Quasi-dynamic opposite learning enhanced Runge-Kutta optimizer for solving complex optimization problems
The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various br...
Gespeichert in:
| Veröffentlicht in: | Evolutionary intelligence Jg. 17; H. 4; S. 2899 - 2962 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1864-5909, 1864-5917 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various branches of scientific fields. However, there is still much room for improvement as it suffers from premature convergence resulting from inefficient search space exploration. To overcome this algorithmic drawback, this research study proposes a brand-new quasi-dynamic opposition-based learning (QDOPP) mechanism to be implemented in a standard Runge-Kutta optimizer to eliminate the local minimum points over the search space. Enhancing the asymmetric search hyperspace by taking advantage of various positions of the current solution within the domain is the critical novelty to enrich general diversity in the population, significantly improving the algorithm’s overall exploration capability. To validate the effectivity of the proposed RUNGE-QDOPP method, thirty-four multidimensional optimization benchmark problems comprised of unimodal and multimodal test functions with various dimensionalities have been solved, and the corresponding results are compared against the predictions obtained from the other opposition-based learning variants as well as some state-of-art literature optimizers. Furthermore, six constrained engineering design problems with different functional characteristics have been solved, and the respective results are benchmarked against those obtained for the well-known optimizers. Comparison of the solution outcomes with literature optimizers for constrained and unconstrained test problems reveals that the proposed QDOPP has significant advantages over its counterparts regarding solution accuracy and efficiency. |
|---|---|
| AbstractList | The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various branches of scientific fields. However, there is still much room for improvement as it suffers from premature convergence resulting from inefficient search space exploration. To overcome this algorithmic drawback, this research study proposes a brand-new quasi-dynamic opposition-based learning (QDOPP) mechanism to be implemented in a standard Runge-Kutta optimizer to eliminate the local minimum points over the search space. Enhancing the asymmetric search hyperspace by taking advantage of various positions of the current solution within the domain is the critical novelty to enrich general diversity in the population, significantly improving the algorithm’s overall exploration capability. To validate the effectivity of the proposed RUNGE-QDOPP method, thirty-four multidimensional optimization benchmark problems comprised of unimodal and multimodal test functions with various dimensionalities have been solved, and the corresponding results are compared against the predictions obtained from the other opposition-based learning variants as well as some state-of-art literature optimizers. Furthermore, six constrained engineering design problems with different functional characteristics have been solved, and the respective results are benchmarked against those obtained for the well-known optimizers. Comparison of the solution outcomes with literature optimizers for constrained and unconstrained test problems reveals that the proposed QDOPP has significant advantages over its counterparts regarding solution accuracy and efficiency. |
| Author | Turgut, Oguz Emrah Turgut, Mert Sinan |
| Author_xml | – sequence: 1 givenname: Oguz Emrah surname: Turgut fullname: Turgut, Oguz Emrah organization: Department of Industrial Engineering, Faculty of Engineering and Architecture, Izmir Bakircay University – sequence: 2 givenname: Mert Sinan surname: Turgut fullname: Turgut, Mert Sinan email: sinanturgut@me.com organization: Department of Mechanical Engineering, Faculty of Engineering, Izmir Democracy University |
| BookMark | eNp9kEtPxCAYRYkZE8fRP-CqiWv0oy20XZqJr2hiNLomlAGHSQsVqHH89aLjI3ExKwjcw-U7-2hinVUIHRE4IQDVaSA5MIohLzFAQxrMdtCU1KzEtCHV5HcPzR7aD2EFwHKoyila3o8iGLxYW9EbmblhcMFElXVKeGvsc6bsUlipFtnDaJ8VvhljFCkWTW_elc-081lw3etnVLp-6NTbz62Ixtls8K7tVB8O0K4WXVCH3-sMPV2cP86v8O3d5fX87BbLgjQR07aEQhZaq4KmQZhgIh2UTZsT2Ta1Zm1dk0I0EmQLdcXIAuqFZlroltFKqGKGjjfvpuKXUYXIV270NlXyIqe0rCkATal8k5LeheCV5oM3vfBrToB_GuUbozwZ5V9GOUtQ_Q-SJn5NGb0w3Xa02KAh9SSP_u9XW6gP8IGPIQ |
| CitedBy_id | crossref_primary_10_1038_s41598_024_79782_5 crossref_primary_10_1038_s41598_025_98270_y crossref_primary_10_3390_biomimetics10070454 crossref_primary_10_1016_j_knosys_2025_113626 crossref_primary_10_1007_s42107_025_01282_2 crossref_primary_10_1007_s42107_024_01235_1 crossref_primary_10_1016_j_est_2025_115655 crossref_primary_10_17482_uumfd_1643808 crossref_primary_10_1108_EC_01_2024_0043 |
| Cites_doi | 10.7551/mitpress/3927.001.0001 10.1016/j.eswa.2022.118383 10.1016/j.knosys.2015.12.022 10.1016/j.compstruc.2016.03.001 10.1016/j.future.2019.02.028 10.1109/CEC.2007.4425083 10.1016/j.engappai.2019.08.025 10.1016/j.scient.2012.12.005 10.1007/s10898-007-9149-x 10.1016/j.cie.2021.107250 10.1016/j.compstruc.2012.07.010 10.1002/eng2.12492 10.1016/j.egyr.2022.05.231 10.1016/j.knosys.2019.104966 10.1016/j.knosys.2021.106752 10.1109/ICSMC.2009.5346043 10.1007/s00521-018-3592-0 10.1016/j.cad.2010.12.015 10.1109/CIMCA.2005.1631345 10.1023/A:1008202821328 10.3390/su12051896 10.1016/j.advengsoft.2013.12.007 10.3390/math9182313 10.1109/ICNN.1995.488968 10.1007/978-3-642-61582-5 10.1016/j.enconman.2022.115539 10.1016/j.ins.2009.03.004 10.1109/ACCESS.2021.3100365 10.1016/j.ins.2020.06.037 10.1016/j.amc.2013.02.017 10.1109/TEVC.2008.919004 10.1016/j.compstruc.2003.09.002 10.1093/jcde/qwac113 10.1016/j.advengsoft.2005.04.005 10.1016/j.eswa.2021.115079 10.1109/CEC.2007.4424748 10.1126/science.220.4598.671 10.1007/s13369-021-06326-8 10.1007/s11227-023-05227-x 10.32604/cmc.2022.020847 10.1243/09544062JMES1732 10.1061/(ASCE)0733-9445(1995)121:2(301) 10.1016/j.advengsoft.2016.01.008 10.1016/j.amc.2006.10.047 10.1007/978-3-642-48320-2 10.1016/j.energy.2021.121865 10.1016/j.advengsoft.2017.05.014 10.1007/978-1-4614-6797-7 10.1016/j.knosys.2019.105190 10.5267/j.ijiec.2015.8.004 10.1016/j.cie.2021.107408 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s12065-024-00919-6 |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Physics |
| EISSN | 1864-5917 |
| EndPage | 2962 |
| ExternalDocumentID | 10_1007_s12065_024_00919_6 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS 7XB 8FE 8FG JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-5b403c3ffe350916a6a40349b21cb98f6b8813a9c0cb08761d08df6fafb657ae3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179189000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5909 |
| IngestDate | Tue Sep 30 03:21:24 EDT 2025 Tue Nov 18 21:45:07 EST 2025 Sat Nov 29 06:12:15 EST 2025 Fri Feb 21 02:39:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Benchmark functions Runge-Kutta optimization algorithm Dynamic-opposite learning Opposition-based learning Constrained optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5b403c3ffe350916a6a40349b21cb98f6b8813a9c0cb08761d08df6fafb657ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255485005 |
| PQPubID | 2043920 |
| PageCount | 64 |
| ParticipantIDs | proquest_journals_3255485005 crossref_primary_10_1007_s12065_024_00919_6 crossref_citationtrail_10_1007_s12065_024_00919_6 springer_journals_10_1007_s12065_024_00919_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | FogelLOwensAWalshMArtificial intelligence through simulated evolution1966HobokenWiley MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl- Based Syst20169612013310.1016/j.knosys.2015.12.022 Hock W, Schittkwoski K (1980) Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical system. Vol 187, Springer, Berlin DeepKThakurNA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188895911232776510.1016/j.amc.2006.10.047 AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng202115810740810.1016/j.cie.2021.107408 SimonDBiogeography-based optimizationIEEE T Evolut Comput20081270271310.1109/TEVC.2008.919004 LuenbergerDGLinear and nonlinear programming1984BostonAddison-Wesley El-DabahMAKamelSAbidoMAYKhanBOptimal tuning of fractional-order proportional, integral, derivative and tilt-integral derivative based power system stabilizers using Runge-Kutta optimizerEng Rep20224e1249210.1002/eng2.12492 YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct20048224125610.1016/j.compstruc.2003.09.002 SchittkowskiKMore test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems)1987BerlinSpringer10.1007/978-3-642-61582-5 JamalATauhidur RahmanMAl-AhmadiHMUllahIZahidMIntelligent intersection for delay optimization: using metaheuristic search algorithmsSustainability202012189610.3390/su12051896 StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711341359147955310.1023/A:1008202821328 HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2019317665763810.1007/s00521-018-3592-0 GaoZMZhaoJHuYRChenHFThe challenge for the nature-inspired global optimization algorithms: non-symmetric benchmark functionsIEEE Access2021910631710633910.1109/ACCESS.2021.3100365 ErolOKEksinIA new optimization method: Big Bang – Big crunchAdv Eng Softw20063710611110.1016/j.advengsoft.2005.04.005 FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst202019110519010.1016/j.knosys.2019.105190 El-SattarHAKamelSHassanMHJuradoFOptimal sizing of an off-grid hybrid photovoltaic/biomass gasifier/battery system using quantum model of Runge-Kutta algorithmEnergy Convers Manag202225810.1016/j.enconman.2022.115539 Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In 2007 IEEE congress on evolutionary computation. IEEE, pp 2229–2236 KumarSSikanderAOptimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programmingArab J Sci Eng2022473519353910.1007/s13369-021-06326-8 DeviRMPremkumarMJangirPElkotbMAElavarasanRMNisarKSAn ımproved runge-kutta optimization algorithm for global optimization problemsComput Mater Contin2022704803482710.32604/cmc.2022.020847 BrackenJMcGormickGPSelected applications of nonlinear programming1968New YorkWiley Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation international conference on intelligent agents, web technologies and internet commence (CIMCA-IAWTIC’06), 2005, pp 695–701 YıldızBSMehtaPPanagantNMirjaliliSYildizARA novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problemsJ Comput Des Eng202292452246510.1093/jcde/qwac113 ShabanHHousseinEHPerez-CisnerosMOlivaDHassanAYIsmaeelAAKAbd-ElminaanDSDebSSaidMIdentification of parameters in photovoltaic models through Runge-Kutta optimizerMathematics20219231310.3390/math9182313 MitchellMAn introduction to genetic algorithms1996CambridgeMIT Press10.7551/mitpress/3927.001.0001 AbualigahLYousriDAbd-ElazizMEweesAAAl-qanessMAAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710725010.1016/j.cie.2021.107250 RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci20091792232224810.1016/j.ins.2009.03.004 KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671 RaoRVSaversusaniVJVakhariaDPTeaching-learning based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des20114330331510.1016/j.cad.2010.12.015 ErgezerMSimonDDuDOppositional biogeography-based optimizationIEEE Int Conf Syst Man Cybern200920091009101410.1109/ICSMC.2009.5346043 CiviciogluPBacktracking Search Optimization Algorithm for numerical optimization problemsAppl Math Comput201321981218144303752210.1016/j.amc.2013.02.017 FanYWangPHeidariAAChenHTurabiehHMafarjaMRandom selection particle swarm optimization for optimal design of solar photovoltaic modulesEnergy202223912186510.1016/j.energy.2021.121865 AhmadianfarIHaddadOBChuXGradient-based optimizer: a new metaheuristic optimization algorithmInform Sci2020540131159411942410.1016/j.ins.2020.06.037 DhimanGKumarVSpotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applicationsAdv Eng Softw2017114487010.1016/j.advengsoft.2017.05.014 ThanedarPBVanderplaatsGNSurvey of the discrete variable optimization for structural designJ Struct Eng ASCE1995230130610.1061/(ASCE)0733-9445(1995)121:2(301) DongHXuYLiXYangZZouCAn improved antlion optimizer with dynamic random walk and dynamic opposite learningKnowl-based Syst202121610675210.1016/j.knosys.2021.106752 ChenDZouFLiZWangJLiSAn improved teaching-learning-based optimization algorithm for solving global optimization problemInf Sci Int J201529717119010.1016/j.scient.2012.12.005 PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125 KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739459471234617810.1007/s10898-007-9149-x Atashpaz-GargariELucasCImperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competitionIEEE Congr Evolut Comput200720074661466710.1109/CEC.2007.4425083 ChenHAhmadianfarILiangGBakhsizadehHAzadBChuXA successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimizationExpert Syst Appl202220911838310.1016/j.eswa.2022.118383 MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025 HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028 AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst Appl202118111507910.1016/j.eswa.2021.115079 OrdazACOlivaDNavarroMAMichelARCisnerosMPAn improved opposition-based Runge Kutta optimizer for multilevel image thresholdingJ Supercomput202379172471735410.1007/s11227-023-05227-x Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Vol IV, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 NassefAMHousseinEHHelmyBEFathyAAlghaytiMLRezkHOptimal reconfiguration strategy based on modified Runge Kutta optimizer to mitigate partial shading condition in photovoltaic systemsEnergy Rep202287242726210.1016/j.egyr.2022.05.231 XuYYangZLiXKangHKangHYangXDynamic opposite learning enhanced teaching-learning-based optimizationKnowl Based Syst202018810496610.1016/j.knosys.2019.104966 YangXSNature-inspired metaheuristic algorithms2008UKLuniver Press MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 EskendarHSadollahABahreininejadAHamdMWater cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110–11115116610.1016/j.compstruc.2012.07.010 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow Search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001 KimTHMarutaISugieTA simple and efficient constrained particle swarm optimization and its application to engineering design problemsProc Inst Mech Eng Part C201022438940010.1243/09544062JMES1732 RaoRVJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsIJIEC20167193410.5267/j.ijiec.2015.8.004 AndreiNNonlinear optimization applications using the gams technology2013BerlinSpringer10.1007/978-1-4614-6797-7 D Simon (919_CR7) 2008; 12 E Atashpaz-Gargari (919_CR13) 2007; 2007 S Kumar (919_CR16) 2022; 47 S Mirjalili (919_CR42) 2016; 95 919_CR25 ZM Gao (919_CR44) 2021; 9 H Shaban (919_CR30) 2021; 9 K Schittkowski (919_CR53) 1987 M Mitchell (919_CR4) 1996 DG Luenberger (919_CR1) 1984 H Eskendar (919_CR11) 2012; 110–111 A Askarzadeh (919_CR21) 2016; 169 I Ahmadianfar (919_CR22) 2021; 181 HA El-Sattar (919_CR26) 2022; 258 TH Kim (919_CR49) 2010; 224 Y Xu (919_CR23) 2020; 188 H Dong (919_CR37) 2021; 216 919_CR24 A Jamal (919_CR3) 2020; 12 BS Yıldız (919_CR34) 2022; 9 L Fogel (919_CR6) 1966 BD Youn (919_CR50) 2004; 82 N Andrei (919_CR52) 2013 S Mirjalili (919_CR20) 2014; 69 SHS Moosavi (919_CR14) 2019; 86 K Hussain (919_CR38) 2019; 31 J Bracken (919_CR56) 1968 M Ergezer (919_CR35) 2009; 2009 AM Nassef (919_CR28) 2022; 8 L Abualigah (919_CR40) 2021; 157 B Abdollahzadeh (919_CR46) 2021; 158 AA Heidari (919_CR45) 2019; 97 RV Rao (919_CR47) 2016; 7 I Ahmadianfar (919_CR33) 2020; 540 K Deep (919_CR39) 2007; 188 XS Yang (919_CR18) 2008 PB Thanedar (919_CR55) 1995; 2 A Faramarzi (919_CR2) 2020; 191 M Pant (919_CR51) 2009; 1 P Civicioglu (919_CR48) 2013; 219 D Karaboga (919_CR19) 2007; 39 919_CR17 R Storn (919_CR5) 1997; 11 RV Rao (919_CR12) 2011; 43 D Chen (919_CR36) 2015; 297 S Mirjalili (919_CR41) 2016; 96 MA El-Dabah (919_CR29) 2022; 4 OK Erol (919_CR10) 2006; 37 H Chen (919_CR27) 2022; 209 RM Devi (919_CR32) 2022; 70 AC Ordaz (919_CR31) 2023; 79 G Dhiman (919_CR43) 2017; 114 Y Fan (919_CR15) 2022; 239 E Rashedi (919_CR9) 2009; 179 S Kirkpatrick (919_CR8) 1983; 220 919_CR54 |
| References_xml | – reference: FogelLOwensAWalshMArtificial intelligence through simulated evolution1966HobokenWiley – reference: ThanedarPBVanderplaatsGNSurvey of the discrete variable optimization for structural designJ Struct Eng ASCE1995230130610.1061/(ASCE)0733-9445(1995)121:2(301) – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028 – reference: Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In 2007 IEEE congress on evolutionary computation. IEEE, pp 2229–2236 – reference: KimTHMarutaISugieTA simple and efficient constrained particle swarm optimization and its application to engineering design problemsProc Inst Mech Eng Part C201022438940010.1243/09544062JMES1732 – reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow Search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001 – reference: DongHXuYLiXYangZZouCAn improved antlion optimizer with dynamic random walk and dynamic opposite learningKnowl-based Syst202121610675210.1016/j.knosys.2021.106752 – reference: ChenHAhmadianfarILiangGBakhsizadehHAzadBChuXA successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimizationExpert Syst Appl202220911838310.1016/j.eswa.2022.118383 – reference: NassefAMHousseinEHHelmyBEFathyAAlghaytiMLRezkHOptimal reconfiguration strategy based on modified Runge Kutta optimizer to mitigate partial shading condition in photovoltaic systemsEnergy Rep202287242726210.1016/j.egyr.2022.05.231 – reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025 – reference: GaoZMZhaoJHuYRChenHFThe challenge for the nature-inspired global optimization algorithms: non-symmetric benchmark functionsIEEE Access2021910631710633910.1109/ACCESS.2021.3100365 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008 – reference: SimonDBiogeography-based optimizationIEEE T Evolut Comput20081270271310.1109/TEVC.2008.919004 – reference: OrdazACOlivaDNavarroMAMichelARCisnerosMPAn improved opposition-based Runge Kutta optimizer for multilevel image thresholdingJ Supercomput202379172471735410.1007/s11227-023-05227-x – reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst202019110519010.1016/j.knosys.2019.105190 – reference: XuYYangZLiXKangHKangHYangXDynamic opposite learning enhanced teaching-learning-based optimizationKnowl Based Syst202018810496610.1016/j.knosys.2019.104966 – reference: AhmadianfarIHaddadOBChuXGradient-based optimizer: a new metaheuristic optimization algorithmInform Sci2020540131159411942410.1016/j.ins.2020.06.037 – reference: AndreiNNonlinear optimization applications using the gams technology2013BerlinSpringer10.1007/978-1-4614-6797-7 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007 – reference: Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation international conference on intelligent agents, web technologies and internet commence (CIMCA-IAWTIC’06), 2005, pp 695–701 – reference: KumarSSikanderAOptimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programmingArab J Sci Eng2022473519353910.1007/s13369-021-06326-8 – reference: Hock W, Schittkwoski K (1980) Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical system. Vol 187, Springer, Berlin – reference: AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst Appl202118111507910.1016/j.eswa.2021.115079 – reference: YıldızBSMehtaPPanagantNMirjaliliSYildizARA novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problemsJ Comput Des Eng202292452246510.1093/jcde/qwac113 – reference: YangXSNature-inspired metaheuristic algorithms2008UKLuniver Press – reference: HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2019317665763810.1007/s00521-018-3592-0 – reference: ErgezerMSimonDDuDOppositional biogeography-based optimizationIEEE Int Conf Syst Man Cybern200920091009101410.1109/ICSMC.2009.5346043 – reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl- Based Syst20169612013310.1016/j.knosys.2015.12.022 – reference: LuenbergerDGLinear and nonlinear programming1984BostonAddison-Wesley – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Vol IV, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 – reference: Atashpaz-GargariELucasCImperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competitionIEEE Congr Evolut Comput200720074661466710.1109/CEC.2007.4425083 – reference: PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125 – reference: DeviRMPremkumarMJangirPElkotbMAElavarasanRMNisarKSAn ımproved runge-kutta optimization algorithm for global optimization problemsComput Mater Contin2022704803482710.32604/cmc.2022.020847 – reference: BrackenJMcGormickGPSelected applications of nonlinear programming1968New YorkWiley – reference: El-DabahMAKamelSAbidoMAYKhanBOptimal tuning of fractional-order proportional, integral, derivative and tilt-integral derivative based power system stabilizers using Runge-Kutta optimizerEng Rep20224e1249210.1002/eng2.12492 – reference: CiviciogluPBacktracking Search Optimization Algorithm for numerical optimization problemsAppl Math Comput201321981218144303752210.1016/j.amc.2013.02.017 – reference: FanYWangPHeidariAAChenHTurabiehHMafarjaMRandom selection particle swarm optimization for optimal design of solar photovoltaic modulesEnergy202223912186510.1016/j.energy.2021.121865 – reference: DeepKThakurNA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188895911232776510.1016/j.amc.2006.10.047 – reference: El-SattarHAKamelSHassanMHJuradoFOptimal sizing of an off-grid hybrid photovoltaic/biomass gasifier/battery system using quantum model of Runge-Kutta algorithmEnergy Convers Manag202225810.1016/j.enconman.2022.115539 – reference: JamalATauhidur RahmanMAl-AhmadiHMUllahIZahidMIntelligent intersection for delay optimization: using metaheuristic search algorithmsSustainability202012189610.3390/su12051896 – reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671 – reference: StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711341359147955310.1023/A:1008202821328 – reference: ShabanHHousseinEHPerez-CisnerosMOlivaDHassanAYIsmaeelAAKAbd-ElminaanDSDebSSaidMIdentification of parameters in photovoltaic models through Runge-Kutta optimizerMathematics20219231310.3390/math9182313 – reference: DhimanGKumarVSpotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applicationsAdv Eng Softw2017114487010.1016/j.advengsoft.2017.05.014 – reference: EskendarHSadollahABahreininejadAHamdMWater cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110–11115116610.1016/j.compstruc.2012.07.010 – reference: SchittkowskiKMore test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems)1987BerlinSpringer10.1007/978-3-642-61582-5 – reference: AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng202115810740810.1016/j.cie.2021.107408 – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739459471234617810.1007/s10898-007-9149-x – reference: YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct20048224125610.1016/j.compstruc.2003.09.002 – reference: MitchellMAn introduction to genetic algorithms1996CambridgeMIT Press10.7551/mitpress/3927.001.0001 – reference: RaoRVJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsIJIEC20167193410.5267/j.ijiec.2015.8.004 – reference: ErolOKEksinIA new optimization method: Big Bang – Big crunchAdv Eng Softw20063710611110.1016/j.advengsoft.2005.04.005 – reference: AbualigahLYousriDAbd-ElazizMEweesAAAl-qanessMAAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710725010.1016/j.cie.2021.107250 – reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci20091792232224810.1016/j.ins.2009.03.004 – reference: ChenDZouFLiZWangJLiSAn improved teaching-learning-based optimization algorithm for solving global optimization problemInf Sci Int J201529717119010.1016/j.scient.2012.12.005 – reference: RaoRVSaversusaniVJVakhariaDPTeaching-learning based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des20114330331510.1016/j.cad.2010.12.015 – volume-title: An introduction to genetic algorithms year: 1996 ident: 919_CR4 doi: 10.7551/mitpress/3927.001.0001 – volume: 209 start-page: 118383 year: 2022 ident: 919_CR27 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118383 – volume: 96 start-page: 120 year: 2016 ident: 919_CR41 publication-title: Knowl- Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume-title: Artificial intelligence through simulated evolution year: 1966 ident: 919_CR6 – volume: 169 start-page: 1 year: 2016 ident: 919_CR21 publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – volume: 97 start-page: 849 year: 2019 ident: 919_CR45 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 2007 start-page: 4661 year: 2007 ident: 919_CR13 publication-title: IEEE Congr Evolut Comput doi: 10.1109/CEC.2007.4425083 – volume: 86 start-page: 165 year: 2019 ident: 919_CR14 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.08.025 – volume: 297 start-page: 171 year: 2015 ident: 919_CR36 publication-title: Inf Sci Int J doi: 10.1016/j.scient.2012.12.005 – volume: 39 start-page: 459 year: 2007 ident: 919_CR19 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 157 start-page: 107250 year: 2021 ident: 919_CR40 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – volume: 110–111 start-page: 151 year: 2012 ident: 919_CR11 publication-title: Comput Struct doi: 10.1016/j.compstruc.2012.07.010 – volume: 4 start-page: e12492 year: 2022 ident: 919_CR29 publication-title: Eng Rep doi: 10.1002/eng2.12492 – volume: 8 start-page: 7242 year: 2022 ident: 919_CR28 publication-title: Energy Rep doi: 10.1016/j.egyr.2022.05.231 – volume: 188 start-page: 104966 year: 2020 ident: 919_CR23 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.104966 – volume: 216 start-page: 106752 year: 2021 ident: 919_CR37 publication-title: Knowl-based Syst doi: 10.1016/j.knosys.2021.106752 – volume: 2009 start-page: 1009 year: 2009 ident: 919_CR35 publication-title: IEEE Int Conf Syst Man Cybern doi: 10.1109/ICSMC.2009.5346043 – volume: 31 start-page: 7665 year: 2019 ident: 919_CR38 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3592-0 – volume: 43 start-page: 303 year: 2011 ident: 919_CR12 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – ident: 919_CR24 doi: 10.1109/CIMCA.2005.1631345 – volume: 11 start-page: 341 year: 1997 ident: 919_CR5 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 12 start-page: 1896 year: 2020 ident: 919_CR3 publication-title: Sustainability doi: 10.3390/su12051896 – volume: 69 start-page: 46 year: 2014 ident: 919_CR20 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 9 start-page: 2313 year: 2021 ident: 919_CR30 publication-title: Mathematics doi: 10.3390/math9182313 – ident: 919_CR17 doi: 10.1109/ICNN.1995.488968 – volume-title: More test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems) year: 1987 ident: 919_CR53 doi: 10.1007/978-3-642-61582-5 – volume: 258 year: 2022 ident: 919_CR26 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.115539 – volume: 179 start-page: 2232 year: 2009 ident: 919_CR9 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 9 start-page: 106317 year: 2021 ident: 919_CR44 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100365 – volume: 540 start-page: 131 year: 2020 ident: 919_CR33 publication-title: Inform Sci doi: 10.1016/j.ins.2020.06.037 – volume: 219 start-page: 8121 year: 2013 ident: 919_CR48 publication-title: Appl Math Comput doi: 10.1016/j.amc.2013.02.017 – volume: 12 start-page: 702 year: 2008 ident: 919_CR7 publication-title: IEEE T Evolut Comput doi: 10.1109/TEVC.2008.919004 – volume: 82 start-page: 241 year: 2004 ident: 919_CR50 publication-title: Comput Struct doi: 10.1016/j.compstruc.2003.09.002 – volume-title: Selected applications of nonlinear programming year: 1968 ident: 919_CR56 – volume: 9 start-page: 2452 year: 2022 ident: 919_CR34 publication-title: J Comput Des Eng doi: 10.1093/jcde/qwac113 – volume: 37 start-page: 106 year: 2006 ident: 919_CR10 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2005.04.005 – volume: 181 start-page: 115079 year: 2021 ident: 919_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115079 – ident: 919_CR25 doi: 10.1109/CEC.2007.4424748 – volume: 220 start-page: 671 year: 1983 ident: 919_CR8 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 47 start-page: 3519 year: 2022 ident: 919_CR16 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06326-8 – volume: 79 start-page: 17247 year: 2023 ident: 919_CR31 publication-title: J Supercomput doi: 10.1007/s11227-023-05227-x – volume: 70 start-page: 4803 year: 2022 ident: 919_CR32 publication-title: Comput Mater Contin doi: 10.32604/cmc.2022.020847 – volume: 224 start-page: 389 year: 2010 ident: 919_CR49 publication-title: Proc Inst Mech Eng Part C doi: 10.1243/09544062JMES1732 – volume: 2 start-page: 301 year: 1995 ident: 919_CR55 publication-title: J Struct Eng ASCE doi: 10.1061/(ASCE)0733-9445(1995)121:2(301) – volume: 95 start-page: 51 year: 2016 ident: 919_CR42 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 188 start-page: 895 year: 2007 ident: 919_CR39 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.10.047 – ident: 919_CR54 doi: 10.1007/978-3-642-48320-2 – volume: 239 start-page: 121865 year: 2022 ident: 919_CR15 publication-title: Energy doi: 10.1016/j.energy.2021.121865 – volume: 1 start-page: 21 year: 2009 ident: 919_CR51 publication-title: IJRTE – volume-title: Nature-inspired metaheuristic algorithms year: 2008 ident: 919_CR18 – volume: 114 start-page: 48 year: 2017 ident: 919_CR43 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.05.014 – volume-title: Nonlinear optimization applications using the gams technology year: 2013 ident: 919_CR52 doi: 10.1007/978-1-4614-6797-7 – volume-title: Linear and nonlinear programming year: 1984 ident: 919_CR1 – volume: 191 start-page: 105190 year: 2020 ident: 919_CR2 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105190 – volume: 7 start-page: 19 year: 2016 ident: 919_CR47 publication-title: IJIEC doi: 10.5267/j.ijiec.2015.8.004 – volume: 158 start-page: 107408 year: 2021 ident: 919_CR46 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107408 |
| SSID | ssj0062074 |
| Score | 2.3590932 |
| Snippet | The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2899 |
| SubjectTerms | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Constraints Control Design engineering Differential equations Engineering Exploitation Genetic algorithms Heuristic Heuristic methods Hyperspaces Learning Mathematical and Computational Engineering Mechatronics Optimization Optimization algorithms Optimization techniques Ordinary differential equations Physics Research Paper Robotics Runge-Kutta method Searching Space exploration Statistical Physics and Dynamical Systems |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH506QbrodmyjqY_hg67bWKWZcvSqZSyMCiEbnSQm5FkaQlsTho7Zeyvr6TI9TZYLrsZJMuG970fSE_fB_DWpsQYzixWRaVwlhXCPUmFiTWJpoVWgsggNlFMp3w2Ezdxw62JbZVdTAyBulpqv0f-gbraN-O5A83F6g571Sh_uholNJ7APklT4nF-XeAuErM0CSzMhLMM5yIR8dLM9upc6pIvdhkKuyqDCMz-TEx9tfnXAWnIO5Ph__7xCziMFSe63ELkJeyZegTDTs0BRecewcFv1IQjeBZaQ3XzCuafN7JZ4GorXY-Wq9DnZVDUm_iGTD0PbQToiwscBl9v2la6ae3ix-KX-4CripEDuN-4QKGB3fzsRgMqUNS0aY7g6-Tj7dUnHPUZsHaO2-JcZQnV1FpDfdnBJJOZp7tRKXE25pYpzgmVQidaeeY7UiW8ssxKq1heSENfw6Be1uYYkNWeuU7w3EsBmZxKSR2ChCxIRgpjqzGQzjiljuTlXkPje9nTLnuDls6gZTBoycbw7vGd1Za6Y-fss86KZXTjpuxNOIb3HQ764X-vdrJ7tVN4ngbo-UbCMxi06405h6f6vl006zcBxA8stPgX priority: 102 providerName: ProQuest |
| Title | Quasi-dynamic opposite learning enhanced Runge-Kutta optimizer for solving complex optimization problems |
| URI | https://link.springer.com/article/10.1007/s12065-024-00919-6 https://www.proquest.com/docview/3255485005 |
| Volume | 17 |
| WOSCitedRecordID | wos001179189000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1864-5917 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1864-5917 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1864-5917 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1864-5917 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1864-5917 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: M2P dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: RSV dateStart: 20080301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFH_Y1oM9WK2Kq3XJwZsGJpOZfBzb0iIUl3WrUrwMSSZpF3RbOrNF_Ov7ks24KiroJQwkE4a8z0lefj-Al6Fk3isRqJWtpVUlNT4ZS1nwhePSWc1MIpuQk4k6O9PTfCmsG6rdhyPJ5KnXl91KDJcUYwrFvIBpKjZgC8OdiuY4O_04-F9RFgl7mSlR0VoXOl-V-f0cP4ejdY75y7FoijbHO__3nQ_gfs4uyf5KHR7CHb_YhZ2BuYFkQ96F7R9gCB_Bxbul6ea0XZHTk8urVMnlSWaUOCd-cZEKBcgMXYOnJ8u-Nzisn3-Zf8NpMe8lqMJxa4KkEnX_dehNcieZtaZ7DB-Oj94fvqGZgYE6NM2e1rYquOMheB4TC2GEqSKgjS0ZSlEFYZVi3GhXOBux7VhbqDaIYIIVtTSeP4HNxeXCPwUSXMSm06qOZD--5sZw1BFtJKuY9KEdARsE0bgMTx5ZMj43a2DluLANLmyTFrYRI3j1_Z2rFTjHX0fvDfJtsqF2DcdfqkrV6ItG8HqQ57r7z7M9-7fhz-FemVQilg7uwWZ_vfQv4K676efd9Ri2Do4m09kYNk4kxfZtOY2tPMV2Wn8aJwW_BTDu8MY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQsKAwgBgp4ASuwiOPEjwVCCKhaTRkBKlJ3qe3YNBLNDE0GKB_FN2J7YgaQ6K4LdpHsOJFz7iP29TkAD11OrBXMYc1rjYuCS3-lNCbOZoZyoyVRUWyCT6dif1--XYMf6SxMKKtMPjE66npmwhr5U-pz30KUHjTP559xUI0Ku6tJQmMJi4k9-ep_2bpnO6_8932U51uv915u40FVABsPtx6Xusiooc5ZGoIlU0wVgaRF58S_mXBMC0GokiYzOvC1kToTtWNOOc1Kriz1456D8wUVPHD1TzhOnp_lWWR9JoIVuJSZHA7pLI_q5T7YYx8Rsc9qiMTsz0C4ym7_2pCNcW5r43-boWtwdcio0YulCVyHNduOYCOpVaDBeY3gym_UiyO4GEtfTXcDDt8tVNfg-qRVR41Bs3msY7No0NP4iGx7GMsk0HvvGC2eLPpe-W59c9R89w_wWT_yBhwWZlAs0LffUmtEPRo0e7qb8OFM5uEWrLez1t4G5Exg5pOiDFJHtqRKUW8hUnFSEG5dPQaSwFCZgZw9aIR8qla00gFAlQdQFQFUsTE8_nXPfElNcmrvzYSaanBTXbWCzBieJNytmv892p3TR3sAl7b33uxWuzvTyV24nEfYh6LJTVjvjxf2HlwwX_qmO74fDQjBwVnj8SeF6VVX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6xgiZ4WFk3RFnZ_LC3zWocJ479iDYqEFPVbTDxFtmOPSpBqNoUIX49tpvQDsGkaW-RfDlFvrPvHN99H8BHGxNjOLNYZYXCSZIJ9yQVJtZEmmZaCSID2UQ2HPLzczFa6eIP1e7NleSip8GjNJVVf1LY_rLxLXahE7v4gl2OQARmL2A98aRB_rz-81ezF7M4CjjMhLMEpyISddvM0zr-DE3LfPPRFWmIPIP2_3_zNryqs050sHCT17Bmyg60G0YHVC_wDmytwBO-gYvvczkb42JBWo-uJ6HCy6CaaeI3MuVFKCBAP9yWYfDJvKqkE6vGV-M7p9blw8i5tv9lgULpurltRoM_oJrNZvYWzgaHp1-OcM3MgLVbshVOVRJRTa011CccTDKZeKAbFRNnXW6Z4pxQKXSklce8I0XEC8ustIqlmTR0B1rldWl2AVntMesETz0JkEmplNT5jpAZSUhmbNEF0hgl1zVsuWfPuMyXgMt-YnM3sXmY2Jx14dPDO5MFaMdfpXuNrfN6Ac9y6o5aCU_dHtWFz41tl8PPa9v7N_EP8HL0dZB_Ox6evIPNOHiHry7sQauazs0-bOibajybvg9-fQ9O3_c8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-dynamic+opposite+learning+enhanced+Runge-Kutta+optimizer+for+solving+complex+optimization+problems&rft.jtitle=Evolutionary+intelligence&rft.au=Turgut%2C+Oguz+Emrah&rft.au=Turgut%2C+Mert+Sinan&rft.date=2024-08-01&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=17&rft.issue=4&rft.spage=2899&rft.epage=2962&rft_id=info:doi/10.1007%2Fs12065-024-00919-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12065_024_00919_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |