Group fairness in non-monotone submodular maximization

Maximizing a submodular function has a wide range of applications in machine learning and data mining. One such application is data summarization whose goal is to select a small set of representative and diverse data items from a large dataset. However, data items might have sensitive attributes suc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 45; no. 3; p. 88
Main Authors: Yuan, Jing, Tang, Shaojie
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2023
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Maximizing a submodular function has a wide range of applications in machine learning and data mining. One such application is data summarization whose goal is to select a small set of representative and diverse data items from a large dataset. However, data items might have sensitive attributes such as race or gender, in this setting, it is important to design fairness-aware algorithms to mitigate potential algorithmic bias that may cause over- or under- representation of particular groups. Motivated by that, we propose and study the classic non-monotone submodular maximization problem subject to novel group fairness constraints. Our goal is to select a set of items that maximizes a non-monotone submodular function, while ensuring that the number of selected items from each group is proportionate to its size, to the extent specified by the decision maker. We develop the first constant-factor approximation algorithms for this problem. We also extend the basic model to incorporate an additional global size constraint on the total number of selected items.
AbstractList Maximizing a submodular function has a wide range of applications in machine learning and data mining. One such application is data summarization whose goal is to select a small set of representative and diverse data items from a large dataset. However, data items might have sensitive attributes such as race or gender, in this setting, it is important to design fairness-aware algorithms to mitigate potential algorithmic bias that may cause over- or under- representation of particular groups. Motivated by that, we propose and study the classic non-monotone submodular maximization problem subject to novel group fairness constraints. Our goal is to select a set of items that maximizes a non-monotone submodular function, while ensuring that the number of selected items from each group is proportionate to its size, to the extent specified by the decision maker. We develop the first constant-factor approximation algorithms for this problem. We also extend the basic model to incorporate an additional global size constraint on the total number of selected items.
Maximizing a submodular function has a wide range of applications in machine learning and data mining. One such application is data summarization whose goal is to select a small set of representative and diverse data items from a large dataset. However, data items might have sensitive attributes such as race or gender, in this setting, it is important to design fairness-aware algorithms to mitigate potential algorithmic bias that may cause over- or under- representation of particular groups. Motivated by that, we propose and study the classic non-monotone submodular maximization problem subject to novel group fairness constraints. Our goal is to select a set of items that maximizes a non-monotone submodular function, while ensuring that the number of selected items from each group is proportionate to its size, to the extent specified by the decision maker. We develop the first constant-factor approximation algorithms for this problem. We also extend the basic model to incorporate an additional global size constraint on the total number of selected items.
ArticleNumber 88
Author Yuan, Jing
Tang, Shaojie
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-6407-834X
  surname: Yuan
  fullname: Yuan, Jing
  organization: Department of Computer Science and Engineering, University of North Texas
– sequence: 2
  givenname: Shaojie
  orcidid: 0000-0001-9261-5210
  surname: Tang
  fullname: Tang, Shaojie
  email: shaojie.tang@utdallas.edu
  organization: Naveen Jindal School of Management, University of Texas at Dallas
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqM3j8lkllJ8QcFN9yGTSSSlk9RkBtRfb2wFwUVX9yzOd87lLNAsxGARuiZwSwCau0xANhIDZRgIkBbzMzQndcMwlVLMimaSYtFCfYEWOW8BoGg-R-IpxWlfOe1TsDlXPlQlGg8xxLFUVHnqhthPO52qQX_4wX_p0cdwic6d3mV79XuXaPP4sFk94_Xr08vqfo0NI-2I685wYgQ4Ig2VfU8cr4XlXeN651rCqOxaal3TiZYJ7Zq-l1RaYrhlEgxhS3RzjN2n-D7ZPKptnFIojYrRmotWcgHFJY8uk2LOyTpl_Hh4c0za7xQB9TOSOo6kykjqMJLiBaX_0H3yg06fpyF2hHIxhzeb_r46QX0DC0F75g
CitedBy_id crossref_primary_10_1007_s10878_023_01035_4
crossref_primary_10_1287_ijoc_2022_0384
Cites_doi 10.24963/ijcai.2019/831
10.1145/1374376.1374384
10.2307/2082518
10.24963/ijcai.2018/20
10.1007/978-3-031-16081-3_1
10.1109/FOCS.2011.46
10.4324/9781315263298
10.1016/j.orl.2019.10.013
10.1142/S1793830921500361
10.1007/s10878-023-01035-4
10.1007/978-3-031-46826-1_13
10.1145/2396761.2396857
10.1145/2020408.2020479
10.1007/s10878-022-00965-9
10.1145/2090236.2090255
10.1109/ICCV.2007.4408853
10.1137/1.9781611973730.80
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10878-023-01019-4
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_023_01019_4
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-5bc41c60f18c28dd1f456e4b7fdff91328b92ef7b6936af7dd828e1c4e380c13
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957194700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Sat Sep 27 04:20:40 EDT 2025
Sat Nov 29 04:54:39 EST 2025
Tue Nov 18 22:23:48 EST 2025
Fri Feb 21 02:43:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Approximation algorithm
Submodular optimization
Group fairness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5bc41c60f18c28dd1f456e4b7fdff91328b92ef7b6936af7dd828e1c4e380c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6407-834X
0000-0001-9261-5210
PQID 3254698460
PQPubID 2043856
ParticipantIDs proquest_journals_3254698460
crossref_citationtrail_10_1007_s10878_023_01019_4
crossref_primary_10_1007_s10878_023_01019_4
springer_journals_10_1007_s10878_023_01019_4
PublicationCentury 2000
PublicationDate 20230400
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 4
  year: 2023
  text: 20230400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tang S, Yuan J (2023) Beyond Submodularity: A unified framework of randomized set selection with group fairness constraints (Under Review)
Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd annual symposium on foundations of computer science, pp 570–579. IEEE
TangSYuanJInfluence maximization with partial feedbackOper Res Lett2020481242810.1016/j.orl.2019.10.013071659784030316
Zafar MB, Valera I, Rogriguez MG, Gummadi KP (2017) Fairness constraints: mechanisms for fair classification. In: Artificial intelligence and statistics, pp 962–970. PMLR
Gotovos A, Karbasi A, Krause A (2015) Non-monotone adaptive submodular maximization. In: Twenty-fourth international joint conference on artificial intelligence
MonroeBLFully proportional representationAm Polit Sci Rev199589492594010.2307/2082518
Celis E, Keswani V, Straszak D, Deshpande A, Kathuria T, Vishnoi N (2018) Fair and diverse dpp-based data summarization. In: International conference on machine learning, pp 716–725. PMLR
Chierichetti F, Kumar R, Lattanzi S, Vassilvtiskii S (2019) Matroids, matchings, and fairness. In: The 22nd international conference on artificial intelligence and statistics, pp 2212–2220. PMLR
Dueck D, Frey BJ (2007) Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE 11th international conference on computer vision, pp 1–8. IEEE
ShiGGuSWuWk-submodular maximization with two kinds of constraintsDiscr Math Algorithms Appl20211304215003610.1142/S17938309215003611475.900864284039
Celis LE, Huang L, Vishnoi NK (2018) Multiwinner voting with fairness constraints. In: Proceedings of the 27th international joint conference on artificial intelligence, pp 144–151
Tang S, Yuan J (2022) Group equility in adaptive submodular maximization. arXiv preprint arXiv:2207.03364
El HalabiMMitrovićSNorouzi-FardATardosJTarnawskiJMFairness in streaming submodular maximization: algorithms and hardnessAdv Neural Inf Process Syst2020331360913622
GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res2011424274861230.901412874807
El-Arini K, Guestrin C (2011) Beyond keyword search: discovering relevant scientific literature. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 439–447
Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of the 3rd innovations in theoretical computer science conference
Tang S, Yuan J (2021) Adaptive regularized submodular maximization. In: 32nd international symposium on algorithms and computation (ISAAC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
BiddleDAdverse impact and test validation: a practitioner’s guide to valid and defensible employment testing2017OxfordshireRoutledge10.4324/9781315263298
Tsang A, Wilder B, Rice E, Tambe M, Zick Y (2019) Group-fairness in influence maximization. arXiv preprint arXiv:1903.00967
Buchbinder N, Feldman M, Naor J, Schwartz R (2014) Submodular maximization with cardinality constraints. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp 1433–1452. SIAM
Mirzasoleiman B, Badanidiyuru A, Karbasi A (2016) Fast constrained submodular maximization: personalized data summarization. In: ICML, pp 1358–1367
Gu S, Gao C, Wu W (2022) A binary search double greedy algorithm for non-monotone DR-submodular maximization. In: Algorithmic aspects in information and management: 16th international conference, AAIM 2022, Guangzhou, China, 13–14 Aug, 2022, proceedings. Springer, pp. 3–14
Joseph M, Kearns M, Morgenstern JH, Roth A (2016) Fairness in learning: classic and contextual bandits. Adv. Neural Inf. Process. Syst. 29
Das A, Kempe D (2008) Algorithms for subset selection in linear regression. In: Proceedings of the fortieth annual ACM symposium on Theory of computing, pp 45–54
Tang S, Yuan J, Mensah-Boateng T (2023) Achieving long-term fairness in submodular maximization through randomization (Under Review)
Sipos R, Swaminathan A, Shivaswamy P, Joachims T (2012) Temporal corpus summarization using submodular word coverage. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp 754–763
1019_CR8
1019_CR7
1019_CR9
1019_CR11
1019_CR13
1019_CR15
1019_CR14
1019_CR16
S Tang (1019_CR20) 2020; 48
1019_CR19
1019_CR2
G Shi (1019_CR18) 2021; 13
1019_CR4
1019_CR3
1019_CR6
D Golovin (1019_CR12) 2011; 42
1019_CR5
D Biddle (1019_CR1) 2017
1019_CR22
1019_CR21
1019_CR24
1019_CR23
1019_CR26
1019_CR25
BL Monroe (1019_CR17) 1995; 89
M El Halabi (1019_CR10) 2020; 33
References_xml – reference: Chierichetti F, Kumar R, Lattanzi S, Vassilvtiskii S (2019) Matroids, matchings, and fairness. In: The 22nd international conference on artificial intelligence and statistics, pp 2212–2220. PMLR
– reference: MonroeBLFully proportional representationAm Polit Sci Rev199589492594010.2307/2082518
– reference: Mirzasoleiman B, Badanidiyuru A, Karbasi A (2016) Fast constrained submodular maximization: personalized data summarization. In: ICML, pp 1358–1367
– reference: Sipos R, Swaminathan A, Shivaswamy P, Joachims T (2012) Temporal corpus summarization using submodular word coverage. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp 754–763
– reference: Tang S, Yuan J, Mensah-Boateng T (2023) Achieving long-term fairness in submodular maximization through randomization (Under Review)
– reference: GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res2011424274861230.901412874807
– reference: Buchbinder N, Feldman M, Naor J, Schwartz R (2014) Submodular maximization with cardinality constraints. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp 1433–1452. SIAM
– reference: Zafar MB, Valera I, Rogriguez MG, Gummadi KP (2017) Fairness constraints: mechanisms for fair classification. In: Artificial intelligence and statistics, pp 962–970. PMLR
– reference: TangSYuanJInfluence maximization with partial feedbackOper Res Lett2020481242810.1016/j.orl.2019.10.013071659784030316
– reference: El HalabiMMitrovićSNorouzi-FardATardosJTarnawskiJMFairness in streaming submodular maximization: algorithms and hardnessAdv Neural Inf Process Syst2020331360913622
– reference: Feldman M, Naor J, Schwartz R (2011) A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd annual symposium on foundations of computer science, pp 570–579. IEEE
– reference: Gu S, Gao C, Wu W (2022) A binary search double greedy algorithm for non-monotone DR-submodular maximization. In: Algorithmic aspects in information and management: 16th international conference, AAIM 2022, Guangzhou, China, 13–14 Aug, 2022, proceedings. Springer, pp. 3–14
– reference: Tang S, Yuan J (2022) Group equility in adaptive submodular maximization. arXiv preprint arXiv:2207.03364
– reference: BiddleDAdverse impact and test validation: a practitioner’s guide to valid and defensible employment testing2017OxfordshireRoutledge10.4324/9781315263298
– reference: Joseph M, Kearns M, Morgenstern JH, Roth A (2016) Fairness in learning: classic and contextual bandits. Adv. Neural Inf. Process. Syst. 29
– reference: Celis E, Keswani V, Straszak D, Deshpande A, Kathuria T, Vishnoi N (2018) Fair and diverse dpp-based data summarization. In: International conference on machine learning, pp 716–725. PMLR
– reference: Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of the 3rd innovations in theoretical computer science conference
– reference: El-Arini K, Guestrin C (2011) Beyond keyword search: discovering relevant scientific literature. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 439–447
– reference: Das A, Kempe D (2008) Algorithms for subset selection in linear regression. In: Proceedings of the fortieth annual ACM symposium on Theory of computing, pp 45–54
– reference: Tang S, Yuan J (2023) Beyond Submodularity: A unified framework of randomized set selection with group fairness constraints (Under Review)
– reference: Tsang A, Wilder B, Rice E, Tambe M, Zick Y (2019) Group-fairness in influence maximization. arXiv preprint arXiv:1903.00967
– reference: Dueck D, Frey BJ (2007) Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE 11th international conference on computer vision, pp 1–8. IEEE
– reference: Celis LE, Huang L, Vishnoi NK (2018) Multiwinner voting with fairness constraints. In: Proceedings of the 27th international joint conference on artificial intelligence, pp 144–151
– reference: Gotovos A, Karbasi A, Krause A (2015) Non-monotone adaptive submodular maximization. In: Twenty-fourth international joint conference on artificial intelligence
– reference: Tang S, Yuan J (2021) Adaptive regularized submodular maximization. In: 32nd international symposium on algorithms and computation (ISAAC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
– reference: ShiGGuSWuWk-submodular maximization with two kinds of constraintsDiscr Math Algorithms Appl20211304215003610.1142/S17938309215003611475.900864284039
– ident: 1019_CR25
  doi: 10.24963/ijcai.2019/831
– ident: 1019_CR21
– ident: 1019_CR6
  doi: 10.1145/1374376.1374384
– ident: 1019_CR5
– volume: 89
  start-page: 925
  issue: 4
  year: 1995
  ident: 1019_CR17
  publication-title: Am Polit Sci Rev
  doi: 10.2307/2082518
– ident: 1019_CR4
  doi: 10.24963/ijcai.2018/20
– ident: 1019_CR14
  doi: 10.1007/978-3-031-16081-3_1
– ident: 1019_CR11
  doi: 10.1109/FOCS.2011.46
– ident: 1019_CR16
– volume-title: Adverse impact and test validation: a practitioner’s guide to valid and defensible employment testing
  year: 2017
  ident: 1019_CR1
  doi: 10.4324/9781315263298
– ident: 1019_CR26
– volume: 48
  start-page: 24
  issue: 1
  year: 2020
  ident: 1019_CR20
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2019.10.013
– volume: 13
  start-page: 2150036
  issue: 04
  year: 2021
  ident: 1019_CR18
  publication-title: Discr Math Algorithms Appl
  doi: 10.1142/S1793830921500361
– volume: 33
  start-page: 13609
  year: 2020
  ident: 1019_CR10
  publication-title: Adv Neural Inf Process Syst
– ident: 1019_CR23
  doi: 10.1007/s10878-023-01035-4
– ident: 1019_CR24
  doi: 10.1007/978-3-031-46826-1_13
– ident: 1019_CR19
  doi: 10.1145/2396761.2396857
– ident: 1019_CR3
– ident: 1019_CR9
  doi: 10.1145/2020408.2020479
– ident: 1019_CR22
  doi: 10.1007/s10878-022-00965-9
– ident: 1019_CR15
– ident: 1019_CR13
– ident: 1019_CR8
  doi: 10.1145/2090236.2090255
– ident: 1019_CR7
  doi: 10.1109/ICCV.2007.4408853
– ident: 1019_CR2
  doi: 10.1137/1.9781611973730.80
– volume: 42
  start-page: 427
  year: 2011
  ident: 1019_CR12
  publication-title: J Artif Intell Res
SSID ssj0009054
Score 2.3738828
Snippet Maximizing a submodular function has a wide range of applications in machine learning and data mining. One such application is data summarization whose goal is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 88
SubjectTerms Algorithms
Approximation
Combinatorics
Constraints
Convex and Discrete Geometry
Data mining
Decision making
Feature selection
Machine learning
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
S.I. : AAIM 2022
Theory of Computation
Utility functions
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQUAY2sIgTx3EmhBAVS6sOHbpFiR9SJZpAUxA_n3PqNIBEF8YoySXyne_hu_sO4FrwUErOJVExZYTF0pAs9iXRWaQMVyYL3LCJeDgUk0kycgdulSurbHRirahVKe0Z-V1ogdsTtJb-_esbsVOjbHbVjdDYhC30bKgt6RoEoxZ014-WQ23Ri8QoMHJNM651Tlhs2cBWE6GbQ9hPw9R6m78SpLXd6e__948PYM95nN7DUkQOYUMXR7D7DYcQrwYr8NbqGHh9HuXZTI_Vg9608IqyIEiutMjdXoUmtFS2fNWbZZ_TmevkPIFx_2n8-EzceAUicd8tSJRLRiX3DRUyEEpRg86UZnlslDEJRqkiTwJt4pwnIc9MrBRGZ5pKpkPhSxqeQge_rs_ACzHooJwzpQPDhImyyORoA5hWRiufJ12gzdKm0kGP2wkYL2kLmmzZkSI70podKevCzeqd1yXwxtqnew0PUrcJq7RlQBduGy62t_-mdr6e2gXsBLXg2PqdHnQW83d9CdvyYzGt5le1CH4BqnLhFg
  priority: 102
  providerName: ProQuest
Title Group fairness in non-monotone submodular maximization
URI https://link.springer.com/article/10.1007/s10878-023-01019-4
https://www.proquest.com/docview/3254698460
Volume 45
WOSCitedRecordID wos000957194700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5s60EPvsVqLTl404U8NpvNUaXFS0tpixQvIdkHFGwqTRV_vrNp0lRRQS8LIZtNmJndmcnMfANwxZknBGOCyMChhAZCkziwBVGxLzWTOnaLZhNBv88nk3BQFIVlZbZ7GZLMT-qNYjdu0GBdk_-DhgmhNWiguuOmYcNw9FhB7dr-qpUt2o7o-_lFqcz3a3xWR5WN-SUsmmub7v7_vvMA9grr0rpdicMhbKn0CHY3MAfxqrcGas2OgeX_niwT1TFnnjVNrXSeEpTNuUHptjJUl3NpUlWtWfw-nRVVmycw7nbG9w-kaKVABO6xJfETQR3BbO1w4XIpHY2Gk6JJoKXWIXqkPAldpYOEhR6LdSAlemLKEVR53BaOdwp1fLs6A8tDB8NhjErlasq1H_s6wfOeKqmVtFnYBKckaCQKmHHT7eI5qgCSDYEiJFCUEyiiTbheP_OyAtn4dXar5FNUbLgs8gyuf4jGlN2Em5Iv1e2fVzv_2_QL2HFz1prcnRbUl4tXdQnb4m05zRZtaNx1-oNhG2o9d2DGYITjwH9q5yL6Ab7h24k
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT4NAEJ5oNVEPvo31yUFPuhGWZYGDMUZtNLaNhx68bWAfSRNttdTXj_I_OkuhqInePHgkwMLyDfPYnfkGYC_ivpScS6JCjxEWSkOS0JVEJ4EyXJmEFs0mwnY7ur2NbybgvayFsWmVpU7MFbXqS7tGfuRb4vYYraV78vBIbNcou7tattAYicW1fnvBkC07vjpHfPcpbVx0zi5J0VWASBS3IQlSyTzJXeNFkkZKeQZ9CM3S0ChjYgzOojSm2oQpj32emFApDEq0J5n2I1d6Pg47CVPMEovZTEF6U3H8usGohy46rRh0BkWNTlGpF1kqW2qTl9CrIuyrHayc22_7sbmZayz8sw-0CPOFP-2cjn6AJZjQvWWY-8SyiEetMTVttgI8X21z7D6W1fJOt-f0-j2Cb9-3vOROhg5CX9nkXOc-ee3eF3Wqq9D5i1msQQ2frtfB8TGk8jhnSlPDIhMkgUnRwjGtjFYuj-vglUgKWRCr2_4ed6KihLboC0Rf5OgLVoeD8T0PI1qRX6_eKiEXhYrJRIV3HQ5LoalO_zzaxu-j7cLMZafVFM2r9vUmzNJcZm2m0hbUhoMnvQ3T8nnYzQY7ufQ7IP5YmD4A2R8-eQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD3-J0ah9802DTpmn6KOpQ1DFwyN5Cmw8YuG6sVfzzTfqxTVFBfCxN03KX9H6Xu_sdwCmjvhCUCiRDTBAJhUZx6Aqk4kBqKnXsVc0mwk6H9ftRd66Kv8h2r0OSZU2DZWlK84ux1BdzhW_MMsN6NhfIgBREFmGJ2ER6668_Pc9od92gbGtrcKTxA4OqbOb7OT6bphne_BIiLSxPe-P_37wJ6xXqdC7LZbIFCyrdhrU5LkJz9TglcM12gBZnUo6N9th_oTNInXSUIrNmR5a928mMGR1Jm8LqDOP3wbCq5tyFXvumd3WLqhYLSJi9l6MgEQQL6mrMhMekxNoAKkWSUEutI-OpsiTylA4TGvk01qGUxkNTWBDlM1dgfw8a5u1qHxzfOB6YUiKVpwnTQRzoxNgBoqRW0qVRE3AtXC4q-nHbBeOFz4iTrYC4ERAvBMRJE86mz4xL8o1fR7dqnfFqI2bct3z_kQFZbhPOax3Nbv8828Hfhp_ASve6zR_uOveHsOoVWrbpPS1o5JNXdQTL4i0fZJPjYn1-AKL_4s8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+fairness+in+non-monotone+submodular+maximization&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Yuan%2C+Jing&rft.au=Tang%2C+Shaojie&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=45&rft.issue=3&rft_id=info:doi/10.1007%2Fs10878-023-01019-4&rft.externalDocID=10_1007_s10878_023_01019_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon