Analytical study of the encoder-decoder models for ultrasound image segmentation

Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Service oriented computing and applications Ročník 18; číslo 1; s. 81 - 100
Hlavní autoři: Srivastava, Somya, Vidyarthi, Ankit, Jain, Shikha
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.03.2024
Springer Nature B.V
Témata:
ISSN:1863-2386, 1863-2394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most complex as the internal organ’s visualization requires experience from the radiologist. Diagnosing the medical conditions and unavailability of experienced radiologists during an emergency requires automated segmentation which heavily depends on computer-aided diagnostic systems. The new generation CAD systems are found to incorporate advanced deep learning algorithms to produce accurate segmentation results. While most of the segmentation models relate to the encoder-decoder model as the base architecture and thus evolve a variety of modifications in its pipeline architecture. This paper presents the analytical study of the various Encoder- Decoder based models like UNet, Residual UNet (Res-U-Net), Dense UNet (DenseUNet), Attention UNet, UNet +  +, Double UNet, and U 2 Net (U-Squared-Net) on ultrasound image segmentation. Further, the paper presents the various trade-offs, application areas, open challenges, and performance analysis of these models on benchmark datasets, namely the HC18 Challenge dataset, CUM dataset, and B-mode Ultrasound Nerve Segmentation dataset. The performance analysis of these models is presented using the six state-of-the-art metrics like Dice coefficient, Jaccard index, sensitivity, specificity, Mean Absolute distance, and Housdorff Distance. Based on the above parameters U 2 -Net (U-Squared-Net) outperformed all other neural network models for all three datasets. In terms of all four criteria (Dice Coefficient: 0.92, 0.89, 0.9, Jaccard Index: 0.81, 0.79, 0.81, Sensitivity: 0.86, 0.84, 0.86, Specificity: 0.97, 0.95, 0.96), the U2-Net (U-Squared-Net) model performed the best. Over the HC18 Challenge dataset, the CUM dataset, and the B-Mode Ultrasound nerve segmentation dataset, U2-Net (U-Squared-Net) model achieved the best HD results (HC18: 3.8, CUM Dataset: 4, B-mode US Dataset: 3.6) and the lowest MAD values (HC18: 2.1, CUM Dataset: 3, B-mode US Dataset: 2.15). In addition, the analysis also highlights the architectural differences between these models, focusing on their type of connections, number of layers, and additional components. The outcome of this research provides valuable perception into the strengths and limitations of each encoder-decoder-based model, aiding researchers and practitioners in selecting the most appropriate model for Ultrasound image segmentation tasks.
AbstractList Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most complex as the internal organ’s visualization requires experience from the radiologist. Diagnosing the medical conditions and unavailability of experienced radiologists during an emergency requires automated segmentation which heavily depends on computer-aided diagnostic systems. The new generation CAD systems are found to incorporate advanced deep learning algorithms to produce accurate segmentation results. While most of the segmentation models relate to the encoder-decoder model as the base architecture and thus evolve a variety of modifications in its pipeline architecture. This paper presents the analytical study of the various Encoder- Decoder based models like UNet, Residual UNet (Res-U-Net), Dense UNet (DenseUNet), Attention UNet, UNet +  +, Double UNet, and U2Net (U-Squared-Net) on ultrasound image segmentation. Further, the paper presents the various trade-offs, application areas, open challenges, and performance analysis of these models on benchmark datasets, namely the HC18 Challenge dataset, CUM dataset, and B-mode Ultrasound Nerve Segmentation dataset. The performance analysis of these models is presented using the six state-of-the-art metrics like Dice coefficient, Jaccard index, sensitivity, specificity, Mean Absolute distance, and Housdorff Distance. Based on the above parameters U2-Net (U-Squared-Net) outperformed all other neural network models for all three datasets. In terms of all four criteria (Dice Coefficient: 0.92, 0.89, 0.9, Jaccard Index: 0.81, 0.79, 0.81, Sensitivity: 0.86, 0.84, 0.86, Specificity: 0.97, 0.95, 0.96), the U2-Net (U-Squared-Net) model performed the best. Over the HC18 Challenge dataset, the CUM dataset, and the B-Mode Ultrasound nerve segmentation dataset, U2-Net (U-Squared-Net) model achieved the best HD results (HC18: 3.8, CUM Dataset: 4, B-mode US Dataset: 3.6) and the lowest MAD values (HC18: 2.1, CUM Dataset: 3, B-mode US Dataset: 2.15). In addition, the analysis also highlights the architectural differences between these models, focusing on their type of connections, number of layers, and additional components. The outcome of this research provides valuable perception into the strengths and limitations of each encoder-decoder-based model, aiding researchers and practitioners in selecting the most appropriate model for Ultrasound image segmentation tasks.
Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in many modalities like CT scans, MRI, histopathological, and ultrasound images. Among all, the real-time analysis of the ultrasound is the most complex as the internal organ’s visualization requires experience from the radiologist. Diagnosing the medical conditions and unavailability of experienced radiologists during an emergency requires automated segmentation which heavily depends on computer-aided diagnostic systems. The new generation CAD systems are found to incorporate advanced deep learning algorithms to produce accurate segmentation results. While most of the segmentation models relate to the encoder-decoder model as the base architecture and thus evolve a variety of modifications in its pipeline architecture. This paper presents the analytical study of the various Encoder- Decoder based models like UNet, Residual UNet (Res-U-Net), Dense UNet (DenseUNet), Attention UNet, UNet +  +, Double UNet, and U 2 Net (U-Squared-Net) on ultrasound image segmentation. Further, the paper presents the various trade-offs, application areas, open challenges, and performance analysis of these models on benchmark datasets, namely the HC18 Challenge dataset, CUM dataset, and B-mode Ultrasound Nerve Segmentation dataset. The performance analysis of these models is presented using the six state-of-the-art metrics like Dice coefficient, Jaccard index, sensitivity, specificity, Mean Absolute distance, and Housdorff Distance. Based on the above parameters U 2 -Net (U-Squared-Net) outperformed all other neural network models for all three datasets. In terms of all four criteria (Dice Coefficient: 0.92, 0.89, 0.9, Jaccard Index: 0.81, 0.79, 0.81, Sensitivity: 0.86, 0.84, 0.86, Specificity: 0.97, 0.95, 0.96), the U2-Net (U-Squared-Net) model performed the best. Over the HC18 Challenge dataset, the CUM dataset, and the B-Mode Ultrasound nerve segmentation dataset, U2-Net (U-Squared-Net) model achieved the best HD results (HC18: 3.8, CUM Dataset: 4, B-mode US Dataset: 3.6) and the lowest MAD values (HC18: 2.1, CUM Dataset: 3, B-mode US Dataset: 2.15). In addition, the analysis also highlights the architectural differences between these models, focusing on their type of connections, number of layers, and additional components. The outcome of this research provides valuable perception into the strengths and limitations of each encoder-decoder-based model, aiding researchers and practitioners in selecting the most appropriate model for Ultrasound image segmentation tasks.
Author Jain, Shikha
Vidyarthi, Ankit
Srivastava, Somya
Author_xml – sequence: 1
  givenname: Somya
  surname: Srivastava
  fullname: Srivastava, Somya
  organization: Department of Computer Science Engineering & Information Technology, Jaypee Institute of Information Technology
– sequence: 2
  givenname: Ankit
  orcidid: 0000-0002-8026-4246
  surname: Vidyarthi
  fullname: Vidyarthi, Ankit
  email: dr.ankit.vidyarthi@gmail.com
  organization: Department of Computer Science Engineering & Information Technology, Jaypee Institute of Information Technology
– sequence: 3
  givenname: Shikha
  surname: Jain
  fullname: Jain, Shikha
  organization: Department of Computer Science Engineering & Information Technology, Jaypee Institute of Information Technology
BookMark eNp9kD1PwzAQhi1UJErpH2CyxGzwRxLbY1XxJVWCAWbLcZySKrWL7Qz595gGgcTQG-5ueJ_Tve8lmDnvLADXBN8SjPldJIRXBGHKEMaMMyTPwJyIiiHKZDH73UV1AZYx7nAuRrmo-By8rpzux9QZ3cOYhmaEvoXpw0LrjG9sQI09TrjPvY-w9QEOfQo6-sE1sNvrrYXRbvfWJZ06767Aeav7aJc_cwHeH-7f1k9o8_L4vF5tkGFEJlQ2tqWVrnlZCyqlIEYSXeOi4tjUttDMFDWpy0YaLHlJLGaCFFyXNGuMJpotwM109xD852BjUjs_hGwmKkbLSkpKRZFVYlKZ4GMMtlWmm_7MFrpeEay-I1RThCpHqI4RKplR-g89hGw3jKchNkExi93Whr-vTlBffJaFrQ
CitedBy_id crossref_primary_10_1016_j_sasc_2025_200231
crossref_primary_10_1080_00051144_2024_2314918
crossref_primary_10_1109_ACCESS_2025_3547430
crossref_primary_10_3390_agriengineering6030183
crossref_primary_10_1007_s11761_024_00400_3
crossref_primary_10_1109_TIM_2024_3421436
crossref_primary_10_1016_j_dsp_2025_104983
crossref_primary_10_1109_ACCESS_2024_3522022
crossref_primary_10_3390_diagnostics15070848
Cites_doi 10.1146/annurev.bioeng.2.1.315
10.1177/01617346221114137
10.1177/01617346211069882
10.11834/jig.190242
10.3390/life12111877
10.1007/s10278-020-00410-5
10.1109/TMI.2022.3226268
10.1002/mp.15700
10.1016/j.media.2017.07.005
10.1016/j.compbiomed.2023.106629
10.1109/TMI.2018.2845918
10.1016/j.bspc.2022.104425
10.1016/j.eswa.2023.119718
10.3390/diagnostics12123064
10.1016/j.compbiomed.2023.106792
10.1186/s12880-023-01011-8
10.1016/j.patcog.2020.107404
10.1038/s41598-023-29105-x
10.1016/j.cmpb.2023.107614
10.2174/1574362417666220513151926
10.1007/s11548-021-02430-0
10.1007/978-3-030-00889-5_1
10.1109/CBMS49503.2020.00111
10.12928/telkomnika.v18i3.14753
10.1016/j.bspc.2019.101626
10.1109/CIBCB48159.2020.9277667
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11761-023-00373-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1863-2394
EndPage 100
ExternalDocumentID 10_1007_s11761_023_00373_9
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-5def26ab75b829981c91ab04670cbe4a3c4b1b5d9c09751e038147a52b04ca1a3
IEDL.DBID K7-
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001029359300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Sat Oct 11 06:57:02 EDT 2025
Tue Nov 18 21:45:06 EST 2025
Sat Nov 29 01:50:26 EST 2025
Fri Feb 21 02:39:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep neural network
Encoder-decoder model
Artificial intelligence
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5def26ab75b829981c91ab04670cbe4a3c4b1b5d9c09751e038147a52b04ca1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8026-4246
PQID 3256992284
PQPubID 2044172
PageCount 20
ParticipantIDs proquest_journals_3256992284
crossref_citationtrail_10_1007_s11761_023_00373_9
crossref_primary_10_1007_s11761_023_00373_9
springer_journals_10_1007_s11761_023_00373_9
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Joharah, Mohideen (CR23) 2022; 17
Qin, Zhang, Huang, Dehghan, Zaiane, Jagersand (CR13) 2020; 106
Xing, Yang, Tang, Zhang (CR31) 2020; 25
Chen, Li, Dai, Zhang, Yap (CR19) 2023; 42
AshkaniChenarlogh, GhelichOghli, Shabanzadeh, Sirjani, Akhavan, Shiri, Arabi, Sanei Taheri, Tarzamni (CR27) 2022; 44
CR12
CR11
He, Yang, Xie (CR20) 2023; 155
CR10
CR30
Zeng, Luo, Cheng, Lu (CR26) 2022; 49
Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (CR5) 2016; 2016
Krithika Alias AnbuDevi, Suganthi (CR22) 2022; 12
Fakhry, Sayed, El-Baz (CR7) 2020; 55
Zheng, Qin, Cui, Wang, Zhao, Zhang, Zhao (CR14) 2023; 23
Zhang, Chen, McGough, Xie (CR6) 2021; 70
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (CR2) 2017; 42
Zeng, Tsui, Wu, Zhou, Wu (CR29) 2021; 34
Zhu, Gao, Zhao, Zhu, Nan, Tian, Zhou (CR25) 2022; 44
Andreasen, Feragen, Christensen, Thybo, Svendsen, Zepf, Tolsgaard (CR15) 2023; 13
Balachandran, Qin, Jiang, Blouri, Forouzandeh, Dehghan, Punithakumar (CR18) 2023; 157
CR8
Li, Chen, Qi, Dou, Fu, Heng (CR9) 2018; 37
Mămuleanu, Urhuț, Săndulescu, Kamal, Pătrașcu, Ionescu, Șerbănescu, Streba (CR24) 2022; 12
Ronneberger, Fischer, Brox (CR3) 2015; 2015
Lyu, Xu, Jiang, Liu, Zhao, Zhu (CR21) 2023; 81
Bi, Cai, Sun, Jiang, Lu, Shu, Ni (CR16) 2023; 238
Iqbal, Sharif (CR17) 2023; 221
Pham, Xu, Prince (CR1) 2000; 2
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (CR4) 2016; 2016
Moccia, Fiorentino, Frontoni (CR28) 2021; 16
Y Zeng (373_CR29) 2021; 34
A Iqbal (373_CR17) 2023; 221
Y Xing (373_CR31) 2020; 25
F Joharah (373_CR23) 2022; 17
373_CR30
373_CR8
373_CR10
373_CR11
Ö Çiçek (373_CR4) 2016; 2016
LA Andreasen (373_CR15) 2023; 13
S Moccia (373_CR28) 2021; 16
M Krithika Alias AnbuDevi (373_CR22) 2022; 12
V AshkaniChenarlogh (373_CR27) 2022; 44
DL Pham (373_CR1) 2000; 2
T Zheng (373_CR14) 2023; 23
X Li (373_CR9) 2018; 37
Q He (373_CR20) 2023; 155
M Mămuleanu (373_CR24) 2022; 12
G Chen (373_CR19) 2023; 42
Z Zhang (373_CR6) 2021; 70
G Litjens (373_CR2) 2017; 42
373_CR12
A Fakhry (373_CR7) 2020; 55
W Zeng (373_CR26) 2022; 49
S Balachandran (373_CR18) 2023; 157
H Bi (373_CR16) 2023; 238
F Zhu (373_CR25) 2022; 44
O Ronneberger (373_CR3) 2015; 2015
Y Lyu (373_CR21) 2023; 81
M Drozdzal (373_CR5) 2016; 2016
X Qin (373_CR13) 2020; 106
References_xml – volume: 2
  start-page: 315
  issue: 1
  year: 2000
  end-page: 337
  ident: CR1
  article-title: Current methods in medical image segmentation
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.2.1.315
– volume: 2016
  start-page: 179
  issue: 10008
  year: 2016
  end-page: 187
  ident: CR5
  article-title: The Importance of Skip Connections in Biomedical Image Segmentation
  publication-title: MICCAI
– volume: 55
  start-page: 101626
  year: 2020
  ident: CR7
  article-title: Automated ultrasound image segmentation: a review
  publication-title: Biomed Signal Process Control
– volume: 44
  start-page: 191
  issue: 5–6
  year: 2022
  end-page: 203
  ident: CR25
  article-title: A deep learning-based method to extract lumen and media-adventitia in intravascular ultrasound images
  publication-title: Ultrason Imag
  doi: 10.1177/01617346221114137
– volume: 44
  start-page: 25
  issue: 1
  year: 2022
  end-page: 38
  ident: CR27
  article-title: Fast and accurate U-net model for fetal ultrasound image segmentation
  publication-title: Ultrason Imag
  doi: 10.1177/01617346211069882
– volume: 25
  start-page: 366
  issue: 2
  year: 2020
  end-page: 377
  ident: CR31
  article-title: Ultrasound fetal head edge detection using fusion UNet++
  publication-title: J Image Graph
  doi: 10.11834/jig.190242
– volume: 2015
  start-page: 234
  issue: 9351
  year: 2015
  end-page: 241
  ident: CR3
  article-title: UNet: convolutional networks for biomedical image segmentation
  publication-title: MICCAI
– ident: CR12
– volume: 12
  start-page: 1877
  issue: 11
  year: 2022
  ident: CR24
  article-title: Deep learning algorithms in the automatic segmentation of liver lesions in ultrasound investigations
  publication-title: Life
  doi: 10.3390/life12111877
– ident: CR30
– ident: CR10
– volume: 34
  start-page: 134
  issue: 1
  year: 2021
  end-page: 148
  ident: CR29
  article-title: Fetal ultrasound image segmentation for automatic head circumference biometry using deeply supervised attention-gated V-net
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00410-5
– ident: CR8
– volume: 42
  start-page: 1289
  issue: 5
  year: 2023
  end-page: 1300
  ident: CR19
  article-title: AAU-net: An adaptive attention U-net for breast lesions segmentation in ultrasound images
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2022.3226268
– volume: 2016
  start-page: 424
  issue: 9901
  year: 2016
  end-page: 432
  ident: CR4
  article-title: 3D UNet: Learning dense volumetric segmentation from sparse annotation
  publication-title: MICCAI
– volume: 49
  start-page: 5081
  issue: 8
  year: 2022
  end-page: 5092
  ident: CR26
  article-title: Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network
  publication-title: Med Phys
  doi: 10.1002/mp.15700
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR2
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 155
  start-page: 10669
  year: 2023
  ident: CR20
  article-title: HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
  publication-title: Computer Biol Med
  doi: 10.1016/j.compbiomed.2023.106629
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  end-page: 2674
  ident: CR9
  article-title: H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT Volumes
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2845918
– volume: 81
  start-page: 10445
  year: 2023
  ident: CR21
  article-title: AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104425
– volume: 221
  start-page: 119718
  year: 2023
  ident: CR17
  article-title: PDF-UNet: A semi-supervised method for segmentation of breast tumor images using a U-shaped pyramid-dilated network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119718
– volume: 70
  start-page: 101977
  year: 2021
  ident: CR6
  article-title: A review on deep learning for ultrasound image segmentation
  publication-title: Med Image Anal
– volume: 12
  start-page: 3064
  issue: 12
  year: 2022
  ident: CR22
  article-title: Review of semantic segmentation of medical images using modified architectures of UNET
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12123064
– volume: 157
  start-page: 106792
  year: 2023
  ident: CR18
  article-title: ACU2E-net: A novel predicts–refine attention network for segmentation of soft-tissue structures in ultrasound images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106792
– ident: CR11
– volume: 23
  start-page: 56
  issue: 1
  year: 2023
  ident: CR14
  article-title: Segmentation of thyroid glands and nodules in ultrasound images using the improved U-net architecture
  publication-title: BMC Med Imag
  doi: 10.1186/s12880-023-01011-8
– volume: 106
  start-page: 107404
  year: 2020
  ident: CR13
  article-title: U2-Net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107404
– volume: 13
  start-page: 2221
  issue: 1
  year: 2023
  ident: CR15
  article-title: Multi-center deep learning for placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization
  publication-title: Sci Reports
  doi: 10.1038/s41598-023-29105-x
– volume: 238
  start-page: 107614
  year: 2023
  ident: CR16
  article-title: BPAT-UNet: Boundary preserving assembled transformer UNet for ultrasound thyroid nodule segmentation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107614
– volume: 17
  start-page: 57
  issue: 3
  year: 2022
  end-page: 66
  ident: CR23
  article-title: Evaluation of fetal head circumference (HC) and biparietal diameter (BPD (biparietal diameter)) in ultrasound images using multi-task deep convolutional neural network
  publication-title: Curr Signal Transduct Ther
  doi: 10.2174/1574362417666220513151926
– volume: 16
  start-page: 1711
  issue: 10
  year: 2021
  end-page: 1718
  ident: CR28
  article-title: Mask-R 2 CNN: A distance-field regression version of mask-RCNN for fetal-head delineation in ultrasound images
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-021-02430-0
– ident: 373_CR10
  doi: 10.1007/978-3-030-00889-5_1
– volume: 23
  start-page: 56
  issue: 1
  year: 2023
  ident: 373_CR14
  publication-title: BMC Med Imag
  doi: 10.1186/s12880-023-01011-8
– volume: 17
  start-page: 57
  issue: 3
  year: 2022
  ident: 373_CR23
  publication-title: Curr Signal Transduct Ther
  doi: 10.2174/1574362417666220513151926
– volume: 81
  start-page: 10445
  year: 2023
  ident: 373_CR21
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104425
– volume: 42
  start-page: 60
  year: 2017
  ident: 373_CR2
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 2016
  start-page: 424
  issue: 9901
  year: 2016
  ident: 373_CR4
  publication-title: MICCAI
– volume: 44
  start-page: 25
  issue: 1
  year: 2022
  ident: 373_CR27
  publication-title: Ultrason Imag
  doi: 10.1177/01617346211069882
– volume: 49
  start-page: 5081
  issue: 8
  year: 2022
  ident: 373_CR26
  publication-title: Med Phys
  doi: 10.1002/mp.15700
– volume: 70
  start-page: 101977
  year: 2021
  ident: 373_CR6
  publication-title: Med Image Anal
– volume: 12
  start-page: 3064
  issue: 12
  year: 2022
  ident: 373_CR22
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12123064
– volume: 13
  start-page: 2221
  issue: 1
  year: 2023
  ident: 373_CR15
  publication-title: Sci Reports
  doi: 10.1038/s41598-023-29105-x
– volume: 155
  start-page: 10669
  year: 2023
  ident: 373_CR20
  publication-title: Computer Biol Med
  doi: 10.1016/j.compbiomed.2023.106629
– volume: 16
  start-page: 1711
  issue: 10
  year: 2021
  ident: 373_CR28
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-021-02430-0
– ident: 373_CR12
  doi: 10.1109/CBMS49503.2020.00111
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  ident: 373_CR9
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2845918
– ident: 373_CR11
  doi: 10.12928/telkomnika.v18i3.14753
– volume: 238
  start-page: 107614
  year: 2023
  ident: 373_CR16
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107614
– volume: 42
  start-page: 1289
  issue: 5
  year: 2023
  ident: 373_CR19
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2022.3226268
– volume: 12
  start-page: 1877
  issue: 11
  year: 2022
  ident: 373_CR24
  publication-title: Life
  doi: 10.3390/life12111877
– volume: 44
  start-page: 191
  issue: 5–6
  year: 2022
  ident: 373_CR25
  publication-title: Ultrason Imag
  doi: 10.1177/01617346221114137
– volume: 2015
  start-page: 234
  issue: 9351
  year: 2015
  ident: 373_CR3
  publication-title: MICCAI
– volume: 25
  start-page: 366
  issue: 2
  year: 2020
  ident: 373_CR31
  publication-title: J Image Graph
  doi: 10.11834/jig.190242
– volume: 34
  start-page: 134
  issue: 1
  year: 2021
  ident: 373_CR29
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00410-5
– volume: 2
  start-page: 315
  issue: 1
  year: 2000
  ident: 373_CR1
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.2.1.315
– volume: 55
  start-page: 101626
  year: 2020
  ident: 373_CR7
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2019.101626
– ident: 373_CR8
– ident: 373_CR30
  doi: 10.1109/CIBCB48159.2020.9277667
– volume: 221
  start-page: 119718
  year: 2023
  ident: 373_CR17
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119718
– volume: 157
  start-page: 106792
  year: 2023
  ident: 373_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106792
– volume: 106
  start-page: 107404
  year: 2020
  ident: 373_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2020.107404
– volume: 2016
  start-page: 179
  issue: 10008
  year: 2016
  ident: 373_CR5
  publication-title: MICCAI
SSID ssj0000327867
Score 2.354967
Snippet Accurate diagnosis and treatment planning for medical conditions rely heavily on the results of medical image segmentation. Medical images are available in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Algorithms
Architecture
Availability
Computed tomography
Computer Appl. in Administrative Data Processing
Computer Science
Computer Systems Organization and Communication Networks
Datasets
Deep learning
Diagnostic systems
e-Commerce/e-business
Encoders-Decoders
Image segmentation
IT in Business
Machine learning
Management of Computing and Information Systems
Medical imaging
Nerves
Neural networks
Pipelining (computers)
Real time
Sensitivity
Software Engineering/Programming and Operating Systems
Special Issue Paper
Ultrasonic imaging
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8MgFCc6PXhxfsbpNBy8KUkpUOjRGBdPy-JXdmuAUrNkH6bt_PsFRtdo1ERPPZTS5sHj_crj_X4AXHI7S4RLDZKcKESxjpFSLEExSQpeqIQyTb3YBB8OxXicjkJRWNWcdm9Skn6lbovdsP3lRjbGIEeaQlC6CbZsuBPOHR8eX9Y7KxGJufDSsVgkxL5VJKFa5vtuPkekFmZ-yYz6gDPo_u9T98BuAJjwZjUj9sGGmR-AbiPeAIMvH4KRpyPxO9nQc8zCRQEtGoSO2TI3JcqNv0KvlVNBC27hclqXsnJCTHAyswsRrMzrLBQvzY_A8-Du6fYeBXkFpK3f1YjlpogTqThTwgYlgXWKpbL_yzzSylBJNFVYsTzVUcoZNi6nSLlksW2jJZbkGHTmi7k5ATAquDYqYUWuBJVaKqkY5TFTqdAWUbAewI2JMx24x50ExjRrWZOdyTJrssybLEt74Gr9zNuKeePX1v1m5LLghVVGLJ5zvLuC9sB1M1Lt7Z97O_1b8zOwE1usszqa1gedulyac7Ct3-tJVV742fkBDp_dCg
  priority: 102
  providerName: Springer Nature
Title Analytical study of the encoder-decoder models for ultrasound image segmentation
URI https://link.springer.com/article/10.1007/s11761-023-00373-9
https://www.proquest.com/docview/3256992284
Volume 18
WOSCitedRecordID wos001029359300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: P5Z
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: K7-
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61wKFCgpa2YnmsfOiNWl2_YueEKAIhVVqtoFSol8h2HIQEu3Sz8PsZex22IMGFi3OI40SZsWc84_k-gG8atcTE1KCohaOSeU6dUwXlomh04wqpvExkE3o4NBcX5SgH3Np8rLJbE9NCXU98jJH_EGibI4aqkfu3_2hkjYrZ1Uyh8R6WGecs6vkvTR9jLAPBtUkksswUAt9vilw3M6-eY7iHp2i0aERhEbR8apsWDuezHGkyPcfrb_3oj7CWnU5yMNeST_AujDdg9eC_HMIGrHf8DiRP988wSoglKdhNEgwtmTQEHUYSwS_rMKV1SFeS6HRagv4vubueTW0buZrI1Q2uVaQNlze5vmn8Bc6Pj34fntDMwEA9Ts0ZVXVoeGGdVs6g3TLMl8w63FLrgXdBWuGlY07VpR-UWrEQ045SW8Wxj7fMiq-wNJ6MwyaQQaN9cIVqamek9dZZp6TmypXGo9OhesC6f1_5DE8eWTKuqwWwcpRXhfKqkryqsgd7j8_czsE5Xu290wmpyhO1rRYS6sH3TsyL2y-PtvX6aNvwgaP7Mz-ttgNLs-ld2IUVfz-7aqd9WP55NByd9pO69uN50zNsR-ovtqdnfx4AHS7wjQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BMNGYiCKGVdAe9KQN21_TzoEYIhDIwoYDJtzGttMhJLALO4uEf8q_kdfODIsmcuPgaQ7TeUmnX19f-_q-D-CTRpSYmBoUpXBUMs-pcyqjXGSVrlwmlZdJbEIPh-b4OD-cg99dLUy8Vtn5xOSoy7GPZ-TrAtfmyKFq5LeLSxpVo2J2tZPQaGAxCDfXuGWrN_a2cHw_c76zffR9l7aqAtQj3KZUlaHimXVaOYO-2DCfM-twm6j73gVphZeOOVXmvp9rxUJMpUltFcc23jIr0O4TWJDC6MjVP9D07kynL7g2SbSWmUxgf03W1uk01XpMZ7h354JG1hdB8z_XwlmA-1dONi11O4v_2096BS_boJpsNrPgNcyF0RK82LyXI1mCxU6_grTu7A0cJkaWdJhPEs0uGVcEA2ISyT3LMKFlSE-S5IJqgvE9uTqbTmwdtajI6Tn6YlKHk_O2fmu0DD8epZtvYX40HoUVIP1K--AyVZXOSOuts05JzZXLjcegSvWAdWNd-JZ-PaqAnBUz4uiIjwLxUSR8FHkPvtx9c9GQjzzYerUDRdE6orqYIaIHXztYzV7_29q7h619hGe7Rwf7xf7ecPAennMM9ZqbeaswP51chTV46n9NT-vJhzRFCPx8bLjdAs6KSFA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1yfOXjT4KZJmvQo6qIoy4IPvJUkTWVBq2y7_n6TbOuqqCCeemgawmTS-ZLJfB_AvnBeIn1qkGZUY0ZMhLXmMY5onItcx4wbFsQmRK8n7--T_ocq_nDbvUlJjmsaPEtTUR29ZPnRpPCNuO03dvEGewIVipNpmGFeNMjv16_v3k9ZOjQSMsjIEhlTNwIZ15Uz33fzOTpNIOeXLGkIPt3F_w97CRZq4ImOx56yDFO2WIHFRtQB1Wt8FfqBpiSccKPAPYuec-RQIvKMl5kd4syGJwoaOiVyoBeNHquhKr1AExo8uR8UKu3DU13UVKzBbffs5uQc17IL2Lj1WGGe2TyKlRZcSxesJDEJUdrto0XHaMsUNUwTzbPEdBLBifW5RiYUj1wbo4ii69Aqngu7AaiTC2N1zPNMS6aM0kpzJiKuE2kc0uBtII25U1NzkntpjMd0wqbsTZY6k6XBZGnShoP3b17GjBy_tt5uZjGtV2eZUofzPB-vZG04bGZt8vrn3jb_1nwP5vqn3fTqone5BfORg0Pj22vb0KqGI7sDs-a1GpTD3eC0b-bK6NI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+study+of+the+encoder-decoder+models+for+ultrasound+image+segmentation&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Srivastava%2C+Somya&rft.au=Vidyarthi%2C+Ankit&rft.au=Jain%2C+Shikha&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=18&rft.issue=1&rft.spage=81&rft.epage=100&rft_id=info:doi/10.1007%2Fs11761-023-00373-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon