A 101-line MATLAB code for topology optimization using binary variables and integer programming
This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS) method first published by Sivapuram and Picelli (Finite Elem Anal Des 139: pp. 49–61, 2018 ). The TOBS is a gradient-based topology optimization method that employs binary design variab...
Uložené v:
| Vydané v: | Structural and multidisciplinary optimization Ročník 63; číslo 2; s. 935 - 954 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1615-147X, 1615-1488 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS) method first published by Sivapuram and Picelli (Finite Elem Anal Des 139: pp. 49–61,
2018
). The TOBS is a gradient-based topology optimization method that employs binary design variables and formal mathematical programming. Besides its educational purposes, the 101-line code is provided to show that topology optimization with integer linear programming can be efficiently carried out, contrary to the previous reports in the literature. Compliance minimization subject to a volume constraint is first solved to highlight the main features of the TOBS method. The optimization parameters are discussed. Then, volume minimization subject to a compliance constraint is solved to illustrate that the method can efficiently deal with different types of constraints. Finally, simultaneous volume and displacement constraints are investigated in order to expose the capabilities of the optimizer and to serve as a tutorial of multiple constraints. The 101-line MATLAB code and some simple enhancements are elucidated, keeping only the integer programming solver unmodified so that it can be tested and extended to other numerical examples of interest. |
|---|---|
| AbstractList | This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS) method first published by Sivapuram and Picelli (Finite Elem Anal Des 139: pp. 49–61, 2018). The TOBS is a gradient-based topology optimization method that employs binary design variables and formal mathematical programming. Besides its educational purposes, the 101-line code is provided to show that topology optimization with integer linear programming can be efficiently carried out, contrary to the previous reports in the literature. Compliance minimization subject to a volume constraint is first solved to highlight the main features of the TOBS method. The optimization parameters are discussed. Then, volume minimization subject to a compliance constraint is solved to illustrate that the method can efficiently deal with different types of constraints. Finally, simultaneous volume and displacement constraints are investigated in order to expose the capabilities of the optimizer and to serve as a tutorial of multiple constraints. The 101-line MATLAB code and some simple enhancements are elucidated, keeping only the integer programming solver unmodified so that it can be tested and extended to other numerical examples of interest. This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS) method first published by Sivapuram and Picelli (Finite Elem Anal Des 139: pp. 49–61, 2018 ). The TOBS is a gradient-based topology optimization method that employs binary design variables and formal mathematical programming. Besides its educational purposes, the 101-line code is provided to show that topology optimization with integer linear programming can be efficiently carried out, contrary to the previous reports in the literature. Compliance minimization subject to a volume constraint is first solved to highlight the main features of the TOBS method. The optimization parameters are discussed. Then, volume minimization subject to a compliance constraint is solved to illustrate that the method can efficiently deal with different types of constraints. Finally, simultaneous volume and displacement constraints are investigated in order to expose the capabilities of the optimizer and to serve as a tutorial of multiple constraints. The 101-line MATLAB code and some simple enhancements are elucidated, keeping only the integer programming solver unmodified so that it can be tested and extended to other numerical examples of interest. |
| Author | Sivapuram, Raghavendra Xie, Yi Min Picelli, Renato |
| Author_xml | – sequence: 1 givenname: Renato orcidid: 0000-0003-4456-0213 surname: Picelli fullname: Picelli, Renato email: rpicelli@usp.br organization: Department of Mining and Petroleum Engineering, University of São Paulo – sequence: 2 givenname: Raghavendra surname: Sivapuram fullname: Sivapuram, Raghavendra organization: Structural Engineering Department, University of California San Diego – sequence: 3 givenname: Yi Min surname: Xie fullname: Xie, Yi Min organization: Center for Innovative Structures and Materials, School of Engineering, RMIT University |
| BookMark | eNp9kE9LwzAYh4MouE2_gKeA5-qbtmmTYx3-g4mXCd5C2qYlo01q0gnz05utouBhh5Acfk_e9_fM0amxRiF0ReCGAOS3HoBQFkEM4eSER_wEzUhGaERSxk5_3_n7OZp7vwEABimfIVFgAiTqtFH4pVivijtc2Vrhxjo82sF2tt1hO4y6119y1NbgrdemxaU20u3wp3Ralp3yWJoaazOqVjk8ONs62fcheIHOGtl5dflzL9Dbw_16-RStXh-fl8UqqhLCx4jWFdQ0rWRGs5jRSiU5IQwUa8qGszgtq5QrqkpFKGQqlG0g5w2EUmmS04YmC3Q9_Rtmf2yVH8XGbp0JI0UcDEBCYrJPsSlVOeu9U42o9HioNTqpO0FA7HWKSacIOsVBp-ABjf-hg9N9cHAcSibIh7AJav62OkJ9Azn0iMA |
| CitedBy_id | crossref_primary_10_1016_j_finel_2023_104044 crossref_primary_10_1007_s00158_022_03442_3 crossref_primary_10_1007_s00158_025_04017_8 crossref_primary_10_1007_s00158_021_02910_6 crossref_primary_10_3390_ma18050997 crossref_primary_10_1016_j_cma_2024_117004 crossref_primary_10_1007_s00158_022_03464_x crossref_primary_10_1088_2040_8986_adf654 crossref_primary_10_3934_math_2025648 crossref_primary_10_1007_s00158_025_03961_9 crossref_primary_10_1016_j_cam_2023_115651 crossref_primary_10_1007_s00158_021_03118_4 crossref_primary_10_1007_s11081_022_09715_6 crossref_primary_10_1016_j_apm_2022_10_039 crossref_primary_10_1016_j_compfluid_2022_105561 crossref_primary_10_32604_cmes_2023_031538 crossref_primary_10_1007_s00158_023_03590_0 crossref_primary_10_1016_j_advengsoft_2024_103599 crossref_primary_10_1007_s00158_023_03702_w crossref_primary_10_1016_j_engstruct_2025_121149 crossref_primary_10_1016_j_advengsoft_2025_103894 crossref_primary_10_1016_j_cma_2025_118028 crossref_primary_10_1002_nme_7449 crossref_primary_10_1016_j_probengmech_2024_103583 crossref_primary_10_1109_TQE_2023_3266410 crossref_primary_10_1007_s00158_021_03050_7 crossref_primary_10_1016_j_finel_2021_103683 crossref_primary_10_1007_s11081_023_09808_w crossref_primary_10_3390_app132312916 crossref_primary_10_1016_j_apm_2023_11_024 crossref_primary_10_1007_s00158_025_03975_3 crossref_primary_10_1007_s00158_025_04103_x crossref_primary_10_1016_j_asr_2024_10_029 crossref_primary_10_1016_j_ast_2023_108836 crossref_primary_10_1080_10255842_2023_2203293 crossref_primary_10_1007_s11081_023_09865_1 crossref_primary_10_1002_adem_202402567 crossref_primary_10_3390_app11052112 crossref_primary_10_1007_s00158_020_02816_9 crossref_primary_10_1007_s00158_021_02858_7 crossref_primary_10_1016_j_ijmecsci_2023_108102 crossref_primary_10_1109_ACCESS_2025_3570329 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123614 crossref_primary_10_32604_cmes_2023_026043 crossref_primary_10_1109_ACCESS_2022_3206368 |
| Cites_doi | 10.2307/1910129 10.1108/02644409810244129 10.1002/nme.5827 10.1007/s00158-019-02396-3 10.1007/s00158-020-02598-0 10.1007/s001580050176 10.1007/978-1-4614-7630-6 10.1007/s00158-009-0430-0 10.1016/j.commatsci.2018.08.008 10.1007/1-4020-4752-5_42 10.1007/s00158-010-0594-7 10.1016/0045-7949(93)90035-C 10.1016/j.finel.2007.06.006 10.1007/s00158-018-1939-x 10.1007/BF01742754 10.1007/s00158-018-1904-8 10.1016/j.cma.2018.10.050 10.1016/S0045-7825(01)00251-1 10.1007/s00158-004-0493-x 10.1007/978-0-387-92280-5_2 10.1007/s00158-006-0087-x 10.1007/s00158-019-02339-y 10.1016/j.cma.2019.112784 10.1016/j.advengsoft.2015.02.006 10.1007/s11831-016-9203-2 10.1007/s00158-020-02549-9 10.1007/s00158-019-02443-z 10.1007/s10107-006-0086-0 10.1007/s00158-015-1372-3 10.1007/s00158-010-0527-5 10.1016/j.finel.2015.01.009 10.1007/s40324-018-00185-4 10.1016/j.finel.2017.10.006 10.1007/s00158-013-0956-z 10.1007/BF01197709 10.1002/nme.1064 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00158-020-02719-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1615-1488 |
| EndPage | 954 |
| ExternalDocumentID | 10_1007_s00158_020_02719_9 |
| GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2018/05797-8 funderid: https://doi.org/10.13039/501100001807 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2019/01685-3 funderid: https://doi.org/10.13039/501100001807 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 2.D 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR _50 ~02 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-5dc0d54ca656285ce371180e8fbf9824bc49e5ebe1506e001f079f06154375f53 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573190500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-147X |
| IngestDate | Wed Nov 05 00:47:53 EST 2025 Sat Nov 29 02:50:16 EST 2025 Tue Nov 18 21:10:20 EST 2025 Fri Feb 21 02:48:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Topology optimization Integer linear programming Binary variables Educational code |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5dc0d54ca656285ce371180e8fbf9824bc49e5ebe1506e001f079f06154375f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4456-0213 |
| PQID | 2488031215 |
| PQPubID | 2043658 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2488031215 crossref_citationtrail_10_1007_s00158_020_02719_9 crossref_primary_10_1007_s00158_020_02719_9 springer_journals_10_1007_s00158_020_02719_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20210200 2021-02-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Structural and multidisciplinary optimization |
| PublicationTitleAbbrev | Struct Multidisc Optim |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | RozvanyGINZhouMBirkerTGeneralized shape optimization without homogenizationStruct Opt1992425025410.1007/BF01742754 SivapuramRPicelliRXieYMTopology optimization of binary microstructures involving various non-volume constraintsComput Mater Sci201815440542510.1016/j.commatsci.2018.08.008 CornuéjolsGValid inequalities for mixed integer linear programsMath Program B2008112344232700010.1007/s10107-006-0086-0 SigmundOMorphology-based black and white filters for topology optimizationStruct Multidiscip Optim2007334-540142410.1007/s00158-006-0087-x SigmundOA 99 line topology optimization code written in MatlabStruct Multidiscip Optim20012112012710.1007/s001580050176 PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z VanderbeiRJLinear programming: foundations and extensions20144th edn.USSpringer10.1007/978-1-4614-7630-6 PicelliRRanjbarzadehSSivapuramRGioriaRSSilvaECNTopology optimization of binary structures under design-dependent fluid-structure interaction loadsStruct Multidiscip Optim20206221012116415637410.1007/s00158-020-02598-0 LiangYChengGFurther elaborations on topology optimization via sequential integer programming and canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim20206141143110.1007/s00158-019-02396-3 AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim20114311610.1007/s00158-010-0594-7 BeckersMTopology optimization using a dual method with discrete variablesStruct Multidiscip Optim199917142410.1007/BF01197709 AnsolaLRQuerinOMGaraigordobilJAAlonsoGCA sequential element rejection and admission (SERA) topology optimization code written in MatlabStruct Multidiscip Optim201858312971310384388310.1007/s00158-018-1939-x LiangYChengGTopology optimization via sequential integer programming and canonical relaxation algorithmComp Methods Appl Mechan Eng20193486496390785810.1016/j.cma.2018.10.0501440.74299 XieYMStevenGPA simple evolutionary procedure for structural optimizationComput Struct19934988589610.1016/0045-7949(93)90035-C GaoTZhangWTopology optimization involving thermo-elastic stress loadsStruct Multidiscip Optim2010425725738272027810.1007/s00158-010-0527-5 HuangXXieYMConvergent and mesh-independent solutions for the bi-directional evolutionary structural optimization methodFinite Elem Anal Des2007431039104910.1016/j.finel.2007.06.006 FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4 SvanbergKWermeMA hierarchical neighbourhood search method for topology optimizationStruct Multidiscip Optim200529325340214368110.1007/s00158-004-0493-x ZuoZHXieYMA simple and compact python code for complex 3D topology optimizationAdv Eng Softw20158511110.1016/j.advengsoft.2015.02.006 SigmundODesign of multiphysics actuators using topology optimization - Part i: one material structuresComput Methods Appl Mech Eng20011906577660410.1016/S0045-7825(01)00251-1 ChallisVJA discrete level-set topology optimization code written in MatlabStruct Multidiscip Optim201041453464260213610.1007/s00158-009-0430-0 Svanberg K, Werme M (2006) Topology optimization by sequential integer linear programming. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials. Springer, Netherlands, pp 425–436 Allaire G (2009) A 2-D Scilab Code for shape and topology optimization by the level set method. http://www.cmap.polytechnique.fr/allaire/levelset_en.html VicenteWMPicelliRPavanelloRXieYMTopology optimization of frequency responses of fluid-structure interaction systemsFinite Elem Anal Des20159811310.1016/j.finel.2015.01.009 WeiPLiZLiXWangMYAn 88-line matlab code for the parameterized level set method based topology optimization using radial basis functionsStruct Multidiscip Optim201858831849383360210.1007/s00158-018-1904-8 Picelli R, Sivapuram R (2019) Solving topology optimization with 0,1 design variables and mathematical programming: the TOBS method. In: Proceedings of the 13th world congress of structural and multidisciplinary optimization (WCSMO-13), Beijing, China SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006 ZhangWYuanJZhangJGuoXA new topology optimization approach based on moving morphable components (mmc) and the ersatz material modelStruct Multidiscip Optim20165312431260349888510.1007/s00158-015-1372-3 WilliamsPInteger programming2009BostonSpringer257010.1007/978-0-387-92280-5_2 EmmendoerferHFancelloEASilvaECNLevel set topology optimization for design-dependent pressure load problemsInt J Numer Methods Eng20181157825848383538410.1002/nme.5827 DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z LandAHDoigAGAn automatic method of solving discrete programming problemsEconometrica19602849752011582510.2307/1910129 QuerinOMStevenGPXieYMEvolutionary structural optimisation (ESO) using a bidirectional algorithmEng Comput19981581031104810.1108/02644409810244129 HaftkaRTGürdalZElements of structural optimization19913rd edn.KluwerKluwer Academic Publishers0782.73004 NeofytouAPicelliRHuangTHChenJSKimHALevel set topology optimization for design-dependent pressure loads using the reproducing kernel particle methodStruct Multidiscip Optim20206118051820411759910.1007/s00158-020-02549-9 XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArc Comput Methods Eng2018252437478377647710.1007/s11831-016-9203-2 GuestJKPrèvostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variablesInt J Numer Meth Eng2004612238254208121810.1002/nme.1064 YoonGHTopology optimization method with finite elements based on the k − ε turbulence modelComput Methods Appl Mechan Eng2020361112784404627910.1016/j.cma.2019.112784 A Neofytou (2719_CR17) 2020; 61 R Sivapuram (2719_CR26) 2018; 139 2719_CR18 R Picelli (2719_CR19) 2019; 60 Y Liang (2719_CR16) 2020; 61 2719_CR1 H Emmendoerfer (2719_CR8) 2018; 115 R Sivapuram (2719_CR28) 2018; 154 GIN Rozvany (2719_CR22) 1992; 4 L Xia (2719_CR35) 2018; 25 RJ Vanderbei (2719_CR31) 2014 Y Liang (2719_CR15) 2019; 348 O Sigmund (2719_CR24) 2001; 190 JK Guest (2719_CR11) 2004; 61 GH Yoon (2719_CR37) 2020; 361 G Cornuéjols (2719_CR6) 2008; 112 P Williams (2719_CR34) 2009 JD Deaton (2719_CR7) 2014; 49 P Wei (2719_CR33) 2018; 58 R Sivapuram (2719_CR27) 2020; 61 ZH Zuo (2719_CR39) 2015; 85 O Sigmund (2719_CR23) 2001; 21 WM Vicente (2719_CR32) 2015; 98 F Feppon (2719_CR9) 2019; 76 O Sigmund (2719_CR25) 2007; 33 RT Haftka (2719_CR12) 1991 OM Querin (2719_CR21) 1998; 15 K Svanberg (2719_CR29) 2005; 29 2719_CR30 LR Ansola (2719_CR3) 2018; 58 W Zhang (2719_CR38) 2016; 53 M Beckers (2719_CR4) 1999; 17 VJ Challis (2719_CR5) 2010; 41 YM Xie (2719_CR36) 1993; 49 R Picelli (2719_CR20) 2020; 62 X Huang (2719_CR13) 2007; 43 AH Land (2719_CR14) 1960; 28 E Andreassen (2719_CR2) 2011; 43 T Gao (2719_CR10) 2010; 42 |
| References_xml | – reference: LiangYChengGFurther elaborations on topology optimization via sequential integer programming and canonical relaxation algorithm and 128-line MATLAB codeStruct Multidiscip Optim20206141143110.1007/s00158-019-02396-3 – reference: SivapuramRPicelliRTopology optimization of binary structures using integer linear programmingFinite Elem Anal Des20181394961372617010.1016/j.finel.2017.10.006 – reference: XiaLXiaQHuangXXieYMBi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive reviewArc Comput Methods Eng2018252437478377647710.1007/s11831-016-9203-2 – reference: SigmundOA 99 line topology optimization code written in MatlabStruct Multidiscip Optim20012112012710.1007/s001580050176 – reference: FepponFAllaireGBordeuFCortialJDapognyCShape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution frameworkSeMA J2019763413458399099810.1007/s40324-018-00185-4 – reference: PicelliRNeofytouAKimHATopology optimization for design-dependent hydrostatic pressure loading via the level-set methodStruct Multidiscip Optim20196013131326402655510.1007/s00158-019-02339-y – reference: PicelliRRanjbarzadehSSivapuramRGioriaRSSilvaECNTopology optimization of binary structures under design-dependent fluid-structure interaction loadsStruct Multidiscip Optim20206221012116415637410.1007/s00158-020-02598-0 – reference: QuerinOMStevenGPXieYMEvolutionary structural optimisation (ESO) using a bidirectional algorithmEng Comput19981581031104810.1108/02644409810244129 – reference: CornuéjolsGValid inequalities for mixed integer linear programsMath Program B2008112344232700010.1007/s10107-006-0086-0 – reference: GaoTZhangWTopology optimization involving thermo-elastic stress loadsStruct Multidiscip Optim2010425725738272027810.1007/s00158-010-0527-5 – reference: HaftkaRTGürdalZElements of structural optimization19913rd edn.KluwerKluwer Academic Publishers0782.73004 – reference: LiangYChengGTopology optimization via sequential integer programming and canonical relaxation algorithmComp Methods Appl Mechan Eng20193486496390785810.1016/j.cma.2018.10.0501440.74299 – reference: BeckersMTopology optimization using a dual method with discrete variablesStruct Multidiscip Optim199917142410.1007/BF01197709 – reference: HuangXXieYMConvergent and mesh-independent solutions for the bi-directional evolutionary structural optimization methodFinite Elem Anal Des2007431039104910.1016/j.finel.2007.06.006 – reference: SigmundODesign of multiphysics actuators using topology optimization - Part i: one material structuresComput Methods Appl Mech Eng20011906577660410.1016/S0045-7825(01)00251-1 – reference: Svanberg K, Werme M (2006) Topology optimization by sequential integer linear programming. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials. Springer, Netherlands, pp 425–436 – reference: SivapuramRPicelliRTopology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loadsStruct Multidiscip Optim20206118771895411760310.1007/s00158-019-02443-z – reference: RozvanyGINZhouMBirkerTGeneralized shape optimization without homogenizationStruct Opt1992425025410.1007/BF01742754 – reference: SivapuramRPicelliRXieYMTopology optimization of binary microstructures involving various non-volume constraintsComput Mater Sci201815440542510.1016/j.commatsci.2018.08.008 – reference: SigmundOMorphology-based black and white filters for topology optimizationStruct Multidiscip Optim2007334-540142410.1007/s00158-006-0087-x – reference: WeiPLiZLiXWangMYAn 88-line matlab code for the parameterized level set method based topology optimization using radial basis functionsStruct Multidiscip Optim201858831849383360210.1007/s00158-018-1904-8 – reference: GuestJKPrèvostJHBelytschkoTAchieving minimum length scale in topology optimization using nodal design variablesInt J Numer Meth Eng2004612238254208121810.1002/nme.1064 – reference: YoonGHTopology optimization method with finite elements based on the k − ε turbulence modelComput Methods Appl Mechan Eng2020361112784404627910.1016/j.cma.2019.112784 – reference: VicenteWMPicelliRPavanelloRXieYMTopology optimization of frequency responses of fluid-structure interaction systemsFinite Elem Anal Des20159811310.1016/j.finel.2015.01.009 – reference: ChallisVJA discrete level-set topology optimization code written in MatlabStruct Multidiscip Optim201041453464260213610.1007/s00158-009-0430-0 – reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: post 2000Struct Multidiscip Optim201449138318245010.1007/s00158-013-0956-z – reference: ZuoZHXieYMA simple and compact python code for complex 3D topology optimizationAdv Eng Softw20158511110.1016/j.advengsoft.2015.02.006 – reference: Allaire G (2009) A 2-D Scilab Code for shape and topology optimization by the level set method. http://www.cmap.polytechnique.fr/allaire/levelset_en.html – reference: Picelli R, Sivapuram R (2019) Solving topology optimization with 0,1 design variables and mathematical programming: the TOBS method. In: Proceedings of the 13th world congress of structural and multidisciplinary optimization (WCSMO-13), Beijing, China – reference: EmmendoerferHFancelloEASilvaECNLevel set topology optimization for design-dependent pressure load problemsInt J Numer Methods Eng20181157825848383538410.1002/nme.5827 – reference: NeofytouAPicelliRHuangTHChenJSKimHALevel set topology optimization for design-dependent pressure loads using the reproducing kernel particle methodStruct Multidiscip Optim20206118051820411759910.1007/s00158-020-02549-9 – reference: AnsolaLRQuerinOMGaraigordobilJAAlonsoGCA sequential element rejection and admission (SERA) topology optimization code written in MatlabStruct Multidiscip Optim201858312971310384388310.1007/s00158-018-1939-x – reference: AndreassenEClausenASchevenelsMLazarovBSSigmundOEfficient topology optimization in MATLAB using 88 lines of codeStruct Multidiscip Optim20114311610.1007/s00158-010-0594-7 – reference: SvanbergKWermeMA hierarchical neighbourhood search method for topology optimizationStruct Multidiscip Optim200529325340214368110.1007/s00158-004-0493-x – reference: ZhangWYuanJZhangJGuoXA new topology optimization approach based on moving morphable components (mmc) and the ersatz material modelStruct Multidiscip Optim20165312431260349888510.1007/s00158-015-1372-3 – reference: LandAHDoigAGAn automatic method of solving discrete programming problemsEconometrica19602849752011582510.2307/1910129 – reference: XieYMStevenGPA simple evolutionary procedure for structural optimizationComput Struct19934988589610.1016/0045-7949(93)90035-C – reference: VanderbeiRJLinear programming: foundations and extensions20144th edn.USSpringer10.1007/978-1-4614-7630-6 – reference: WilliamsPInteger programming2009BostonSpringer257010.1007/978-0-387-92280-5_2 – volume: 28 start-page: 497 year: 1960 ident: 2719_CR14 publication-title: Econometrica doi: 10.2307/1910129 – volume: 15 start-page: 1031 issue: 8 year: 1998 ident: 2719_CR21 publication-title: Eng Comput doi: 10.1108/02644409810244129 – volume: 115 start-page: 825 issue: 7 year: 2018 ident: 2719_CR8 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5827 – ident: 2719_CR1 – volume: 61 start-page: 411 year: 2020 ident: 2719_CR16 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02396-3 – volume: 62 start-page: 2101 year: 2020 ident: 2719_CR20 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02598-0 – volume: 21 start-page: 120 year: 2001 ident: 2719_CR23 publication-title: Struct Multidiscip Optim doi: 10.1007/s001580050176 – volume-title: Linear programming: foundations and extensions year: 2014 ident: 2719_CR31 doi: 10.1007/978-1-4614-7630-6 – volume: 41 start-page: 453 year: 2010 ident: 2719_CR5 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-009-0430-0 – volume: 154 start-page: 405 year: 2018 ident: 2719_CR28 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2018.08.008 – ident: 2719_CR30 doi: 10.1007/1-4020-4752-5_42 – volume: 43 start-page: 1 year: 2011 ident: 2719_CR2 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0594-7 – volume: 49 start-page: 885 year: 1993 ident: 2719_CR36 publication-title: Comput Struct doi: 10.1016/0045-7949(93)90035-C – volume: 43 start-page: 1039 year: 2007 ident: 2719_CR13 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2007.06.006 – volume: 58 start-page: 1297 issue: 3 year: 2018 ident: 2719_CR3 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1939-x – volume: 4 start-page: 250 year: 1992 ident: 2719_CR22 publication-title: Struct Opt doi: 10.1007/BF01742754 – volume: 58 start-page: 831 year: 2018 ident: 2719_CR33 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1904-8 – volume: 348 start-page: 64 year: 2019 ident: 2719_CR15 publication-title: Comp Methods Appl Mechan Eng doi: 10.1016/j.cma.2018.10.050 – volume: 190 start-page: 6577 year: 2001 ident: 2719_CR24 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00251-1 – volume: 29 start-page: 325 year: 2005 ident: 2719_CR29 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-004-0493-x – start-page: 25 volume-title: Integer programming year: 2009 ident: 2719_CR34 doi: 10.1007/978-0-387-92280-5_2 – volume: 33 start-page: 401 issue: 4-5 year: 2007 ident: 2719_CR25 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-006-0087-x – volume: 60 start-page: 1313 year: 2019 ident: 2719_CR19 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02339-y – volume: 361 start-page: 112 year: 2020 ident: 2719_CR37 publication-title: Comput Methods Appl Mechan Eng doi: 10.1016/j.cma.2019.112784 – volume: 85 start-page: 1 year: 2015 ident: 2719_CR39 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2015.02.006 – volume-title: Elements of structural optimization year: 1991 ident: 2719_CR12 – volume: 25 start-page: 437 issue: 2 year: 2018 ident: 2719_CR35 publication-title: Arc Comput Methods Eng doi: 10.1007/s11831-016-9203-2 – volume: 61 start-page: 1805 year: 2020 ident: 2719_CR17 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02549-9 – volume: 61 start-page: 1877 year: 2020 ident: 2719_CR27 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-019-02443-z – volume: 112 start-page: 3 year: 2008 ident: 2719_CR6 publication-title: Math Program B doi: 10.1007/s10107-006-0086-0 – volume: 53 start-page: 1243 year: 2016 ident: 2719_CR38 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1372-3 – volume: 42 start-page: 725 issue: 5 year: 2010 ident: 2719_CR10 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-010-0527-5 – volume: 98 start-page: 1 year: 2015 ident: 2719_CR32 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2015.01.009 – volume: 76 start-page: 413 issue: 3 year: 2019 ident: 2719_CR9 publication-title: SeMA J doi: 10.1007/s40324-018-00185-4 – volume: 139 start-page: 49 year: 2018 ident: 2719_CR26 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2017.10.006 – volume: 49 start-page: 1 year: 2014 ident: 2719_CR7 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-0956-z – ident: 2719_CR18 – volume: 17 start-page: 14 year: 1999 ident: 2719_CR4 publication-title: Struct Multidiscip Optim doi: 10.1007/BF01197709 – volume: 61 start-page: 238 issue: 2 year: 2004 ident: 2719_CR11 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.1064 |
| SSID | ssj0008049 |
| Score | 2.5045326 |
| Snippet | This paper presents a MATLAB code with the implementation of the Topology Optimization of Binary Structures (TOBS) method first published by Sivapuram and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 935 |
| SubjectTerms | Computational Mathematics and Numerical Analysis Design optimization Educational Paper Engineering Engineering Design Integer programming Linear programming Mathematical programming Matlab Optimization Theoretical and Applied Mechanics Topology optimization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH5R8KAHfxtRND1400a2tWw9GTAQD0iIwYTbsrWdMZGBMEn87-0rBdRELp7XNU2_19ev7XvfA7gKQsZSHtRpqpWkLJHGD0applJEfsCl2eSUrVrSCbvdaDAQPXfhNnVhlQufaB21Gkm8I7_10dIC1EK4G79TrBqFr6uuhMYmlFGpjJWg3Gx1e09LXxzNCTDSGuqxcODSZmzyHNKFiOLxyRzNPEHFz61pxTd_PZHanae9998x78Ou45ykMTeSA9jQ-SHsfFMiPIK4Qcyqocg5yWOj32k0CSa7E0NpSTGvo_BJRsa9DF3eJsGA-ReS2nReMjMnbszBmpIkV8RKUOgJcbFfQ9PwGJ7brf79A3W1F6g0i7KgXMma4kwmhu_5EZc6CFEsTkdZmhkYWSqZ0NxYACoUajOVWS0UGfIjFoQ848EJlPJRrk-BhEkmPSGUr3nCFAvTRDDPryulUKuf1SrgLaY9lk6YHOtjvMVLSWULVWygii1UsajA9fKf8VyWY23r6gKf2C3RabwCpwI3C4RXn__u7Wx9b-ew7WPci43srkKpmHzoC9iSs-J1Orl0BvoFDM3ppA priority: 102 providerName: ProQuest |
| Title | A 101-line MATLAB code for topology optimization using binary variables and integer programming |
| URI | https://link.springer.com/article/10.1007/s00158-020-02719-9 https://www.proquest.com/docview/2488031215 |
| Volume | 63 |
| WOSCitedRecordID | wos000573190500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1615-1488 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1615-1488 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1615-1488 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008049 issn: 1615-147X databaseCode: RSV dateStart: 20000301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4o-KAP_jaiSPrgmzZhW8vWRzAQH5AQQMPbsrWdMREwDEn87-2VbahRE33erdnuendf07vvAC49n7GYew0aayUpi6SJg0GsqRSB63FpkpyyU0u6fq8XjMeinzWFpXm1e34laSN10eyG6T2geNwxRylHULEJZZPuAnTHwfChiL_BCvQilKEO88dZq8z3a3xOR2uM-eVa1Gabzt7_vnMfdjN0SZqr7XAAG3p6CDsfOAePIGwS4x8U0SW5a466zRbBtnZiwCtZrCYmvJGZCSSTrEOTYGn8I4lt4y5ZmrM1dlulJJoqYskm9JxkVV4TI3gM95326OaWZlMWqDTut6BcybriTEYG2bkBl9rzkRZOB0mcGIOxWDKhubE1chFq83NJ3RcJIiHm-Tzh3gmUprOpPgXiR4l0hFCu5hFTzI8jwRy3oZRCVn5Wr4CTKzuUGQU5TsJ4DgvyZKu80CgvtMoLRQWuindeVgQcv0pXcxuGmTOmoYtBykMajQpc5zZbP_55tbO_iZ_DtosVL7amuwqlxfxVX8CWXC6e0nkNyq12rz-oYXXpsGa37DubweD6 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dT9swFL1CBWnwwBhjonzND-Nps9YkDokfEMr4UCtCNWlF6puX2M6EBC20BcSf2m_cvU7Sjknw1oc9x7GS-Pj4Or73HIBPQSREHgYHPLdGc5Fp5ME4t1zL2A9CjYucca4ladTtxv2-_L4Av-taGEqrrDnREbUZavpH_tUnpAWkhXB0e8fJNYpOV2sLjRIW5_bpEbds48POCY7vvu-fnfaO27xyFeAa4TbhodEtEwqdYSTjx6G2QUQyaDYu8gIfUORaSBviu5H2nkUWL1qRLGjlF0EUFuQSgZS_KIj9Xargjynzx2W4TUEU90TUr4p0XKkeBScxp80abgQ9yeXzhXAW3f5zIOvWubO3_9sXWoPVKqJmSTkF3sGCHazDyl86i-9BJQw5gVNEzS6SXpp8Y1TKzzBgZ5PSJeKJDZE8b6qqVEblAL9Y7oqV2UOGszS_tmOWDQxzAht2xKrMthtsuAGXc3nDD9AYDAd2E1iUFdqT0vg2zIQRUZ5J4fkHxhhyIhCtJnj1MCtdya6T-8e1mgpGO2gohIZy0FCyCZ-n99yWoiOvtt6p8aAqAhqrGRia8KVG1Ozyy71tvd7bR3jT7l2kKu10z7dh2acMH5fDvgONyeje7sKSfphcjUd7bmow-DlvpP0BRlxDaA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa6umoM3DbttE9sc18eiuC4LrrK30CapCFpltwr-ezNp96GoIJ6bhnaSzHxD5vsG4CAIGUt4cEwToxVlsbJ-MEoMVSLyA65skNOua0krbLejXk90Jlj8rtp9eCVZcBpQpSnLay86rY2IbxjqI4qpj02rPEHFNMwybBqE-frN3cgXRwUARlhDPRb2StrM93N8Dk1jvPnlitRFnuby_795BZZK1EkaxTZZhSmTrcHihBbhOsgGseeGIuok141uq3FCkO5OLKgledFJ4Z08WwfzVDI3CZbM35PEEXrJm825kYU1IHGmiROhMH1SVn892YEbcNs8755e0LL7AlX2WOaUa1XXnKnYIj4_4soEIcrFmShNUruQLFFMGG73AGoUGvtzaT0UKSIkFoQ85cEmzGTPmdkCEsap8oTQvuEx0yxMYsE8_1hrjWr9rF4Bb2h4qUppcuyQ8ShHosrOeNIaTzrjSVGBw9E7L4Uwx6-jq8P1lOUhHUgfnVeA8hoVOBqu3_jxz7Nt_234Psx3zpqyddm-2oEFH4tiXNl3FWby_qvZhTn1lj8M-ntu734AnfzqMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+101-line+MATLAB+code+for+topology+optimization+using+binary+variables+and+integer+programming&rft.jtitle=Structural+and+multidisciplinary+optimization&rft.au=Picelli%2C+Renato&rft.au=Sivapuram%2C+Raghavendra&rft.au=Xie%2C+Yi+Min&rft.date=2021-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-147X&rft.eissn=1615-1488&rft.volume=63&rft.issue=2&rft.spage=935&rft.epage=954&rft_id=info:doi/10.1007%2Fs00158-020-02719-9&rft.externalDocID=10_1007_s00158_020_02719_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-147X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-147X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-147X&client=summon |