Graph autoencoder (GAE) for community detection in social networks
Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a grap...
Saved in:
| Published in: | International journal of data science and analytics Vol. 20; no. 4; pp. 3693 - 3705 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.10.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2364-415X, 2364-4168 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a graph autoencoder (GAE)-based method for community detection in social networks. It consists of three steps for extracting communities in the real-world network. The first one is a matrix reconstruction process that refines the original network structure. In this step, the computation of the most influential nodes and the spatial proximity of nodes are integrated to enhance the representation of spatial proximity. In the second step, the spatial features are extracted that leverages the reconstructed matrix to generate a low-dimensional graph subspace. In the third step, K-means clustering is applied on extracted feature matrix. That leads more coherent and meaningful communities. The performance of the proposed method is evaluated on eight real-world network datasets. The results demonstrate that the proposed method outperforms existing approaches in terms of modularity and NMI, consistently identifying more distinct and meaningful communities across diverse network sizes. |
|---|---|
| AbstractList | Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a graph autoencoder (GAE)-based method for community detection in social networks. It consists of three steps for extracting communities in the real-world network. The first one is a matrix reconstruction process that refines the original network structure. In this step, the computation of the most influential nodes and the spatial proximity of nodes are integrated to enhance the representation of spatial proximity. In the second step, the spatial features are extracted that leverages the reconstructed matrix to generate a low-dimensional graph subspace. In the third step, K-means clustering is applied on extracted feature matrix. That leads more coherent and meaningful communities. The performance of the proposed method is evaluated on eight real-world network datasets. The results demonstrate that the proposed method outperforms existing approaches in terms of modularity and NMI, consistently identifying more distinct and meaningful communities across diverse network sizes. |
| Author | Singh, Buddha Joshi, Pratibha |
| Author_xml | – sequence: 1 givenname: Pratibha surname: Joshi fullname: Joshi, Pratibha organization: School of Computer and Systems Sciences, Jawaharlal Nehru University – sequence: 2 givenname: Buddha surname: Singh fullname: Singh, Buddha email: buddhasingh@mail.jnu.ac.in organization: School of Computer and Systems Sciences, Jawaharlal Nehru University |
| BookMark | eNp9kMFKAzEQhoNUsNa-gKeAFz1Ek80mmz3WUqtQ8KLgLaTZWd3aJjXJIn17t64oeOhp5vB_Mz_fKRo47wChc0avGaXFTcwZlZTQLCeUSqWIPELDjMuc5Eyqwe8uXk7QOMYVpZQVkguphuh2Hsz2DZs2eXDWVxDw5Xwyu8K1D9j6zaZ1TdrhChLY1HiHG4ejt41ZYwfp04f3eIaOa7OOMP6ZI_R8N3ua3pPF4_xhOlkQy1mZiFgW2VIKkEVV5wx4RZXhwi6NLS2vjSkFt7KUpQCAusoqoYAbU1NqMp4zW_ERuujvboP_aCEmvfJtcN1LzTMhVMl4obqU6lM2-BgD1No2yeyrp2CatWZU76XpXprupOlvaVp2aPYP3YZmY8LuMMR7KHZh9wrhr9UB6gvZsoDb |
| CitedBy_id | crossref_primary_10_1007_s41060_025_00812_0 |
| Cites_doi | 10.1002/adfm.202003619 10.1016/j.apor.2020.102339 10.1016/j.physa.2017.08.115 10.1109/MSP.2015.2398954 10.48550/arXiv.1301.3781 10.1145/2939672.2939751 10.1016/j.ins.2020.03.090 10.1145/3132847.3132925 10.48550/arXiv.1709.07604 10.7759/cureus.22443 10.1145/2898361 10.1016/j.eswa.2023.119775 10.1109/TKDE.2018.2877748 10.1016/j.physa.2016.12.067 10.1145/2939672.2939753 10.1109/MSP.2017.2693418 10.1109/ACCESS.2020.2999520 10.1109/ICDM.2019.00011 10.1145/2736277.2741093 10.1080/02331888.2024.2361481 10.1145/3306346.3322959 10.1109/ACCESS.2019.2916338 10.1016/j.eswa.2024.125239 10.1145/2806416.2806512 10.1016/j.patcog.2022.109126 10.1109/ICASSP48485.2024.10446107 10.1007/s10489-022-04397-0 10.1007/s00158-020-02748-4 10.1016/j.neucom.2018.01.065 10.1007/s11277-018-5445-7 10.1016/j.neucom.2022.09.102 10.48550/arXiv.1906.06532 10.1007/s12652-020-02389-x 10.1016/j.cageo.2021.104713 10.1016/j.knosys.2022.109210 10.1016/j.future.2018.10.045 10.1016/j.eswa.2023.120748 10.48550/arXiv.1607.00653 10.1609/aaai.v31i1.10488 10.1145/2623330.2623732 10.1145/3219819.3220000 10.1145/3292500.3330882 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s41060-024-00688-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2364-4168 |
| EndPage | 3705 |
| ExternalDocumentID | 10_1007_s41060_024_00688_6 |
| GroupedDBID | 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAZMS ABAKF ABBRH ABBTF ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AHSBF AHWEU AIAKS AIGIU AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABJCF AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-5b72b65e67df41e3d08a35cbac9c3faa953c69695eeefd2d58e3aaf00a2341cd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001366675200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-415X |
| IngestDate | Wed Oct 08 04:46:35 EDT 2025 Tue Nov 18 22:43:41 EST 2025 Sat Nov 29 07:23:11 EST 2025 Fri Sep 26 01:12:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Community detection Spatial feature GAE Network embedding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5b72b65e67df41e3d08a35cbac9c3faa953c69695eeefd2d58e3aaf00a2341cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255891378 |
| PQPubID | 7435103 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3255891378 crossref_citationtrail_10_1007_s41060_024_00688_6 crossref_primary_10_1007_s41060_024_00688_6 springer_journals_10_1007_s41060_024_00688_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20251000 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251000 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | International journal of data science and analytics |
| PublicationTitleAbbrev | Int J Data Sci Anal |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | 688_CR9 C Wang (688_CR6) 2019; 31 J Cao (688_CR8) 2018; 297 F Rong (688_CR13) 2023; 222 688_CR19 W Zhou (688_CR10) 2017; 471 RW Issitt (688_CR44) 2022; 14 Y Xu (688_CR31) 2018; 103 A Chandrasekhar (688_CR29) 2021; 63 J Sun (688_CR38) 2022; 251 I Dokmanic (688_CR41) 2015; 32 688_CR20 688_CR21 Y Yue (688_CR24) 2023; 53 MM Bronstein (688_CR33) 2017; 34 B Altaf (688_CR11) 2019 Y Sun (688_CR12) 2022; 512 A Callens (688_CR43) 2020; 104 688_CR26 688_CR27 688_CR46 688_CR25 V Bhatia (688_CR4) 2019; 94 688_CR23 P Giudici (688_CR40) 2024; 58 L Wu (688_CR16) 2020; 8 D Yang (688_CR1) 2018; 490 W Gao (688_CR28) 2019; 7 H Liu (688_CR30) 2023; 231 D Yang (688_CR2) 2019; 20 R Xu (688_CR14) 2020 M Al-Andoli (688_CR32) 2021; 12 J Leskovec (688_CR42) 2016; 8 CT Duong (688_CR22) 2023; 134 G Babaei (688_CR39) 2025; 259 688_CR17 C Li (688_CR34) 2020; 8 688_CR18 688_CR3 688_CR15 688_CR37 F Wang (688_CR45) 2021; 149 688_CR5 688_CR35 R Hanocka (688_CR7) 2019; 38 688_CR36 |
| References_xml | – volume: 20 start-page: 369 year: 2019 ident: 688_CR2 publication-title: J. Internet. Technol. doi: 10.1002/adfm.202003619 – volume: 104 year: 2020 ident: 688_CR43 publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102339 – ident: 688_CR35 – volume: 490 start-page: 1493 year: 2018 ident: 688_CR1 publication-title: Phys. A. Stat. Mech. Appl. doi: 10.1016/j.physa.2017.08.115 – volume: 32 start-page: 12 issue: 6 year: 2015 ident: 688_CR41 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2398954 – ident: 688_CR5 doi: 10.48550/arXiv.1301.3781 – ident: 688_CR36 doi: 10.1145/2939672.2939751 – year: 2020 ident: 688_CR14 publication-title: Info. Sci. doi: 10.1016/j.ins.2020.03.090 – ident: 688_CR25 doi: 10.1145/3132847.3132925 – ident: 688_CR3 doi: 10.48550/arXiv.1709.07604 – volume: 14 issue: 2 year: 2022 ident: 688_CR44 publication-title: Cureus doi: 10.7759/cureus.22443 – volume: 8 start-page: 1 year: 2016 ident: 688_CR42 publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2898361 – volume: 222 year: 2023 ident: 688_CR13 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119775 – volume: 31 start-page: 2277 year: 2019 ident: 688_CR6 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2877748 – volume: 471 start-page: 561 year: 2017 ident: 688_CR10 publication-title: Physica A Stat. Mech. Appl. doi: 10.1016/j.physa.2016.12.067 – ident: 688_CR21 – ident: 688_CR26 doi: 10.1145/2939672.2939753 – volume: 34 start-page: 18 year: 2017 ident: 688_CR33 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – volume: 8 start-page: 105634 year: 2020 ident: 688_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2999520 – year: 2019 ident: 688_CR11 publication-title: IEEE Int. Conf. Data Mining. doi: 10.1109/ICDM.2019.00011 – ident: 688_CR19 doi: 10.1145/2736277.2741093 – volume: 58 start-page: 473 issue: 3 year: 2024 ident: 688_CR40 publication-title: Statistics doi: 10.1080/02331888.2024.2361481 – volume: 38 start-page: 1 year: 2019 ident: 688_CR7 publication-title: ACM Trans. Graph. doi: 10.1145/3306346.3322959 – volume: 7 start-page: 69434 year: 2019 ident: 688_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916338 – volume: 259 year: 2025 ident: 688_CR39 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125239 – ident: 688_CR20 doi: 10.1145/2806416.2806512 – volume: 134 year: 2023 ident: 688_CR22 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.109126 – ident: 688_CR37 doi: 10.1109/ICASSP48485.2024.10446107 – volume: 53 start-page: 17935 year: 2023 ident: 688_CR24 publication-title: Appl. Intell. doi: 10.1007/s10489-022-04397-0 – volume: 63 start-page: 1135 year: 2021 ident: 688_CR29 publication-title: Struct. Multidisc. Optim. doi: 10.1007/s00158-020-02748-4 – volume: 297 start-page: 71 year: 2018 ident: 688_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.065 – volume: 103 start-page: 327 year: 2018 ident: 688_CR31 publication-title: Wireless Pers. Commun. doi: 10.1007/s11277-018-5445-7 – volume: 512 start-page: 323 year: 2022 ident: 688_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.09.102 – volume: 8 start-page: 96016 year: 2020 ident: 688_CR16 publication-title: IEEE Access. doi: 10.1002/adfm.202003619 – ident: 688_CR15 doi: 10.48550/arXiv.1906.06532 – ident: 688_CR9 – volume: 12 start-page: 2527 year: 2021 ident: 688_CR32 publication-title: J. Ambient Intell. Human Comput. doi: 10.1007/s12652-020-02389-x – volume: 149 year: 2021 ident: 688_CR45 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2021.104713 – volume: 251 year: 2022 ident: 688_CR38 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109210 – volume: 94 start-page: 16 year: 2019 ident: 688_CR4 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.10.045 – volume: 231 year: 2023 ident: 688_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120748 – ident: 688_CR18 doi: 10.48550/arXiv.1607.00653 – ident: 688_CR23 doi: 10.1609/aaai.v31i1.10488 – ident: 688_CR17 doi: 10.1145/2623330.2623732 – ident: 688_CR27 doi: 10.1145/3219819.3220000 – ident: 688_CR46 doi: 10.1145/3292500.3330882 |
| SSID | ssj0001763568 ssib031263555 |
| Score | 2.3183534 |
| Snippet | Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3693 |
| SubjectTerms | Artificial Intelligence Business Information Systems Cluster analysis Clustering Computational Biology/Bioinformatics Computer Science Data Mining and Knowledge Discovery Database Management Feature extraction Modularity Nodes Regular Paper Social networks Vector quantization |
| Title | Graph autoencoder (GAE) for community detection in social networks |
| URI | https://link.springer.com/article/10.1007/s41060-024-00688-6 https://www.proquest.com/docview/3255891378 |
| Volume | 20 |
| WOSCitedRecordID | wos001366675200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2364-4168 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001763568 issn: 2364-415X databaseCode: RSV dateStart: 20160401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnU_Lgg6KBZmnT9HHKnE9D_GJvJU1SGEgnayf435uk6Yaigj4nDeVyl7vk7n4_gFPC45wpRnHCiMKhpiHOjM1hSqVNEbrcjCObiEcjPh4nd74prGyq3ZuUpDupF81uobm9BNj4FGz7Gjhmq7BmwUssb8H9w3OjRZRYfBXfbeleWhwGm6OmoyzExmONfffM98t-9lDLsPNLptQ5oJv2_359CzZ9wIn6tYZsw4oudqDdkDkgb9u7cDW00NVIzKupxbZUZuxs2B-cIxPVIlm3kVTvSOnKFW8VaFKg-sEdFXUpebkHTzeDx-tb7AkWsDSWV-Eoi3sZizSLVR4STVXABY1kJmQiaS5EElHJEpZEWutc9VTENRUiDwLRM85PKroPrWJa6ANAQc7NURELQrTNJQY8pkwl2lyPcpJzkXWANEJNpUcftyQYL-kCN9kJKTVCSp2QUtaBi8U3rzX2xq-zu81epd4Oy5SaG5NNxMa8A5fN3iyHf17t8G_Tj2CjZ4mBXZVfF1rVbK6PYV2-VZNyduL08wO2Cdof |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV5cn7i6ag4eFA00TZumx1XcVdRFfLG3kiYpLEgV2xX89yZpu6KooOekoUxmMpN8M98A7BEeZUwximNGFA40DXBqbA5TKi1E6LAZ12wiGgz4cBhf10VhRZPt3kCS7qSeFLsF5vbiYeNTsK1r4JhNw2zgE2r1-ub2odEiSiy_Sl1t6V5aHAeba01HWYCNxxrW1TPfL_vZQ32EnV-QUueAeq3__foSLNYBJ-pWGrIMUzpfgVbTzAHVtr0Kx31LXY3EuHyy3JbKjO33u6cHyES1SFZlJOUbUrp0yVs5GuWoenBHeZVKXqzBfe_07uQM1w0WsDSWV-IwjfyUhZpFKguIpsrjgoYyFTKWNBMiDqlkMYtDrXWmfBVyTYXIPE_4xvlJRddhJn_K9QYgL-PmqIgEIdpiiR6PKFOxNtejjGRcpG0gjVATWbOP2yYYj8mEN9kJKTFCSpyQEtaGw8k3zxX3xq-zO81eJbUdFgk1NyYLxEa8DUfN3nwM_7za5t-m78L82d3VZXJ5PrjYggXfNgl2GX8dmClfxnob5uRrOSpedpyuvgP4RN0D |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF9cT1zPPPigaNi2adP0cT1WRVnEi30raQ5YkCq7XcF_b5K264EK4muTBjqZ6WQy830DsOuzWFNJCU6oL3GoSIgzY3OYEGFThC4345pNxN0u6_WS6w8oflftXqckS0yDZWnKi9az1K0x8C00kYyHjX_BFuPAMJ2EafvMhl83tw-1RhHfcq1UyEt36-L42FybOkJDbLxXr0LSfL_sZ2_1fgT9kjV1zqjT-P9nLMB8dRBF7VJzFmFC5UvQqJs8oMrml-HozFJaIz4qniznpTRje2ft031kTrtIlPCS4hVJVbiirhz1c1RexKO8LDEfrsB95_Tu-BxXjRewMBZZ4CiLg4xGisZSh74i0mOcRCLjIhFEc55ERNCEJpFSSstARkwRzrXn8cA4RSHJKkzlT7laA-RpZn4hMfd9ZXOMHosJlYkyYZP2NeNZE_xawKmoWMltc4zHdMyn7ISUGiGlTkgpbcLB-J3nkpPj19mb9b6llX0OU2IiKZugjVkTDut9eh_-ebX1v03fgdnrk056ddG93IC5wPYOdoWAmzBVDEZqC2bES9EfDrad2r4BVc3l5w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+autoencoder+%28GAE%29+for+community+detection+in+social+networks&rft.jtitle=International+journal+of+data+science+and+analytics&rft.au=Joshi%2C+Pratibha&rft.au=Singh%2C+Buddha&rft.date=2025-10-01&rft.pub=Springer+International+Publishing&rft.issn=2364-415X&rft.eissn=2364-4168&rft.volume=20&rft.issue=4&rft.spage=3693&rft.epage=3705&rft_id=info:doi/10.1007%2Fs41060-024-00688-6&rft.externalDocID=10_1007_s41060_024_00688_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-415X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-415X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-415X&client=summon |