bieri (9511_CR5) 2009; 31 E Canfield (9511_CR10) 1983; 17 H Tran (9511_CR20) 2017; 137 A Chkifa (9511_CR11) 2013; 47 9511_CR22 P Binev (9511_CR6) 2004; 97 J Beck (9511_CR2) 2012; 22 F Luca (9511_CR18) 2010; 142 |
| References_xml | – volume: 31 start-page: 4281 issue: 6 year: 2009 end-page: 4304 ident: CR5 article-title: Sparse tensor discretizations of elliptic SPDEs publication-title: SIAM J. Sci. Comput. doi: 10.1137/090749256 – volume: 9 start-page: 400 issue: 2 year: 2015 end-page: 428 ident: CR12 article-title: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2014.04.009 – start-page: 233 year: 2018 end-page: 282 ident: CR15 article-title: Multivariate approximation in downward closed polynomial spaces publication-title: In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, Vols 1 and 2 doi: 10.1007/978-3-319-72456-0_12 – ident: CR22 – volume: 137 start-page: 451 issue: 2 year: 2017 end-page: 493 ident: CR20 article-title: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients publication-title: Numer. Math. doi: 10.1007/s00211-017-0878-6 – volume: 207 start-page: 348 year: 2016 end-page: 379 ident: CR17 article-title: On tensor product approximation of analytic functions publication-title: J. Approx. Theory doi: 10.1016/j.jat.2016.02.006 – volume: 17 start-page: 1 issue: 1 year: 1983 end-page: 28 ident: CR10 article-title: On a problem of Oppenheim concerning “factorisatio numerorum” publication-title: J. Number Theory doi: 10.1016/0022-314X(83)90002-1 – year: 1978 ident: CR19 publication-title: An Introduction to Combinatorial Analysis – volume: 28 start-page: 391 issue: 4 year: 2002 end-page: 416 ident: CR7 article-title: Approximation classes for adaptive methods publication-title: Serdica Math. J. – volume: 22 start-page: 106 issue: 1 year: 1972 end-page: 108 ident: CR4 article-title: Lower and upper bounds for the number of lattice points in a simplex publication-title: SIAM J. Appl. Math. doi: 10.1137/0122012 – volume: 18 start-page: 113 issue: 1 year: 2009 end-page: 119 ident: CR16 article-title: Simple upper bounds for partition functions publication-title: Ramanujan J. doi: 10.1007/s11139-007-9022-z – volume: 47 start-page: 253 issue: 1 year: 2013 end-page: 280 ident: CR11 article-title: Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs publication-title: ESAIM: Math. Modell. Numer. Anal. doi: 10.1051/m2an/2012027 – volume: 9 start-page: 11 issue: 1 year: 2011 end-page: 47 ident: CR14 article-title: Analytic regularity and polynomial approximation of parametric stochastic elliptic PDEs publication-title: Anal. Appl. doi: 10.1142/S0219530511001728 – volume: 51 start-page: 321 issue: 1 year: 2017 end-page: 339 ident: CR1 article-title: Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients publication-title: ESAIM: Math. Modell. Numer. Anal. doi: 10.1051/m2an/2016045 – volume: 22 start-page: 1250023 issue: 9 year: 2012 ident: CR2 article-title: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500236 – year: 2007 ident: CR9 publication-title: The Mathematical Theory of Finite Element Methods – volume: 24 start-page: 1 year: 2015 end-page: 159 ident: CR13 article-title: Approximation of high-dimensional parametric PDEs publication-title: Acta Numer. doi: 10.1017/S0962492915000033 – volume: 67 start-page: 732 issue: 4 year: 2014 end-page: 751 ident: CR3 article-title: Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.03.004 – volume: 97 start-page: 219 issue: 2 year: 2004 end-page: 268 ident: CR6 article-title: Adaptive finite element methods with convergence rates publication-title: Numerische Mathematik doi: 10.1007/s00211-003-0492-7 – volume: 13 start-page: 911 issue: 5 year: 2006 end-page: 921 ident: CR21 article-title: An upper estimate of integral points in real simplices with an application to singularity theory publication-title: Math. Res. Lett. doi: 10.4310/MRL.2006.v13.n6.a6 – volume: 142 start-page: 41 year: 2010 end-page: 50 ident: CR18 article-title: Some results on Oppenheim’s “Factorisatio Numerorum” function publication-title: Acta Arithmetica doi: 10.4064/aa142-1-3 – volume: 51 start-page: 3106 issue: 6 year: 2013 end-page: 3134 ident: CR8 article-title: Adaptive finite element methods for elliptic problems with discontinuous coefficients publication-title: SIAM J. Numer. Anal. doi: 10.1137/130905757 – volume: 18 start-page: 113 issue: 1 year: 2009 ident: 9511_CR16 publication-title: Ramanujan J. doi: 10.1007/s11139-007-9022-z – volume: 47 start-page: 253 issue: 1 year: 2013 ident: 9511_CR11 publication-title: ESAIM: Math. Modell. Numer. Anal. doi: 10.1051/m2an/2012027 – volume: 13 start-page: 911 issue: 5 year: 2006 ident: 9511_CR21 publication-title: Math. Res. Lett. doi: 10.4310/MRL.2006.v13.n6.a6 – volume: 67 start-page: 732 issue: 4 year: 2014 ident: 9511_CR3 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.03.004 – volume-title: An Introduction to Combinatorial Analysis year: 1978 ident: 9511_CR19 – volume: 22 start-page: 106 issue: 1 year: 1972 ident: 9511_CR4 publication-title: SIAM J. Appl. Math. doi: 10.1137/0122012 – volume: 9 start-page: 11 issue: 1 year: 2011 ident: 9511_CR14 publication-title: Anal. Appl. doi: 10.1142/S0219530511001728 – volume: 9 start-page: 400 issue: 2 year: 2015 ident: 9511_CR12 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2014.04.009 – start-page: 233 volume-title: In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, Vols 1 and 2 year: 2018 ident: 9511_CR15 doi: 10.1007/978-3-319-72456-0_12 – ident: 9511_CR22 doi: 10.3929/ethz-b-000340651 – volume: 31 start-page: 4281 issue: 6 year: 2009 ident: 9511_CR5 publication-title: SIAM J. Sci. Comput. doi: 10.1137/090749256 – volume: 97 start-page: 219 issue: 2 year: 2004 ident: 9511_CR6 publication-title: Numerische Mathematik doi: 10.1007/s00211-003-0492-7 – volume: 17 start-page: 1 issue: 1 year: 1983 ident: 9511_CR10 publication-title: J. Number Theory doi: 10.1016/0022-314X(83)90002-1 – volume: 51 start-page: 321 issue: 1 year: 2017 ident: 9511_CR1 publication-title: ESAIM: Math. Modell. Numer. Anal. doi: 10.1051/m2an/2016045 – volume-title: The Mathematical Theory of Finite Element Methods year: 2007 ident: 9511_CR9 – volume: 51 start-page: 3106 issue: 6 year: 2013 ident: 9511_CR8 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130905757 – volume: 24 start-page: 1 year: 2015 ident: 9511_CR13 publication-title: Acta Numer. doi: 10.1017/S0962492915000033 – volume: 207 start-page: 348 year: 2016 ident: 9511_CR17 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2016.02.006 – volume: 22 start-page: 1250023 issue: 9 year: 2012 ident: 9511_CR2 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500236 – volume: 137 start-page: 451 issue: 2 year: 2017 ident: 9511_CR20 publication-title: Numer. Math. doi: 10.1007/s00211-017-0878-6 – volume: 28 start-page: 391 issue: 4 year: 2002 ident: 9511_CR7 publication-title: Serdica Math. J. – volume: 142 start-page: 41 year: 2010 ident: 9511_CR18 publication-title: Acta Arithmetica doi: 10.4064/aa142-1-3 |
| SSID | ssj0015837 |
| Score | 2.605614 |
| Snippet | Motivated by numerical methods for solving parametric partial differential equations, this paper studies the approximation of multivariate analytic functions... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 319 |
| SubjectTerms | Analysis Analytic functions Approximation Budgets Mathematics Mathematics and Statistics Numerical Analysis Numerical methods Partial differential equations Polynomials |
| Title | Polynomial Approximation of Anisotropic Analytic Functions of Several Variables |
| URI | https://link.springer.com/article/10.1007/s00365-020-09511-4 https://www.proquest.com/docview/2500467204 |
| Volume | 53 |
| WOSCitedRecordID | wos000549320800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1432-0940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015837 issn: 0176-4276 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA46PejB3-J0Sg_eNNClbZIehzg86BxOx26lSRMYjHasdeh_70v6Yygq6LkvIby85H1p8n0PoctAKpeKgGDqMY39QIdYMKmwTpRwPRUKGlui8D0bDPhkEg4rUlhev3avryTtTt2Q3Yx0imETu9jAAjj5rKMNSHfcFGx4Go2bu4OAl0qZXUaxTxitqDLf9_E5Ha0w5pdrUZtt-rv_G-ce2qnQpdMrw2Efran0AG0_NNKs-SF6HGazd8NFNnZGUPxtWrIXnUw7vXSaZ8Uim0-lY-VKoI3Th9Rno9NYjNTS_MVyxnDGNqyr_Ai99G-fb-5wVVUBS1huBQ6ULzQAJ5YEYSIk1TGjCU9cn2kiQwLpiiQKYEFCBeRPHcKCJVRLgA5dxZhyvWPUSrNUnSBH8dhIScWCAYgkWnLJQ01c6cOmyT2h2qhbOzeSleS4qXwxixqxZOusCJwVWWdFfhtdNW3mpeDGr9ades6iavHlEaA6OPWb6jttdF3P0erzz72d_s38DG0R88LFvuPpoFaxeFXnaFMui2m-uLBB-QFdo9uS |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqDv8Xp1D74poEua5P2cYhDcZvipuytLGkChbGOdQ79771kbUVRQZ97CeHy47708n0HcO5L5TLhU8IaXBPP1yERXCqiYyXchgoFG1qicJt3u8FgED7kpLCseO1epCTtSV2S3Yx0imETu8TAArz5LMOKhxHLKOY_9p7L3IEfLJQy65wRj3KWU2W-7-NzOPrAmF_SojbatLb-N85t2MzRpdNcLIcdWFLjXdjolNKs2R7cP6SjN8NFNnZGUPw1WbAXnVQ7zXGSpbNpOkmkY-VKsI3TwtBnV6ex6Km5-YvlPOMd27Cusn14al33r25IXlWBSNxuM-IrT2j0Go_9MBaS6SFncRC7HtdUhhTDFY0VwoKYCYyfOsQNS5mWCB3qinPlNg6gMk7H6hAcFQyNlNRQcASRVMtABqGmrvTw0AwaQlWhXjg3krnkuKl8MYpKsWTrrAidFVlnRV4VLso2k4Xgxq_WtWLOonzzZRGiOrz1m-o7Vbgs5ujj88-9Hf3N_AzWbvqddtS-7d4dwzo1r13sm54aVGbTF3UCq3I-S7LpqV2g77GQ3nY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46RfTgb3E6tQdvGtZlbdIehzoU5xxMx25lSRMojHasdeh_70vadSoqiOe8hPLykveled8XhM5dIW3KXYJpkynsuMrHnAmJVSi53ZQ-pyNDFO6wbtcbDv3eBxa_qXafX0nmnAat0hRn9Umo6iXxTcuoaGaxjTVEgFPQMlpxdCG9Pq_3B-U9guvlqpkNRrFDGC1oM9-P8Tk1LfDmlytSk3naW___5m20WaBOq5WHyQ5akvEu2ngoJVvTPfTYS8ZvmqOs7bTQ-GuUsxqtRFmtOEqTbJpMImEZGRPoY7UhJZqo1RZ9OdN_t6wBnL01GyvdR8_tm6erW1y8toAFLMMMu9LhCgAVC10_5IKqEaOhF9oOU0T4BNIYCSXAhZByyKvKh4VMqBIAKRqSMWk3D1AlTmJ5iCzpjbTE1IgzAJdECU94viK2cGAz9ZpcVlFj7uhAFFLk-kWMcVCKKBtnBeCswDgrcKroouwzyYU4frWuzecvKBZlGgDasyEvEBuaL-fztWj-ebSjv5mfobXedTvo3HXvj9E60UUwptSnhirZ9EWeoFUxy6J0empi9R34O-da |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polynomial+Approximation+of+Anisotropic+Analytic+Functions+of+Several+Variables&rft.jtitle=Constructive+approximation&rft.au=Bonito%2C+Andrea&rft.au=DeVore%2C+Ronald&rft.au=Guignard%2C+Diane&rft.au=Jantsch%2C+Peter&rft.date=2021-04-01&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=53&rft.issue=2&rft.spage=319&rft.epage=348&rft_id=info:doi/10.1007%2Fs00365-020-09511-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00365_020_09511_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon |