Quasi-dynamic opposite learning enhanced Runge-Kutta optimizer for solving complex optimization problems

The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence Jg. 17; H. 4; S. 2899 - 2962
Hauptverfasser: Turgut, Oguz Emrah, Turgut, Mert Sinan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Schlagworte:
ISSN:1864-5909, 1864-5917
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various branches of scientific fields. However, there is still much room for improvement as it suffers from premature convergence resulting from inefficient search space exploration. To overcome this algorithmic drawback, this research study proposes a brand-new quasi-dynamic opposition-based learning (QDOPP) mechanism to be implemented in a standard Runge-Kutta optimizer to eliminate the local minimum points over the search space. Enhancing the asymmetric search hyperspace by taking advantage of various positions of the current solution within the domain is the critical novelty to enrich general diversity in the population, significantly improving the algorithm’s overall exploration capability. To validate the effectivity of the proposed RUNGE-QDOPP method, thirty-four multidimensional optimization benchmark problems comprised of unimodal and multimodal test functions with various dimensionalities have been solved, and the corresponding results are compared against the predictions obtained from the other opposition-based learning variants as well as some state-of-art literature optimizers. Furthermore, six constrained engineering design problems with different functional characteristics have been solved, and the respective results are benchmarked against those obtained for the well-known optimizers. Comparison of the solution outcomes with literature optimizers for constrained and unconstrained test problems reveals that the proposed QDOPP has significant advantages over its counterparts regarding solution accuracy and efficiency.
AbstractList The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the famous Runge-Kutta differential equation solver. Despite its relatively new emergence, this algorithm has several applications in various branches of scientific fields. However, there is still much room for improvement as it suffers from premature convergence resulting from inefficient search space exploration. To overcome this algorithmic drawback, this research study proposes a brand-new quasi-dynamic opposition-based learning (QDOPP) mechanism to be implemented in a standard Runge-Kutta optimizer to eliminate the local minimum points over the search space. Enhancing the asymmetric search hyperspace by taking advantage of various positions of the current solution within the domain is the critical novelty to enrich general diversity in the population, significantly improving the algorithm’s overall exploration capability. To validate the effectivity of the proposed RUNGE-QDOPP method, thirty-four multidimensional optimization benchmark problems comprised of unimodal and multimodal test functions with various dimensionalities have been solved, and the corresponding results are compared against the predictions obtained from the other opposition-based learning variants as well as some state-of-art literature optimizers. Furthermore, six constrained engineering design problems with different functional characteristics have been solved, and the respective results are benchmarked against those obtained for the well-known optimizers. Comparison of the solution outcomes with literature optimizers for constrained and unconstrained test problems reveals that the proposed QDOPP has significant advantages over its counterparts regarding solution accuracy and efficiency.
Author Turgut, Oguz Emrah
Turgut, Mert Sinan
Author_xml – sequence: 1
  givenname: Oguz Emrah
  surname: Turgut
  fullname: Turgut, Oguz Emrah
  organization: Department of Industrial Engineering, Faculty of Engineering and Architecture, Izmir Bakircay University
– sequence: 2
  givenname: Mert Sinan
  surname: Turgut
  fullname: Turgut, Mert Sinan
  email: sinanturgut@me.com
  organization: Department of Mechanical Engineering, Faculty of Engineering, Izmir Democracy University
BookMark eNp9kEtPxCAYRYkZE8fRP-CqiWv0oy20XZqJr2hiNLomlAGHSQsVqHH89aLjI3ExKwjcw-U7-2hinVUIHRE4IQDVaSA5MIohLzFAQxrMdtCU1KzEtCHV5HcPzR7aD2EFwHKoyila3o8iGLxYW9EbmblhcMFElXVKeGvsc6bsUlipFtnDaJ8VvhljFCkWTW_elc-081lw3etnVLp-6NTbz62Ixtls8K7tVB8O0K4WXVCH3-sMPV2cP86v8O3d5fX87BbLgjQR07aEQhZaq4KmQZhgIh2UTZsT2Ta1Zm1dk0I0EmQLdcXIAuqFZlroltFKqGKGjjfvpuKXUYXIV270NlXyIqe0rCkATal8k5LeheCV5oM3vfBrToB_GuUbozwZ5V9GOUtQ_Q-SJn5NGb0w3Xa02KAh9SSP_u9XW6gP8IGPIQ
CitedBy_id crossref_primary_10_1038_s41598_024_79782_5
crossref_primary_10_1038_s41598_025_98270_y
crossref_primary_10_3390_biomimetics10070454
crossref_primary_10_1016_j_knosys_2025_113626
crossref_primary_10_1007_s42107_025_01282_2
crossref_primary_10_1007_s42107_024_01235_1
crossref_primary_10_1016_j_est_2025_115655
crossref_primary_10_17482_uumfd_1643808
crossref_primary_10_1108_EC_01_2024_0043
Cites_doi 10.7551/mitpress/3927.001.0001
10.1016/j.eswa.2022.118383
10.1016/j.knosys.2015.12.022
10.1016/j.compstruc.2016.03.001
10.1016/j.future.2019.02.028
10.1109/CEC.2007.4425083
10.1016/j.engappai.2019.08.025
10.1016/j.scient.2012.12.005
10.1007/s10898-007-9149-x
10.1016/j.cie.2021.107250
10.1016/j.compstruc.2012.07.010
10.1002/eng2.12492
10.1016/j.egyr.2022.05.231
10.1016/j.knosys.2019.104966
10.1016/j.knosys.2021.106752
10.1109/ICSMC.2009.5346043
10.1007/s00521-018-3592-0
10.1016/j.cad.2010.12.015
10.1109/CIMCA.2005.1631345
10.1023/A:1008202821328
10.3390/su12051896
10.1016/j.advengsoft.2013.12.007
10.3390/math9182313
10.1109/ICNN.1995.488968
10.1007/978-3-642-61582-5
10.1016/j.enconman.2022.115539
10.1016/j.ins.2009.03.004
10.1109/ACCESS.2021.3100365
10.1016/j.ins.2020.06.037
10.1016/j.amc.2013.02.017
10.1109/TEVC.2008.919004
10.1016/j.compstruc.2003.09.002
10.1093/jcde/qwac113
10.1016/j.advengsoft.2005.04.005
10.1016/j.eswa.2021.115079
10.1109/CEC.2007.4424748
10.1126/science.220.4598.671
10.1007/s13369-021-06326-8
10.1007/s11227-023-05227-x
10.32604/cmc.2022.020847
10.1243/09544062JMES1732
10.1061/(ASCE)0733-9445(1995)121:2(301)
10.1016/j.advengsoft.2016.01.008
10.1016/j.amc.2006.10.047
10.1007/978-3-642-48320-2
10.1016/j.energy.2021.121865
10.1016/j.advengsoft.2017.05.014
10.1007/978-1-4614-6797-7
10.1016/j.knosys.2019.105190
10.5267/j.ijiec.2015.8.004
10.1016/j.cie.2021.107408
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s12065-024-00919-6
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Physics
EISSN 1864-5917
EndPage 2962
ExternalDocumentID 10_1007_s12065_024_00919_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-5b403c3ffe350916a6a40349b21cb98f6b8813a9c0cb08761d08df6fafb657ae3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001179189000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5909
IngestDate Tue Sep 30 03:21:24 EDT 2025
Tue Nov 18 21:45:07 EST 2025
Sat Nov 29 06:12:15 EST 2025
Fri Feb 21 02:39:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Benchmark functions
Runge-Kutta optimization algorithm
Dynamic-opposite learning
Opposition-based learning
Constrained optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5b403c3ffe350916a6a40349b21cb98f6b8813a9c0cb08761d08df6fafb657ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255485005
PQPubID 2043920
PageCount 64
ParticipantIDs proquest_journals_3255485005
crossref_primary_10_1007_s12065_024_00919_6
crossref_citationtrail_10_1007_s12065_024_00919_6
springer_journals_10_1007_s12065_024_00919_6
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References FogelLOwensAWalshMArtificial intelligence through simulated evolution1966HobokenWiley
MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl- Based Syst20169612013310.1016/j.knosys.2015.12.022
Hock W, Schittkwoski K (1980) Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical system. Vol 187, Springer, Berlin
DeepKThakurNA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188895911232776510.1016/j.amc.2006.10.047
AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng202115810740810.1016/j.cie.2021.107408
SimonDBiogeography-based optimizationIEEE T Evolut Comput20081270271310.1109/TEVC.2008.919004
LuenbergerDGLinear and nonlinear programming1984BostonAddison-Wesley
El-DabahMAKamelSAbidoMAYKhanBOptimal tuning of fractional-order proportional, integral, derivative and tilt-integral derivative based power system stabilizers using Runge-Kutta optimizerEng Rep20224e1249210.1002/eng2.12492
YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct20048224125610.1016/j.compstruc.2003.09.002
SchittkowskiKMore test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems)1987BerlinSpringer10.1007/978-3-642-61582-5
JamalATauhidur RahmanMAl-AhmadiHMUllahIZahidMIntelligent intersection for delay optimization: using metaheuristic search algorithmsSustainability202012189610.3390/su12051896
StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711341359147955310.1023/A:1008202821328
HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2019317665763810.1007/s00521-018-3592-0
GaoZMZhaoJHuYRChenHFThe challenge for the nature-inspired global optimization algorithms: non-symmetric benchmark functionsIEEE Access2021910631710633910.1109/ACCESS.2021.3100365
ErolOKEksinIA new optimization method: Big Bang – Big crunchAdv Eng Softw20063710611110.1016/j.advengsoft.2005.04.005
FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst202019110519010.1016/j.knosys.2019.105190
El-SattarHAKamelSHassanMHJuradoFOptimal sizing of an off-grid hybrid photovoltaic/biomass gasifier/battery system using quantum model of Runge-Kutta algorithmEnergy Convers Manag202225810.1016/j.enconman.2022.115539
Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In 2007 IEEE congress on evolutionary computation. IEEE, pp 2229–2236
KumarSSikanderAOptimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programmingArab J Sci Eng2022473519353910.1007/s13369-021-06326-8
DeviRMPremkumarMJangirPElkotbMAElavarasanRMNisarKSAn ımproved runge-kutta optimization algorithm for global optimization problemsComput Mater Contin2022704803482710.32604/cmc.2022.020847
BrackenJMcGormickGPSelected applications of nonlinear programming1968New YorkWiley
Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation international conference on intelligent agents, web technologies and internet commence (CIMCA-IAWTIC’06), 2005, pp 695–701
YıldızBSMehtaPPanagantNMirjaliliSYildizARA novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problemsJ Comput Des Eng202292452246510.1093/jcde/qwac113
ShabanHHousseinEHPerez-CisnerosMOlivaDHassanAYIsmaeelAAKAbd-ElminaanDSDebSSaidMIdentification of parameters in photovoltaic models through Runge-Kutta optimizerMathematics20219231310.3390/math9182313
MitchellMAn introduction to genetic algorithms1996CambridgeMIT Press10.7551/mitpress/3927.001.0001
AbualigahLYousriDAbd-ElazizMEweesAAAl-qanessMAAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710725010.1016/j.cie.2021.107250
RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci20091792232224810.1016/j.ins.2009.03.004
KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
RaoRVSaversusaniVJVakhariaDPTeaching-learning based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des20114330331510.1016/j.cad.2010.12.015
ErgezerMSimonDDuDOppositional biogeography-based optimizationIEEE Int Conf Syst Man Cybern200920091009101410.1109/ICSMC.2009.5346043
CiviciogluPBacktracking Search Optimization Algorithm for numerical optimization problemsAppl Math Comput201321981218144303752210.1016/j.amc.2013.02.017
FanYWangPHeidariAAChenHTurabiehHMafarjaMRandom selection particle swarm optimization for optimal design of solar photovoltaic modulesEnergy202223912186510.1016/j.energy.2021.121865
AhmadianfarIHaddadOBChuXGradient-based optimizer: a new metaheuristic optimization algorithmInform Sci2020540131159411942410.1016/j.ins.2020.06.037
DhimanGKumarVSpotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applicationsAdv Eng Softw2017114487010.1016/j.advengsoft.2017.05.014
ThanedarPBVanderplaatsGNSurvey of the discrete variable optimization for structural designJ Struct Eng ASCE1995230130610.1061/(ASCE)0733-9445(1995)121:2(301)
DongHXuYLiXYangZZouCAn improved antlion optimizer with dynamic random walk and dynamic opposite learningKnowl-based Syst202121610675210.1016/j.knosys.2021.106752
ChenDZouFLiZWangJLiSAn improved teaching-learning-based optimization algorithm for solving global optimization problemInf Sci Int J201529717119010.1016/j.scient.2012.12.005
PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739459471234617810.1007/s10898-007-9149-x
Atashpaz-GargariELucasCImperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competitionIEEE Congr Evolut Comput200720074661466710.1109/CEC.2007.4425083
ChenHAhmadianfarILiangGBakhsizadehHAzadBChuXA successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimizationExpert Syst Appl202220911838310.1016/j.eswa.2022.118383
MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028
AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst Appl202118111507910.1016/j.eswa.2021.115079
OrdazACOlivaDNavarroMAMichelARCisnerosMPAn improved opposition-based Runge Kutta optimizer for multilevel image thresholdingJ Supercomput202379172471735410.1007/s11227-023-05227-x
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Vol IV, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
NassefAMHousseinEHHelmyBEFathyAAlghaytiMLRezkHOptimal reconfiguration strategy based on modified Runge Kutta optimizer to mitigate partial shading condition in photovoltaic systemsEnergy Rep202287242726210.1016/j.egyr.2022.05.231
XuYYangZLiXKangHKangHYangXDynamic opposite learning enhanced teaching-learning-based optimizationKnowl Based Syst202018810496610.1016/j.knosys.2019.104966
YangXSNature-inspired metaheuristic algorithms2008UKLuniver Press
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
EskendarHSadollahABahreininejadAHamdMWater cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110–11115116610.1016/j.compstruc.2012.07.010
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow Search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001
KimTHMarutaISugieTA simple and efficient constrained particle swarm optimization and its application to engineering design problemsProc Inst Mech Eng Part C201022438940010.1243/09544062JMES1732
RaoRVJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsIJIEC20167193410.5267/j.ijiec.2015.8.004
AndreiNNonlinear optimization applications using the gams technology2013BerlinSpringer10.1007/978-1-4614-6797-7
D Simon (919_CR7) 2008; 12
E Atashpaz-Gargari (919_CR13) 2007; 2007
S Kumar (919_CR16) 2022; 47
S Mirjalili (919_CR42) 2016; 95
919_CR25
ZM Gao (919_CR44) 2021; 9
H Shaban (919_CR30) 2021; 9
K Schittkowski (919_CR53) 1987
M Mitchell (919_CR4) 1996
DG Luenberger (919_CR1) 1984
H Eskendar (919_CR11) 2012; 110–111
A Askarzadeh (919_CR21) 2016; 169
I Ahmadianfar (919_CR22) 2021; 181
HA El-Sattar (919_CR26) 2022; 258
TH Kim (919_CR49) 2010; 224
Y Xu (919_CR23) 2020; 188
H Dong (919_CR37) 2021; 216
919_CR24
A Jamal (919_CR3) 2020; 12
BS Yıldız (919_CR34) 2022; 9
L Fogel (919_CR6) 1966
BD Youn (919_CR50) 2004; 82
N Andrei (919_CR52) 2013
S Mirjalili (919_CR20) 2014; 69
SHS Moosavi (919_CR14) 2019; 86
K Hussain (919_CR38) 2019; 31
J Bracken (919_CR56) 1968
M Ergezer (919_CR35) 2009; 2009
AM Nassef (919_CR28) 2022; 8
L Abualigah (919_CR40) 2021; 157
B Abdollahzadeh (919_CR46) 2021; 158
AA Heidari (919_CR45) 2019; 97
RV Rao (919_CR47) 2016; 7
I Ahmadianfar (919_CR33) 2020; 540
K Deep (919_CR39) 2007; 188
XS Yang (919_CR18) 2008
PB Thanedar (919_CR55) 1995; 2
A Faramarzi (919_CR2) 2020; 191
M Pant (919_CR51) 2009; 1
P Civicioglu (919_CR48) 2013; 219
D Karaboga (919_CR19) 2007; 39
919_CR17
R Storn (919_CR5) 1997; 11
RV Rao (919_CR12) 2011; 43
D Chen (919_CR36) 2015; 297
S Mirjalili (919_CR41) 2016; 96
MA El-Dabah (919_CR29) 2022; 4
OK Erol (919_CR10) 2006; 37
H Chen (919_CR27) 2022; 209
RM Devi (919_CR32) 2022; 70
AC Ordaz (919_CR31) 2023; 79
G Dhiman (919_CR43) 2017; 114
Y Fan (919_CR15) 2022; 239
E Rashedi (919_CR9) 2009; 179
S Kirkpatrick (919_CR8) 1983; 220
919_CR54
References_xml – reference: FogelLOwensAWalshMArtificial intelligence through simulated evolution1966HobokenWiley
– reference: ThanedarPBVanderplaatsGNSurvey of the discrete variable optimization for structural designJ Struct Eng ASCE1995230130610.1061/(ASCE)0733-9445(1995)121:2(301)
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFuture Gener Comput Syst20199784987210.1016/j.future.2019.02.028
– reference: Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In 2007 IEEE congress on evolutionary computation. IEEE, pp 2229–2236
– reference: KimTHMarutaISugieTA simple and efficient constrained particle swarm optimization and its application to engineering design problemsProc Inst Mech Eng Part C201022438940010.1243/09544062JMES1732
– reference: AskarzadehAA novel metaheuristic method for solving constrained engineering optimization problems: crow Search algorithmComput Struct201616911210.1016/j.compstruc.2016.03.001
– reference: DongHXuYLiXYangZZouCAn improved antlion optimizer with dynamic random walk and dynamic opposite learningKnowl-based Syst202121610675210.1016/j.knosys.2021.106752
– reference: ChenHAhmadianfarILiangGBakhsizadehHAzadBChuXA successful candidate strategy with Runge-Kutta optimization for multi-hydropower reservoir optimizationExpert Syst Appl202220911838310.1016/j.eswa.2022.118383
– reference: NassefAMHousseinEHHelmyBEFathyAAlghaytiMLRezkHOptimal reconfiguration strategy based on modified Runge Kutta optimizer to mitigate partial shading condition in photovoltaic systemsEnergy Rep202287242726210.1016/j.egyr.2022.05.231
– reference: MoosaviSHSBardsiriVKPoor and rich optimization algorithm: a new human-based and multi-populations algorithmEng Appl Artif Intell20198616518110.1016/j.engappai.2019.08.025
– reference: GaoZMZhaoJHuYRChenHFThe challenge for the nature-inspired global optimization algorithms: non-symmetric benchmark functionsIEEE Access2021910631710633910.1109/ACCESS.2021.3100365
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw201695516710.1016/j.advengsoft.2016.01.008
– reference: SimonDBiogeography-based optimizationIEEE T Evolut Comput20081270271310.1109/TEVC.2008.919004
– reference: OrdazACOlivaDNavarroMAMichelARCisnerosMPAn improved opposition-based Runge Kutta optimizer for multilevel image thresholdingJ Supercomput202379172471735410.1007/s11227-023-05227-x
– reference: FaramarziAHeidarinejadMStephensBMirjaliliSEquilibrium optimizer: a novel optimization algorithmKnowl-Based Syst202019110519010.1016/j.knosys.2019.105190
– reference: XuYYangZLiXKangHKangHYangXDynamic opposite learning enhanced teaching-learning-based optimizationKnowl Based Syst202018810496610.1016/j.knosys.2019.104966
– reference: AhmadianfarIHaddadOBChuXGradient-based optimizer: a new metaheuristic optimization algorithmInform Sci2020540131159411942410.1016/j.ins.2020.06.037
– reference: AndreiNNonlinear optimization applications using the gams technology2013BerlinSpringer10.1007/978-1-4614-6797-7
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv Eng Softw201469466110.1016/j.advengsoft.2013.12.007
– reference: Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation international conference on intelligent agents, web technologies and internet commence (CIMCA-IAWTIC’06), 2005, pp 695–701
– reference: KumarSSikanderAOptimum mobile robot path planning using improved artificial bee colony algorithm and evolutionary programmingArab J Sci Eng2022473519353910.1007/s13369-021-06326-8
– reference: Hock W, Schittkwoski K (1980) Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical system. Vol 187, Springer, Berlin
– reference: AhmadianfarIHeidariAAGandomiAHChuXChenHRUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta methodExpert Syst Appl202118111507910.1016/j.eswa.2021.115079
– reference: YıldızBSMehtaPPanagantNMirjaliliSYildizARA novel chaotic Runge Kutta optimization algorithm for solving constrained engineering problemsJ Comput Des Eng202292452246510.1093/jcde/qwac113
– reference: YangXSNature-inspired metaheuristic algorithms2008UKLuniver Press
– reference: HussainKSallehMNMChengSShiYOn the exploration and exploitation in popular swarm-based metaheuristic algorithmsNeural Comput Appl2019317665763810.1007/s00521-018-3592-0
– reference: ErgezerMSimonDDuDOppositional biogeography-based optimizationIEEE Int Conf Syst Man Cybern200920091009101410.1109/ICSMC.2009.5346043
– reference: MirjaliliSSCA: a sine cosine algorithm for solving optimization problemsKnowl- Based Syst20169612013310.1016/j.knosys.2015.12.022
– reference: LuenbergerDGLinear and nonlinear programming1984BostonAddison-Wesley
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Vol IV, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
– reference: Atashpaz-GargariELucasCImperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competitionIEEE Congr Evolut Comput200720074661466710.1109/CEC.2007.4425083
– reference: PantMThangarajRSinghVPOptimization of mechanical design problems using improved differential evolution algorithmIJRTE200912125
– reference: DeviRMPremkumarMJangirPElkotbMAElavarasanRMNisarKSAn ımproved runge-kutta optimization algorithm for global optimization problemsComput Mater Contin2022704803482710.32604/cmc.2022.020847
– reference: BrackenJMcGormickGPSelected applications of nonlinear programming1968New YorkWiley
– reference: El-DabahMAKamelSAbidoMAYKhanBOptimal tuning of fractional-order proportional, integral, derivative and tilt-integral derivative based power system stabilizers using Runge-Kutta optimizerEng Rep20224e1249210.1002/eng2.12492
– reference: CiviciogluPBacktracking Search Optimization Algorithm for numerical optimization problemsAppl Math Comput201321981218144303752210.1016/j.amc.2013.02.017
– reference: FanYWangPHeidariAAChenHTurabiehHMafarjaMRandom selection particle swarm optimization for optimal design of solar photovoltaic modulesEnergy202223912186510.1016/j.energy.2021.121865
– reference: DeepKThakurNA new crossover operator for real coded genetic algorithmsAppl Math Comput2007188895911232776510.1016/j.amc.2006.10.047
– reference: El-SattarHAKamelSHassanMHJuradoFOptimal sizing of an off-grid hybrid photovoltaic/biomass gasifier/battery system using quantum model of Runge-Kutta algorithmEnergy Convers Manag202225810.1016/j.enconman.2022.115539
– reference: JamalATauhidur RahmanMAl-AhmadiHMUllahIZahidMIntelligent intersection for delay optimization: using metaheuristic search algorithmsSustainability202012189610.3390/su12051896
– reference: KirkpatrickSGelattCDVecchiMPOptimization by simulated annealingScience198322067168070248510.1126/science.220.4598.671
– reference: StornRPriceKDifferential evolution – a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim199711341359147955310.1023/A:1008202821328
– reference: ShabanHHousseinEHPerez-CisnerosMOlivaDHassanAYIsmaeelAAKAbd-ElminaanDSDebSSaidMIdentification of parameters in photovoltaic models through Runge-Kutta optimizerMathematics20219231310.3390/math9182313
– reference: DhimanGKumarVSpotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applicationsAdv Eng Softw2017114487010.1016/j.advengsoft.2017.05.014
– reference: EskendarHSadollahABahreininejadAHamdMWater cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problemsComput Struct2012110–11115116610.1016/j.compstruc.2012.07.010
– reference: SchittkowskiKMore test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems)1987BerlinSpringer10.1007/978-3-642-61582-5
– reference: AbdollahzadehBGharehchopoghFSMirjaliliSAfrican vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problemsComput Ind Eng202115810740810.1016/j.cie.2021.107408
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim200739459471234617810.1007/s10898-007-9149-x
– reference: YounBDChoiKKA new response surface methodology for reliability-based design optimizationComput Struct20048224125610.1016/j.compstruc.2003.09.002
– reference: MitchellMAn introduction to genetic algorithms1996CambridgeMIT Press10.7551/mitpress/3927.001.0001
– reference: RaoRVJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsIJIEC20167193410.5267/j.ijiec.2015.8.004
– reference: ErolOKEksinIA new optimization method: Big Bang – Big crunchAdv Eng Softw20063710611110.1016/j.advengsoft.2005.04.005
– reference: AbualigahLYousriDAbd-ElazizMEweesAAAl-qanessMAAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng202115710725010.1016/j.cie.2021.107250
– reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf Sci20091792232224810.1016/j.ins.2009.03.004
– reference: ChenDZouFLiZWangJLiSAn improved teaching-learning-based optimization algorithm for solving global optimization problemInf Sci Int J201529717119010.1016/j.scient.2012.12.005
– reference: RaoRVSaversusaniVJVakhariaDPTeaching-learning based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des20114330331510.1016/j.cad.2010.12.015
– volume-title: An introduction to genetic algorithms
  year: 1996
  ident: 919_CR4
  doi: 10.7551/mitpress/3927.001.0001
– volume: 209
  start-page: 118383
  year: 2022
  ident: 919_CR27
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118383
– volume: 96
  start-page: 120
  year: 2016
  ident: 919_CR41
  publication-title: Knowl- Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume-title: Artificial intelligence through simulated evolution
  year: 1966
  ident: 919_CR6
– volume: 169
  start-page: 1
  year: 2016
  ident: 919_CR21
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 97
  start-page: 849
  year: 2019
  ident: 919_CR45
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 2007
  start-page: 4661
  year: 2007
  ident: 919_CR13
  publication-title: IEEE Congr Evolut Comput
  doi: 10.1109/CEC.2007.4425083
– volume: 86
  start-page: 165
  year: 2019
  ident: 919_CR14
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.08.025
– volume: 297
  start-page: 171
  year: 2015
  ident: 919_CR36
  publication-title: Inf Sci Int J
  doi: 10.1016/j.scient.2012.12.005
– volume: 39
  start-page: 459
  year: 2007
  ident: 919_CR19
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 157
  start-page: 107250
  year: 2021
  ident: 919_CR40
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 919_CR11
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 4
  start-page: e12492
  year: 2022
  ident: 919_CR29
  publication-title: Eng Rep
  doi: 10.1002/eng2.12492
– volume: 8
  start-page: 7242
  year: 2022
  ident: 919_CR28
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.05.231
– volume: 188
  start-page: 104966
  year: 2020
  ident: 919_CR23
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.104966
– volume: 216
  start-page: 106752
  year: 2021
  ident: 919_CR37
  publication-title: Knowl-based Syst
  doi: 10.1016/j.knosys.2021.106752
– volume: 2009
  start-page: 1009
  year: 2009
  ident: 919_CR35
  publication-title: IEEE Int Conf Syst Man Cybern
  doi: 10.1109/ICSMC.2009.5346043
– volume: 31
  start-page: 7665
  year: 2019
  ident: 919_CR38
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3592-0
– volume: 43
  start-page: 303
  year: 2011
  ident: 919_CR12
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– ident: 919_CR24
  doi: 10.1109/CIMCA.2005.1631345
– volume: 11
  start-page: 341
  year: 1997
  ident: 919_CR5
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 12
  start-page: 1896
  year: 2020
  ident: 919_CR3
  publication-title: Sustainability
  doi: 10.3390/su12051896
– volume: 69
  start-page: 46
  year: 2014
  ident: 919_CR20
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 9
  start-page: 2313
  year: 2021
  ident: 919_CR30
  publication-title: Mathematics
  doi: 10.3390/math9182313
– ident: 919_CR17
  doi: 10.1109/ICNN.1995.488968
– volume-title: More test examples for nonlinear programming codes (Lecture notes in economics and mathematical systems)
  year: 1987
  ident: 919_CR53
  doi: 10.1007/978-3-642-61582-5
– volume: 258
  year: 2022
  ident: 919_CR26
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2022.115539
– volume: 179
  start-page: 2232
  year: 2009
  ident: 919_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 9
  start-page: 106317
  year: 2021
  ident: 919_CR44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100365
– volume: 540
  start-page: 131
  year: 2020
  ident: 919_CR33
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2020.06.037
– volume: 219
  start-page: 8121
  year: 2013
  ident: 919_CR48
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2013.02.017
– volume: 12
  start-page: 702
  year: 2008
  ident: 919_CR7
  publication-title: IEEE T Evolut Comput
  doi: 10.1109/TEVC.2008.919004
– volume: 82
  start-page: 241
  year: 2004
  ident: 919_CR50
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2003.09.002
– volume-title: Selected applications of nonlinear programming
  year: 1968
  ident: 919_CR56
– volume: 9
  start-page: 2452
  year: 2022
  ident: 919_CR34
  publication-title: J Comput Des Eng
  doi: 10.1093/jcde/qwac113
– volume: 37
  start-page: 106
  year: 2006
  ident: 919_CR10
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 181
  start-page: 115079
  year: 2021
  ident: 919_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115079
– ident: 919_CR25
  doi: 10.1109/CEC.2007.4424748
– volume: 220
  start-page: 671
  year: 1983
  ident: 919_CR8
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 47
  start-page: 3519
  year: 2022
  ident: 919_CR16
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06326-8
– volume: 79
  start-page: 17247
  year: 2023
  ident: 919_CR31
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05227-x
– volume: 70
  start-page: 4803
  year: 2022
  ident: 919_CR32
  publication-title: Comput Mater Contin
  doi: 10.32604/cmc.2022.020847
– volume: 224
  start-page: 389
  year: 2010
  ident: 919_CR49
  publication-title: Proc Inst Mech Eng Part C
  doi: 10.1243/09544062JMES1732
– volume: 2
  start-page: 301
  year: 1995
  ident: 919_CR55
  publication-title: J Struct Eng ASCE
  doi: 10.1061/(ASCE)0733-9445(1995)121:2(301)
– volume: 95
  start-page: 51
  year: 2016
  ident: 919_CR42
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 188
  start-page: 895
  year: 2007
  ident: 919_CR39
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.10.047
– ident: 919_CR54
  doi: 10.1007/978-3-642-48320-2
– volume: 239
  start-page: 121865
  year: 2022
  ident: 919_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121865
– volume: 1
  start-page: 21
  year: 2009
  ident: 919_CR51
  publication-title: IJRTE
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2008
  ident: 919_CR18
– volume: 114
  start-page: 48
  year: 2017
  ident: 919_CR43
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.05.014
– volume-title: Nonlinear optimization applications using the gams technology
  year: 2013
  ident: 919_CR52
  doi: 10.1007/978-1-4614-6797-7
– volume-title: Linear and nonlinear programming
  year: 1984
  ident: 919_CR1
– volume: 191
  start-page: 105190
  year: 2020
  ident: 919_CR2
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 7
  start-page: 19
  year: 2016
  ident: 919_CR47
  publication-title: IJIEC
  doi: 10.5267/j.ijiec.2015.8.004
– volume: 158
  start-page: 107408
  year: 2021
  ident: 919_CR46
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107408
SSID ssj0062074
Score 2.3590932
Snippet The Runge-Kutta Optimization (RUNGE) algorithm is a recently proposed metaphor-free metaheuristic optimizer borrowing practical mathematical foundations of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2899
SubjectTerms Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Constraints
Control
Design engineering
Differential equations
Engineering
Exploitation
Genetic algorithms
Heuristic
Heuristic methods
Hyperspaces
Learning
Mathematical and Computational Engineering
Mechatronics
Optimization
Optimization algorithms
Optimization techniques
Ordinary differential equations
Physics
Research Paper
Robotics
Runge-Kutta method
Searching
Space exploration
Statistical Physics and Dynamical Systems
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH506QbrodmyjqY_hg67bWKWZcvSqZSyMCiEbnSQm5FkaQlsTho7Zeyvr6TI9TZYLrsZJMuG970fSE_fB_DWpsQYzixWRaVwlhXCPUmFiTWJpoVWgsggNlFMp3w2Ezdxw62JbZVdTAyBulpqv0f-gbraN-O5A83F6g571Sh_uholNJ7APklT4nF-XeAuErM0CSzMhLMM5yIR8dLM9upc6pIvdhkKuyqDCMz-TEx9tfnXAWnIO5Ph__7xCziMFSe63ELkJeyZegTDTs0BRecewcFv1IQjeBZaQ3XzCuafN7JZ4GorXY-Wq9DnZVDUm_iGTD0PbQToiwscBl9v2la6ae3ix-KX-4CripEDuN-4QKGB3fzsRgMqUNS0aY7g6-Tj7dUnHPUZsHaO2-JcZQnV1FpDfdnBJJOZp7tRKXE25pYpzgmVQidaeeY7UiW8ssxKq1heSENfw6Be1uYYkNWeuU7w3EsBmZxKSR2ChCxIRgpjqzGQzjiljuTlXkPje9nTLnuDls6gZTBoycbw7vGd1Za6Y-fss86KZXTjpuxNOIb3HQ764X-vdrJ7tVN4ngbo-UbCMxi06405h6f6vl006zcBxA8stPgX
  priority: 102
  providerName: ProQuest
Title Quasi-dynamic opposite learning enhanced Runge-Kutta optimizer for solving complex optimization problems
URI https://link.springer.com/article/10.1007/s12065-024-00919-6
https://www.proquest.com/docview/3255485005
Volume 17
WOSCitedRecordID wos001179189000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: RSV
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFH_Y1oM9WK2Kq3XJwZsGJpOZfBzb0iIUl3WrUrwMSSZpF3RbOrNF_Ov7ks24KiroJQwkE4a8z0lefj-Al6Fk3isRqJWtpVUlNT4ZS1nwhePSWc1MIpuQk4k6O9PTfCmsG6rdhyPJ5KnXl91KDJcUYwrFvIBpKjZgC8OdiuY4O_04-F9RFgl7mSlR0VoXOl-V-f0cP4ejdY75y7FoijbHO__3nQ_gfs4uyf5KHR7CHb_YhZ2BuYFkQ96F7R9gCB_Bxbul6ea0XZHTk8urVMnlSWaUOCd-cZEKBcgMXYOnJ8u-Nzisn3-Zf8NpMe8lqMJxa4KkEnX_dehNcieZtaZ7DB-Oj94fvqGZgYE6NM2e1rYquOMheB4TC2GEqSKgjS0ZSlEFYZVi3GhXOBux7VhbqDaIYIIVtTSeP4HNxeXCPwUSXMSm06qOZD--5sZw1BFtJKuY9KEdARsE0bgMTx5ZMj43a2DluLANLmyTFrYRI3j1_Z2rFTjHX0fvDfJtsqF2DcdfqkrV6ItG8HqQ57r7z7M9-7fhz-FemVQilg7uwWZ_vfQv4K676efd9Ri2Do4m09kYNk4kxfZtOY2tPMV2Wn8aJwW_BTDu8MY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQsKAwgBgp4ASuwiOPEjwVCCKhaTRkBKlJ3qe3YNBLNDE0GKB_FN2J7YgaQ6K4LdpHsOJFz7iP29TkAD11OrBXMYc1rjYuCS3-lNCbOZoZyoyVRUWyCT6dif1--XYMf6SxMKKtMPjE66npmwhr5U-pz30KUHjTP559xUI0Ku6tJQmMJi4k9-ep_2bpnO6_8932U51uv915u40FVABsPtx6Xusiooc5ZGoIlU0wVgaRF58S_mXBMC0GokiYzOvC1kToTtWNOOc1Kriz1456D8wUVPHD1TzhOnp_lWWR9JoIVuJSZHA7pLI_q5T7YYx8Rsc9qiMTsz0C4ym7_2pCNcW5r43-boWtwdcio0YulCVyHNduOYCOpVaDBeY3gym_UiyO4GEtfTXcDDt8tVNfg-qRVR41Bs3msY7No0NP4iGx7GMsk0HvvGC2eLPpe-W59c9R89w_wWT_yBhwWZlAs0LffUmtEPRo0e7qb8OFM5uEWrLez1t4G5Exg5pOiDFJHtqRKUW8hUnFSEG5dPQaSwFCZgZw9aIR8qla00gFAlQdQFQFUsTE8_nXPfElNcmrvzYSaanBTXbWCzBieJNytmv892p3TR3sAl7b33uxWuzvTyV24nEfYh6LJTVjvjxf2HlwwX_qmO74fDQjBwVnj8SeF6VVX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6xgiZ4WFk3RFnZ_LC3zWocJ479iDYqEFPVbTDxFtmOPSpBqNoUIX49tpvQDsGkaW-RfDlFvrPvHN99H8BHGxNjOLNYZYXCSZIJ9yQVJtZEmmZaCSID2UQ2HPLzczFa6eIP1e7NleSip8GjNJVVf1LY_rLxLXahE7v4gl2OQARmL2A98aRB_rz-81ezF7M4CjjMhLMEpyISddvM0zr-DE3LfPPRFWmIPIP2_3_zNryqs050sHCT17Bmyg60G0YHVC_wDmytwBO-gYvvczkb42JBWo-uJ6HCy6CaaeI3MuVFKCBAP9yWYfDJvKqkE6vGV-M7p9blw8i5tv9lgULpurltRoM_oJrNZvYWzgaHp1-OcM3MgLVbshVOVRJRTa011CccTDKZeKAbFRNnXW6Z4pxQKXSklce8I0XEC8ustIqlmTR0B1rldWl2AVntMesETz0JkEmplNT5jpAZSUhmbNEF0hgl1zVsuWfPuMyXgMt-YnM3sXmY2Jx14dPDO5MFaMdfpXuNrfN6Ac9y6o5aCU_dHtWFz41tl8PPa9v7N_EP8HL0dZB_Ox6evIPNOHiHry7sQauazs0-bOibajybvg9-fQ9O3_c8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-dynamic+opposite+learning+enhanced+Runge-Kutta+optimizer+for+solving+complex+optimization+problems&rft.jtitle=Evolutionary+intelligence&rft.au=Turgut%2C+Oguz+Emrah&rft.au=Turgut%2C+Mert+Sinan&rft.date=2024-08-01&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=17&rft.issue=4&rft.spage=2899&rft.epage=2962&rft_id=info:doi/10.1007%2Fs12065-024-00919-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12065_024_00919_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon