A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration
In this paper, a new kind of multigrid method is proposed for the ground state solution of Bose–Einstein condensates based on Newton iteration scheme. Instead of treating eigenvalue λ and eigenvector u separately, we regard the eigenpair ( λ , u ) as one element in the composite space R × H 0 1 ( Ω...
Uloženo v:
| Vydáno v: | BIT Ročník 61; číslo 2; s. 645 - 663 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0006-3835, 1572-9125 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a new kind of multigrid method is proposed for the ground state solution of Bose–Einstein condensates based on Newton iteration scheme. Instead of treating eigenvalue
λ
and eigenvector
u
separately, we regard the eigenpair
(
λ
,
u
)
as one element in the composite space
R
×
H
0
1
(
Ω
)
and then Newton iteration step is adopted for the nonlinear problem. Thus in this multigrid scheme, the main computation is to solve a linear discrete boundary value problem in every refined space, which can improve the overall efficiency for the simulation of Bose–Einstein condensations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0006-3835 1572-9125 |
| DOI: | 10.1007/s10543-020-00830-3 |