Graph autoencoder (GAE) for community detection in social networks

Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a grap...

Full description

Saved in:
Bibliographic Details
Published in:International journal of data science and analytics Vol. 20; no. 4; pp. 3693 - 3705
Main Authors: Joshi, Pratibha, Singh, Buddha
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.10.2025
Springer Nature B.V
Subjects:
ISSN:2364-415X, 2364-4168
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a graph autoencoder (GAE)-based method for community detection in social networks. It consists of three steps for extracting communities in the real-world network. The first one is a matrix reconstruction process that refines the original network structure. In this step, the computation of the most influential nodes and the spatial proximity of nodes are integrated to enhance the representation of spatial proximity. In the second step, the spatial features are extracted that leverages the reconstructed matrix to generate a low-dimensional graph subspace. In the third step, K-means clustering is applied on extracted feature matrix. That leads more coherent and meaningful communities. The performance of the proposed method is evaluated on eight real-world network datasets. The results demonstrate that the proposed method outperforms existing approaches in terms of modularity and NMI, consistently identifying more distinct and meaningful communities across diverse network sizes.
AbstractList Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection often face challenges in capturing the intricate structure and spatial proximity of nodes in real-world networks. This paper proposes a graph autoencoder (GAE)-based method for community detection in social networks. It consists of three steps for extracting communities in the real-world network. The first one is a matrix reconstruction process that refines the original network structure. In this step, the computation of the most influential nodes and the spatial proximity of nodes are integrated to enhance the representation of spatial proximity. In the second step, the spatial features are extracted that leverages the reconstructed matrix to generate a low-dimensional graph subspace. In the third step, K-means clustering is applied on extracted feature matrix. That leads more coherent and meaningful communities. The performance of the proposed method is evaluated on eight real-world network datasets. The results demonstrate that the proposed method outperforms existing approaches in terms of modularity and NMI, consistently identifying more distinct and meaningful communities across diverse network sizes.
Author Singh, Buddha
Joshi, Pratibha
Author_xml – sequence: 1
  givenname: Pratibha
  surname: Joshi
  fullname: Joshi, Pratibha
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University
– sequence: 2
  givenname: Buddha
  surname: Singh
  fullname: Singh, Buddha
  email: buddhasingh@mail.jnu.ac.in
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University
BookMark eNp9kMFKAzEQhoNUsNa-gKeAFz1Ek80mmz3WUqtQ8KLgLaTZWd3aJjXJIn17t64oeOhp5vB_Mz_fKRo47wChc0avGaXFTcwZlZTQLCeUSqWIPELDjMuc5Eyqwe8uXk7QOMYVpZQVkguphuh2Hsz2DZs2eXDWVxDw5Xwyu8K1D9j6zaZ1TdrhChLY1HiHG4ejt41ZYwfp04f3eIaOa7OOMP6ZI_R8N3ua3pPF4_xhOlkQy1mZiFgW2VIKkEVV5wx4RZXhwi6NLS2vjSkFt7KUpQCAusoqoYAbU1NqMp4zW_ERuujvboP_aCEmvfJtcN1LzTMhVMl4obqU6lM2-BgD1No2yeyrp2CatWZU76XpXprupOlvaVp2aPYP3YZmY8LuMMR7KHZh9wrhr9UB6gvZsoDb
CitedBy_id crossref_primary_10_1007_s41060_025_00812_0
Cites_doi 10.1002/adfm.202003619
10.1016/j.apor.2020.102339
10.1016/j.physa.2017.08.115
10.1109/MSP.2015.2398954
10.48550/arXiv.1301.3781
10.1145/2939672.2939751
10.1016/j.ins.2020.03.090
10.1145/3132847.3132925
10.48550/arXiv.1709.07604
10.7759/cureus.22443
10.1145/2898361
10.1016/j.eswa.2023.119775
10.1109/TKDE.2018.2877748
10.1016/j.physa.2016.12.067
10.1145/2939672.2939753
10.1109/MSP.2017.2693418
10.1109/ACCESS.2020.2999520
10.1109/ICDM.2019.00011
10.1145/2736277.2741093
10.1080/02331888.2024.2361481
10.1145/3306346.3322959
10.1109/ACCESS.2019.2916338
10.1016/j.eswa.2024.125239
10.1145/2806416.2806512
10.1016/j.patcog.2022.109126
10.1109/ICASSP48485.2024.10446107
10.1007/s10489-022-04397-0
10.1007/s00158-020-02748-4
10.1016/j.neucom.2018.01.065
10.1007/s11277-018-5445-7
10.1016/j.neucom.2022.09.102
10.48550/arXiv.1906.06532
10.1007/s12652-020-02389-x
10.1016/j.cageo.2021.104713
10.1016/j.knosys.2022.109210
10.1016/j.future.2018.10.045
10.1016/j.eswa.2023.120748
10.48550/arXiv.1607.00653
10.1609/aaai.v31i1.10488
10.1145/2623330.2623732
10.1145/3219819.3220000
10.1145/3292500.3330882
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s41060-024-00688-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2364-4168
EndPage 3705
ExternalDocumentID 10_1007_s41060_024_00688_6
GroupedDBID 0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAZMS
ABAKF
ABBRH
ABBTF
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABJCF
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-5b72b65e67df41e3d08a35cbac9c3faa953c69695eeefd2d58e3aaf00a2341cd3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001366675200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-415X
IngestDate Wed Oct 08 04:46:35 EDT 2025
Tue Nov 18 22:43:41 EST 2025
Sat Nov 29 07:23:11 EST 2025
Fri Sep 26 01:12:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Community detection
Spatial feature
GAE
Network embedding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5b72b65e67df41e3d08a35cbac9c3faa953c69695eeefd2d58e3aaf00a2341cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255891378
PQPubID 7435103
PageCount 13
ParticipantIDs proquest_journals_3255891378
crossref_citationtrail_10_1007_s41060_024_00688_6
crossref_primary_10_1007_s41060_024_00688_6
springer_journals_10_1007_s41060_024_00688_6
PublicationCentury 2000
PublicationDate 20251000
2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle International journal of data science and analytics
PublicationTitleAbbrev Int J Data Sci Anal
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 688_CR9
C Wang (688_CR6) 2019; 31
J Cao (688_CR8) 2018; 297
F Rong (688_CR13) 2023; 222
688_CR19
W Zhou (688_CR10) 2017; 471
RW Issitt (688_CR44) 2022; 14
Y Xu (688_CR31) 2018; 103
A Chandrasekhar (688_CR29) 2021; 63
J Sun (688_CR38) 2022; 251
I Dokmanic (688_CR41) 2015; 32
688_CR20
688_CR21
Y Yue (688_CR24) 2023; 53
MM Bronstein (688_CR33) 2017; 34
B Altaf (688_CR11) 2019
Y Sun (688_CR12) 2022; 512
A Callens (688_CR43) 2020; 104
688_CR26
688_CR27
688_CR46
688_CR25
V Bhatia (688_CR4) 2019; 94
688_CR23
P Giudici (688_CR40) 2024; 58
L Wu (688_CR16) 2020; 8
D Yang (688_CR1) 2018; 490
W Gao (688_CR28) 2019; 7
H Liu (688_CR30) 2023; 231
D Yang (688_CR2) 2019; 20
R Xu (688_CR14) 2020
M Al-Andoli (688_CR32) 2021; 12
J Leskovec (688_CR42) 2016; 8
CT Duong (688_CR22) 2023; 134
G Babaei (688_CR39) 2025; 259
688_CR17
C Li (688_CR34) 2020; 8
688_CR18
688_CR3
688_CR15
688_CR37
F Wang (688_CR45) 2021; 149
688_CR5
688_CR35
R Hanocka (688_CR7) 2019; 38
688_CR36
References_xml – volume: 20
  start-page: 369
  year: 2019
  ident: 688_CR2
  publication-title: J. Internet. Technol.
  doi: 10.1002/adfm.202003619
– volume: 104
  year: 2020
  ident: 688_CR43
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102339
– ident: 688_CR35
– volume: 490
  start-page: 1493
  year: 2018
  ident: 688_CR1
  publication-title: Phys. A. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2017.08.115
– volume: 32
  start-page: 12
  issue: 6
  year: 2015
  ident: 688_CR41
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2398954
– ident: 688_CR5
  doi: 10.48550/arXiv.1301.3781
– ident: 688_CR36
  doi: 10.1145/2939672.2939751
– year: 2020
  ident: 688_CR14
  publication-title: Info. Sci.
  doi: 10.1016/j.ins.2020.03.090
– ident: 688_CR25
  doi: 10.1145/3132847.3132925
– ident: 688_CR3
  doi: 10.48550/arXiv.1709.07604
– volume: 14
  issue: 2
  year: 2022
  ident: 688_CR44
  publication-title: Cureus
  doi: 10.7759/cureus.22443
– volume: 8
  start-page: 1
  year: 2016
  ident: 688_CR42
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2898361
– volume: 222
  year: 2023
  ident: 688_CR13
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119775
– volume: 31
  start-page: 2277
  year: 2019
  ident: 688_CR6
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2877748
– volume: 471
  start-page: 561
  year: 2017
  ident: 688_CR10
  publication-title: Physica A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2016.12.067
– ident: 688_CR21
– ident: 688_CR26
  doi: 10.1145/2939672.2939753
– volume: 34
  start-page: 18
  year: 2017
  ident: 688_CR33
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 8
  start-page: 105634
  year: 2020
  ident: 688_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2999520
– year: 2019
  ident: 688_CR11
  publication-title: IEEE Int. Conf. Data Mining.
  doi: 10.1109/ICDM.2019.00011
– ident: 688_CR19
  doi: 10.1145/2736277.2741093
– volume: 58
  start-page: 473
  issue: 3
  year: 2024
  ident: 688_CR40
  publication-title: Statistics
  doi: 10.1080/02331888.2024.2361481
– volume: 38
  start-page: 1
  year: 2019
  ident: 688_CR7
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3306346.3322959
– volume: 7
  start-page: 69434
  year: 2019
  ident: 688_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916338
– volume: 259
  year: 2025
  ident: 688_CR39
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125239
– ident: 688_CR20
  doi: 10.1145/2806416.2806512
– volume: 134
  year: 2023
  ident: 688_CR22
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.109126
– ident: 688_CR37
  doi: 10.1109/ICASSP48485.2024.10446107
– volume: 53
  start-page: 17935
  year: 2023
  ident: 688_CR24
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-04397-0
– volume: 63
  start-page: 1135
  year: 2021
  ident: 688_CR29
  publication-title: Struct. Multidisc. Optim.
  doi: 10.1007/s00158-020-02748-4
– volume: 297
  start-page: 71
  year: 2018
  ident: 688_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.065
– volume: 103
  start-page: 327
  year: 2018
  ident: 688_CR31
  publication-title: Wireless Pers. Commun.
  doi: 10.1007/s11277-018-5445-7
– volume: 512
  start-page: 323
  year: 2022
  ident: 688_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.09.102
– volume: 8
  start-page: 96016
  year: 2020
  ident: 688_CR16
  publication-title: IEEE Access.
  doi: 10.1002/adfm.202003619
– ident: 688_CR15
  doi: 10.48550/arXiv.1906.06532
– ident: 688_CR9
– volume: 12
  start-page: 2527
  year: 2021
  ident: 688_CR32
  publication-title: J. Ambient Intell. Human Comput.
  doi: 10.1007/s12652-020-02389-x
– volume: 149
  year: 2021
  ident: 688_CR45
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104713
– volume: 251
  year: 2022
  ident: 688_CR38
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109210
– volume: 94
  start-page: 16
  year: 2019
  ident: 688_CR4
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.10.045
– volume: 231
  year: 2023
  ident: 688_CR30
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120748
– ident: 688_CR18
  doi: 10.48550/arXiv.1607.00653
– ident: 688_CR23
  doi: 10.1609/aaai.v31i1.10488
– ident: 688_CR17
  doi: 10.1145/2623330.2623732
– ident: 688_CR27
  doi: 10.1145/3219819.3220000
– ident: 688_CR46
  doi: 10.1145/3292500.3330882
SSID ssj0001763568
ssib031263555
Score 2.3183534
Snippet Community detection in networks is essential for understanding the underlying structure and relationships among nodes. Existing methods for community detection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3693
SubjectTerms Artificial Intelligence
Business Information Systems
Cluster analysis
Clustering
Computational Biology/Bioinformatics
Computer Science
Data Mining and Knowledge Discovery
Database Management
Feature extraction
Modularity
Nodes
Regular Paper
Social networks
Vector quantization
Title Graph autoencoder (GAE) for community detection in social networks
URI https://link.springer.com/article/10.1007/s41060-024-00688-6
https://www.proquest.com/docview/3255891378
Volume 20
WOSCitedRecordID wos001366675200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2364-4168
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001763568
  issn: 2364-415X
  databaseCode: RSV
  dateStart: 20160401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-uCL8xOnU_Lgg6KBZmnT9HHKnE9D_GJvJU1SGEgnayf435uk6Yaigj4nDeVyl7vk7n4_gFPC45wpRnHCiMKhpiHOjM1hSqVNEbrcjCObiEcjPh4nd74prGyq3ZuUpDupF81uobm9BNj4FGz7Gjhmq7BmwUssb8H9w3OjRZRYfBXfbeleWhwGm6OmoyzExmONfffM98t-9lDLsPNLptQ5oJv2_359CzZ9wIn6tYZsw4oudqDdkDkgb9u7cDW00NVIzKupxbZUZuxs2B-cIxPVIlm3kVTvSOnKFW8VaFKg-sEdFXUpebkHTzeDx-tb7AkWsDSWV-Eoi3sZizSLVR4STVXABY1kJmQiaS5EElHJEpZEWutc9VTENRUiDwLRM85PKroPrWJa6ANAQc7NURELQrTNJQY8pkwl2lyPcpJzkXWANEJNpUcftyQYL-kCN9kJKTVCSp2QUtaBi8U3rzX2xq-zu81epd4Oy5SaG5NNxMa8A5fN3iyHf17t8G_Tj2CjZ4mBXZVfF1rVbK6PYV2-VZNyduL08wO2Cdof
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gV5cn7i6ag4eFA00TZumx1XcVdRFfLG3kiYpLEgV2xX89yZpu6KooOekoUxmMpN8M98A7BEeZUwximNGFA40DXBqbA5TKi1E6LAZ12wiGgz4cBhf10VhRZPt3kCS7qSeFLsF5vbiYeNTsK1r4JhNw2zgE2r1-ub2odEiSiy_Sl1t6V5aHAeba01HWYCNxxrW1TPfL_vZQ32EnV-QUueAeq3__foSLNYBJ-pWGrIMUzpfgVbTzAHVtr0Kx31LXY3EuHyy3JbKjO33u6cHyES1SFZlJOUbUrp0yVs5GuWoenBHeZVKXqzBfe_07uQM1w0WsDSWV-IwjfyUhZpFKguIpsrjgoYyFTKWNBMiDqlkMYtDrXWmfBVyTYXIPE_4xvlJRddhJn_K9QYgL-PmqIgEIdpiiR6PKFOxNtejjGRcpG0gjVATWbOP2yYYj8mEN9kJKTFCSpyQEtaGw8k3zxX3xq-zO81eJbUdFgk1NyYLxEa8DUfN3nwM_7za5t-m78L82d3VZXJ5PrjYggXfNgl2GX8dmClfxnob5uRrOSpedpyuvgP4RN0D
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EF9cT1zPPPigaNi2adP0cT1WRVnEi30raQ5YkCq7XcF_b5K264EK4muTBjqZ6WQy830DsOuzWFNJCU6oL3GoSIgzY3OYEGFThC4345pNxN0u6_WS6w8oflftXqckS0yDZWnKi9az1K0x8C00kYyHjX_BFuPAMJ2EafvMhl83tw-1RhHfcq1UyEt36-L42FybOkJDbLxXr0LSfL_sZ2_1fgT9kjV1zqjT-P9nLMB8dRBF7VJzFmFC5UvQqJs8oMrml-HozFJaIz4qniznpTRje2ft031kTrtIlPCS4hVJVbiirhz1c1RexKO8LDEfrsB95_Tu-BxXjRewMBZZ4CiLg4xGisZSh74i0mOcRCLjIhFEc55ERNCEJpFSSstARkwRzrXn8cA4RSHJKkzlT7laA-RpZn4hMfd9ZXOMHosJlYkyYZP2NeNZE_xawKmoWMltc4zHdMyn7ISUGiGlTkgpbcLB-J3nkpPj19mb9b6llX0OU2IiKZugjVkTDut9eh_-ebX1v03fgdnrk056ddG93IC5wPYOdoWAmzBVDEZqC2bES9EfDrad2r4BVc3l5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+autoencoder+%28GAE%29+for+community+detection+in+social+networks&rft.jtitle=International+journal+of+data+science+and+analytics&rft.au=Joshi%2C+Pratibha&rft.au=Singh%2C+Buddha&rft.date=2025-10-01&rft.pub=Springer+International+Publishing&rft.issn=2364-415X&rft.eissn=2364-4168&rft.volume=20&rft.issue=4&rft.spage=3693&rft.epage=3705&rft_id=info:doi/10.1007%2Fs41060-024-00688-6&rft.externalDocID=10_1007_s41060_024_00688_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-415X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-415X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-415X&client=summon