Archimedes optimization algorithm based approaches for solving energy demand estimation problem: a case study of Turkey
Energy consumption is getting rising gradually around the planet. Therefore, the importance of energy management has increased for all nations worldwide, and long-term energy demand estimation is becoming a vital problem for all countries. In this study, linear, quadratic and exponential models base...
Uloženo v:
| Vydáno v: | Neural computing & applications Ročník 35; číslo 26; s. 19627 - 19649 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0941-0643, 1433-3058 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Energy consumption is getting rising gradually around the planet. Therefore, the importance of energy management has increased for all nations worldwide, and long-term energy demand estimation is becoming a vital problem for all countries. In this study, linear, quadratic and exponential models based six different Archimedes optimization algorithms (AOA) such as AOA-Linear, AOA-Quadratic, AOA-Exponential, IAOA-Linear, IAOA-Quadratic and IAOA-Exponential have been proposed to make some future projections of Turkey for the years (2021–2050). The previous studies in the literature were used the data set of Turkey, such as observed energy demand (OED), population, gross domestic product (GDP), export and import data for the years (1979–2005) or (1979–2011) obtained from the Turkish Statistical Institute (TUIK) and the Ministry of Energy and Natural Resources (MENR). However, in this study, a new data set is organized with the OED, population, GDP, export and import data of Turkey for the years (1997–2020) to make some long-term energy demand estimations of Turkey, and this dataset is used for the first time in this study. AOA-Linear, AOA-Quadratic and AOA-Exponential algorithms are based on linear, quadratic and exponential mathematical models and the basic AOA method. IAOA-Linear, IAOA-Quadratic and IAOA-Exponential algorithms are also based on linear, quadratic and exponential mathematical models and the improved AOA (For short, IAOA) proposed in this study. Once a sensitivity analysis is made for determining the effect of algorithmic parameters of AOA and IAOA, the proposed algorithms are realized for Turkey’s long-term energy demand estimation for the years (2021–2050) with three different future scenarios. According to the experimental results, the quadratic model-based proposed IAOA produces better or comparable performance on the problem dealt with in this study in terms of solution quality and robustness. |
|---|---|
| AbstractList | Energy consumption is getting rising gradually around the planet. Therefore, the importance of energy management has increased for all nations worldwide, and long-term energy demand estimation is becoming a vital problem for all countries. In this study, linear, quadratic and exponential models based six different Archimedes optimization algorithms (AOA) such as AOA-Linear, AOA-Quadratic, AOA-Exponential, IAOA-Linear, IAOA-Quadratic and IAOA-Exponential have been proposed to make some future projections of Turkey for the years (2021–2050). The previous studies in the literature were used the data set of Turkey, such as observed energy demand (OED), population, gross domestic product (GDP), export and import data for the years (1979–2005) or (1979–2011) obtained from the Turkish Statistical Institute (TUIK) and the Ministry of Energy and Natural Resources (MENR). However, in this study, a new data set is organized with the OED, population, GDP, export and import data of Turkey for the years (1997–2020) to make some long-term energy demand estimations of Turkey, and this dataset is used for the first time in this study. AOA-Linear, AOA-Quadratic and AOA-Exponential algorithms are based on linear, quadratic and exponential mathematical models and the basic AOA method. IAOA-Linear, IAOA-Quadratic and IAOA-Exponential algorithms are also based on linear, quadratic and exponential mathematical models and the improved AOA (For short, IAOA) proposed in this study. Once a sensitivity analysis is made for determining the effect of algorithmic parameters of AOA and IAOA, the proposed algorithms are realized for Turkey’s long-term energy demand estimation for the years (2021–2050) with three different future scenarios. According to the experimental results, the quadratic model-based proposed IAOA produces better or comparable performance on the problem dealt with in this study in terms of solution quality and robustness. |
| Author | Aslan, Murat |
| Author_xml | – sequence: 1 givenname: Murat orcidid: 0000-0002-7459-3035 surname: Aslan fullname: Aslan, Murat email: murataslan@sirnak.edu.tr organization: Department of Computer Engineering, Faculty of Engineering, Şırnak University |
| BookMark | eNp9kE9PwyAchonRxG36BTyReK7-CrRQb8viv2SJl3kmFOjW2ZYJnXF-Gj-Ln0xcTUw87MSB53l5ecfouHOdRegihasUgF8HgIykCRCagOB5keRHaJQyShMKmThGIyhYvM4ZPUXjENYAwHKRjdD71OtV3VpjA3abvm7rD9XXrsOqWTpf96v267NUwRqsNhvvlF5FsHIeB9e81d0S28765Q4b26rOYBtixBAQ6bKx7Q1WWMcAHPqt2WFX4cXWv9jdGTqpVBPs-e85Qc93t4vZQzJ_un-cTeeJpmnRJ1lJiOJGlykYpTjjFRFaVVzzUmgqrCoFKyinOQedMcJ5WoBi1hihNGG0ohN0OeTGPq_b2E-u3dZ38UlJRAYMOOc0UmKgtHcheFtJXff7f_Re1Y1MQf7sLIedZdxZ7neWeVTJP3Xj4wZ-d1iigxQi3C2t_2t1wPoGrq-ViA |
| CitedBy_id | crossref_primary_10_3390_en17010074 crossref_primary_10_1186_s40807_025_00172_0 crossref_primary_10_1016_j_rineng_2024_103357 crossref_primary_10_55195_jscai_1401378 crossref_primary_10_1016_j_autcon_2024_105653 |
| Cites_doi | 10.1080/00908310490256626 10.1016/j.asoc.2021.107275 10.1016/j.enconman.2010.02.033 10.1016/j.enconman.2006.03.009 10.1016/j.energy.2017.01.074 10.1007/s40095-015-0179-8 10.18178/JOCET.2018.6.4.487 10.1016/j.egyr.2022.06.101 10.1016/j.rser.2011.08.014 10.1016/j.apenergy.2014.05.062 10.1016/j.apenergy.2021.117449 10.1016/j.enpol.2007.01.028 10.3390/en15165950 10.1109/JSEN.2022.3186063 10.1016/S0196-8904(01)00033-4 10.1007/s10489-020-01893-z 10.1016/j.enpol.2008.02.018 10.1007/s12046-017-0724-7 10.1016/j.enconman.2008.02.021 10.1109/ACSAT.2015.12 10.1007/s13369-021-06307-x 10.1016/j.energy.2014.09.067 10.1016/j.scs.2020.102138 10.1016/j.enconman.2011.08.004 10.1016/j.procs.2017.06.011 10.1016/j.econmod.2019.04.010 10.1007/s00521-016-2409-2 10.1007/s12667-016-0203-y 10.1016/j.enpol.2008.11.017 10.1016/j.asoc.2019.105576 10.1109/ACCESS.2021.3108533 10.9734/jenrr/2018/v1i429711 10.1016/j.knosys.2012.10.017 10.1016/j.energy.2021.120090 10.1016/j.energy.2010.07.043 10.1016/j.rser.2016.07.037 10.1016/j.epsr.2022.107796 10.1016/j.matcom.2022.06.027 10.1016/j.engappai.2021.104309 10.1016/j.energy.2017.12.049 10.1080/19401493.2019.1698657 10.1007/978-3-030-73882-2_7 10.1016/j.eneco.2011.12.010 10.1016/j.spc.2021.10.001 10.1016/j.enpol.2006.02.013 10.1016/j.asoc.2012.12.007 10.1016/j.asej.2021.06.032 10.1016/j.energy.2009.10.018 10.1016/j.amc.2006.08.093 10.1016/j.energy.2009.12.021 10.1007/s00521-022-07675-7 10.1016/j.enbuild.2004.09.009 10.1016/j.eneco.2010.10.001 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00521-023-08769-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 19649 |
| ExternalDocumentID | 10_1007_s00521_023_08769_6 |
| GeographicLocations | Turkey |
| GeographicLocations_xml | – name: Turkey |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-5b22a7dcb10daa747f28caf7c7b8c38eab849373670c54277190a4edd8ac243f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001020150200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 01:51:00 EST 2025 Sat Nov 29 04:30:39 EST 2025 Tue Nov 18 21:13:28 EST 2025 Fri Feb 21 02:43:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | Long-term energy demand Archimedes optimization algorithm Quadratic model Linear regression model Energy forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5b22a7dcb10daa747f28caf7c7b8c38eab849373670c54277190a4edd8ac243f3 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0002-7459-3035 |
| PQID | 2850407773 |
| PQPubID | 2043988 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2850407773 crossref_citationtrail_10_1007_s00521_023_08769_6 crossref_primary_10_1007_s00521_023_08769_6 springer_journals_10_1007_s00521_023_08769_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Akdag (CR60) 2022; 206 Houssein, Helmy, Rezk, Nassef (CR58) 2021; 103 Dong, Cao, Lee (CR18) 2005; 37 Ağbulut (CR34) 2022; 29 Braun, Altan, Beck (CR24) 2014; 130 CR39 Dilaver, Hunt (CR23) 2011; 33 Toksarı (CR35) 2007; 35 Beskirli, Hakli, Kodaz (CR41) 2017; 42 Jiang, Chu, Zou, Shan, Zheng, Pan (CR61) 2023; 203 Nazari, Kazemi, Hashemi, Sadat, Nazari (CR40) 2015; 6 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (CR50) 2021; 51 Aslan, Beşkirli (CR14) 2022; 8 Singh, Kaur (CR62) 2022; 47 Sadri, Ardehali, Amirnekooei (CR11) 2014; 77 Saglam, Spataru, Karaman (CR65) 2022; 15 CR4 Beskirli, Beskirli, Hakli, Uguz (CR51) 2018; 6 Özdemir, Dörterler, Aydın (CR6) 2022; 34 Akyol, Alataş (CR48) 2012; 1 Ediger, Tatlıdil (CR15) 2002; 43 CR9 CR49 CR46 Dowling, Russ (CR8) 2012; 34 Assareh, Behrang, Assari, Ghanbarzadeh (CR55) 2010; 35 Kıran, Özceylan, Gündüz, Paksoy (CR22) 2012; 53 Kıran, Gündüz (CR37) 2013; 13 Gorucu (CR30) 2004; 26 Suganthi, Samuel (CR2) 2012; 16 de Oliveira, Oliveira (CR25) 2018; 144 Aslan, Gunduz, Kiran (CR45) 2019; 82 Kankal, Uzlu (CR33) 2017; 28 Sharif, Baris-Tuzemen, Uzuner, Ozturk, Sinha (CR5) 2020; 57 Top, Vapur (CR27) 2018; 7 Toksarı (CR36) 2009; 37 Zhang, Wang, Niu, Liu (CR57) 2021; 301 CR53 CR52 Gunduz, Aslan (CR47) 2021; 105 Fathy, Alharbi, Alshammari, Hasanien (CR56) 2022; 13 Anwar (CR1) 2016; 65 Azadeh, Saberi, Ghaderi, Gitiforouz, Ebrahimipour (CR20) 2008; 49 Es, Kalender Öksüz, Hamzacebi (CR32) 2014; 29 Koc, Kivrak, Babaoglu (CR43) 2019; 17 Canyurt, Öztürk (CR12) 2006; 47 Ghanbari, Kazemi, Mehmanpazir, Nakhostin (CR38) 2013; 39 Ekonomou (CR31) 2010; 35 Ünler (CR17) 2008; 36 Azadeh, Ghaderi, Tarverdian, Saberi (CR19) 2007; 186 Sahraei, Duman, Çodur, Eyduran (CR54) 2021; 224 Balat (CR10) 2010; 51 Özkış (CR44) 2020; 26 Ghalehkhondabi, Ardjmand, Weckman, Young (CR3) 2017; 8 Desuky, Hussain, Kausar, Islam, El Bakrawy (CR59) 2021; 9 CR63 Erdogdu (CR16) 2007; 35 Gulcu, Kodaz (CR42) 2017; 111 Sonmez, Akgüngör, Bektaş (CR13) 2017; 122 Mousavi, Ghavidel (CR28) 2019; 7 Ozcan, Tzeremes, Tzeremes (CR7) 2020; 84 Blázquez-García, Conde, Milo, Sánchez, Barrio (CR29) 2020; 13 Ozturk, Ozturk (CR26) 2018; 8 Kumar, Jain (CR21) 2010; 35 Yao, Xie, Li, Wang, Li (CR64) 2022; 22 8769_CR63 L Suganthi (8769_CR2) 2012; 16 M Braun (8769_CR24) 2014; 130 A Ghanbari (8769_CR38) 2013; 39 P Dowling (8769_CR8) 2012; 34 OE Canyurt (8769_CR12) 2006; 47 B Dong (8769_CR18) 2005; 37 Z Dilaver (8769_CR23) 2011; 33 MD Toksarı (8769_CR36) 2009; 37 O Akdag (8769_CR60) 2022; 206 A Blázquez-García (8769_CR29) 2020; 13 S-J Jiang (8769_CR61) 2023; 203 B Ozcan (8769_CR7) 2020; 84 M Saglam (8769_CR65) 2022; 15 M Gunduz (8769_CR47) 2021; 105 Y Yao (8769_CR64) 2022; 22 VŞ Ediger (8769_CR15) 2002; 43 M Beskirli (8769_CR41) 2017; 42 H Nazari (8769_CR40) 2015; 6 E Assareh (8769_CR55) 2010; 35 A Sadri (8769_CR11) 2014; 77 A Sharif (8769_CR5) 2020; 57 S Ozturk (8769_CR26) 2018; 8 MA Sahraei (8769_CR54) 2021; 224 S Top (8769_CR27) 2018; 7 E Erdogdu (8769_CR16) 2007; 35 8769_CR39 FA Hashim (8769_CR50) 2021; 51 L Zhang (8769_CR57) 2021; 301 J Anwar (8769_CR1) 2016; 65 A Özkış (8769_CR44) 2020; 26 8769_CR9 8769_CR4 8769_CR46 A Azadeh (8769_CR20) 2008; 49 A Azadeh (8769_CR19) 2007; 186 I Koc (8769_CR43) 2019; 17 MD Toksarı (8769_CR35) 2007; 35 M Balat (8769_CR10) 2010; 51 AS Desuky (8769_CR59) 2021; 9 H Es (8769_CR32) 2014; 29 8769_CR49 F Gorucu (8769_CR30) 2004; 26 I Ghalehkhondabi (8769_CR3) 2017; 8 M Sonmez (8769_CR13) 2017; 122 M Aslan (8769_CR45) 2019; 82 D Özdemir (8769_CR6) 2022; 34 8769_CR52 8769_CR53 EH Houssein (8769_CR58) 2021; 103 A Beskirli (8769_CR51) 2018; 6 MS Kıran (8769_CR37) 2013; 13 MH Mousavi (8769_CR28) 2019; 7 S Gulcu (8769_CR42) 2017; 111 EM de Oliveira (8769_CR25) 2018; 144 U Kumar (8769_CR21) 2010; 35 R Singh (8769_CR62) 2022; 47 M Aslan (8769_CR14) 2022; 8 A Ünler (8769_CR17) 2008; 36 S Akyol (8769_CR48) 2012; 1 M Kankal (8769_CR33) 2017; 28 MS Kıran (8769_CR22) 2012; 53 Ü Ağbulut (8769_CR34) 2022; 29 A Fathy (8769_CR56) 2022; 13 L Ekonomou (8769_CR31) 2010; 35 |
| References_xml | – volume: 82 start-page: 105576 year: 2019 ident: CR45 article-title: JayaX: Jaya algorithm with xor operator for binary optimization publication-title: Appl Soft Comput – volume: 28 start-page: 737 year: 2017 end-page: 747 ident: CR33 article-title: Neural network approach with teaching–learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey publication-title: Neural Comput Appl – volume: 8 start-page: 411 year: 2017 end-page: 447 ident: CR3 article-title: An overview of energy demand forecasting methods published in 2005–2015 publication-title: Energy Syst – volume: 84 start-page: 203 year: 2020 end-page: 213 ident: CR7 article-title: Energy consumption, economic growth and environmental degradation in OECD countries publication-title: Econ Modell – ident: CR49 – ident: CR4 – ident: CR39 – volume: 13 start-page: 69 year: 2020 end-page: 78 ident: CR29 article-title: Short-term office building elevator energy consumption forecast using SARIMA publication-title: J Build Perform Simul – volume: 8 start-page: 18 year: 2022 end-page: 32 ident: CR14 article-title: Realization of Turkey’s energy demand forecast with the improved arithmetic optimization algorithm publication-title: Energy Rep – volume: 206 year: 2022 ident: CR60 article-title: A improved archimedes optimization algorithm for multi/single-objective optimal power flow publication-title: Electric Power Systems Research – volume: 36 start-page: 1937 year: 2008 end-page: 1944 ident: CR17 article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 publication-title: Energy Policy – volume: 17 start-page: 113 year: 2019 end-page: 117 ident: CR43 article-title: The estimation of the energy demand in Turkey using grey wolf optimizer algorithm publication-title: Ann Faculty Eng Hunedoara – volume: 103 start-page: 104309 year: 2021 ident: CR58 article-title: An enhanced Archimedes optimization algorithm based on Local escaping operator and Orthogonal learning for PEM fuel cell parameter identification publication-title: Eng Appl Artif Intell – volume: 65 start-page: 1065 year: 2016 end-page: 1078 ident: CR1 article-title: Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: a case of Pakistan publication-title: Renewable Sustain Energy Rev – volume: 186 start-page: 1731 year: 2007 end-page: 1741 ident: CR19 article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption publication-title: Appl Math Comput – volume: 42 start-page: 1705 year: 2017 end-page: 1715 ident: CR41 article-title: The energy demand estimation for Turkey using differential evolution algorithm publication-title: Sādhanā – ident: CR46 – volume: 144 start-page: 776 year: 2018 end-page: 788 ident: CR25 article-title: Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods publication-title: Energy – volume: 35 start-page: 512 year: 2010 end-page: 517 ident: CR31 article-title: Greek long-term energy consumption prediction using artificial neural networks publication-title: Energy – volume: 29 start-page: 495 issue: 3 year: 2014 end-page: 504 ident: CR32 article-title: Forecasting the net energy demand of Turkey by artificial neural networks publication-title: J Faculty Eng Arch Gazi Univ – volume: 26 start-page: 299 year: 2004 end-page: 307 ident: CR30 article-title: Artificial neural network modeling for forecasting gas consumption publication-title: Energy Sources – volume: 130 start-page: 305 year: 2014 end-page: 313 ident: CR24 article-title: Using regression analysis to predict the future energy consumption of a supermarket in the UK publication-title: Appl Energy – ident: CR9 – volume: 7 start-page: 1 year: 2018 end-page: 16 ident: CR27 article-title: Evolution of energy strategies in Turkey: forecasts by time series publication-title: J Energy Res Rev – volume: 8 start-page: 52 year: 2018 end-page: 60 ident: CR26 article-title: Forecasting energy consumption of Turkey by Arima model publication-title: J Asian Sci Res – volume: 35 start-page: 5223 year: 2010 end-page: 5229 ident: CR55 article-title: Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran publication-title: Energy – volume: 34 start-page: S429 year: 2012 end-page: S435 ident: CR8 article-title: The benefit from reduced energy import bills and the importance of energy prices in GHG reduction scenarios publication-title: Energy Econ – volume: 111 start-page: 64 year: 2017 end-page: 70 ident: CR42 article-title: The estimation of the electricity energy demand using particle swarm optimization algorithm: A case study of Turkey publication-title: Proc Comput Sci – volume: 49 start-page: 2165 year: 2008 end-page: 2177 ident: CR20 article-title: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach publication-title: Energy Convers Manage – volume: 15 start-page: 5950 year: 2022 ident: CR65 article-title: Electricity demand forecasting with use of artificial intelligence: the case of Gokceada Island publication-title: Energies – volume: 33 start-page: 426 year: 2011 end-page: 436 ident: CR23 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ – volume: 37 start-page: 1181 year: 2009 end-page: 1187 ident: CR36 article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey publication-title: Energy Policy – volume: 53 start-page: 75 year: 2012 end-page: 83 ident: CR22 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Conv Manag – ident: CR53 – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: CR50 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl Intell – volume: 43 start-page: 473 year: 2002 end-page: 487 ident: CR15 article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns publication-title: Energy Convers Manage – volume: 224 start-page: 120090 year: 2021 ident: CR54 article-title: Prediction of transportation energy demand: multivariate adaptive regression splines publication-title: Energy – volume: 13 start-page: 101548 year: 2022 ident: CR56 article-title: Archimedes optimization algorithm based maximum power point tracker for wind energy generation system publication-title: Ain Shams Eng J – volume: 39 start-page: 194 year: 2013 end-page: 206 ident: CR38 article-title: A cooperative ant colony optimization-genetic algorithm approach for construction of energy demand forecasting knowledge-based expert systems publication-title: Knowl-Based Syst – volume: 6 start-page: 345 year: 2015 end-page: 355 ident: CR40 article-title: Evaluating the performance of genetic and particle swarm optimization algorithms to select an appropriate scenario for forecasting energy demand using economic indicators: residential and commercial sectors of Iran publication-title: Int J Energy Environ Eng – volume: 105 start-page: 107275 year: 2021 ident: CR47 article-title: DJAYA: a discrete Jaya algorithm for solving traveling salesman problem publication-title: Appl Soft Comput – volume: 51 start-page: 1998 year: 2010 end-page: 2011 ident: CR10 article-title: Security of energy supply in Turkey: challenges and solutions publication-title: Energy Convers Manage – ident: CR63 – volume: 16 start-page: 1223 year: 2012 end-page: 1240 ident: CR2 article-title: Energy models for demand forecasting—A review publication-title: Renewable Sustain Energy Rev – volume: 35 start-page: 1709 year: 2010 end-page: 1716 ident: CR21 article-title: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy – volume: 29 start-page: 141 year: 2022 end-page: 157 ident: CR34 article-title: Forecasting of transportation-related energy demand and CO emissions in Turkey with different machine learning algorithms publication-title: Sustain Prod Consum – volume: 122 start-page: 301 year: 2017 end-page: 310 ident: CR13 article-title: Estimating transportation energy demand in Turkey using the artificial bee colony algorithm publication-title: Energy – volume: 13 start-page: 2188 year: 2013 end-page: 2203 ident: CR37 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl Soft Comput – volume: 7 start-page: 423 year: 2019 end-page: 432 ident: CR28 article-title: Structural time series model for energy demand in Iran's transportation sector Case Studies on publication-title: Transp Policy – volume: 9 start-page: 120795 year: 2021 end-page: 120814 ident: CR59 article-title: EAOA: an enhanced archimedes optimization algorithm for feature selection in classification publication-title: IEEE Access – volume: 35 start-page: 3984 year: 2007 end-page: 3990 ident: CR35 article-title: Ant colony optimization approach to estimate energy demand of Turkey publication-title: Energy Policy – volume: 22 start-page: 15561 year: 2022 end-page: 15573 ident: CR64 article-title: Routing protocol for wireless sensor networks based on archimedes optimization algorithm publication-title: IEEE Sens J – ident: CR52 – volume: 1 start-page: 36 year: 2012 end-page: 50 ident: CR48 article-title: Güncel Sürü Zekâsı Optimizasyon Algoritmaları publication-title: Nevşehir Üniversitesi Fen Bilimleri Enstitü Dergisi – volume: 6 start-page: 349 year: 2018 end-page: 352 ident: CR51 article-title: Comparing energy demand estimation using artificial algae algorithm: the case of Turkey publication-title: J Clean Energy Technol – volume: 301 start-page: 117449 year: 2021 ident: CR57 article-title: Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection publication-title: Appl Energy – volume: 203 start-page: 306 year: 2023 end-page: 327 ident: CR61 article-title: A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine publication-title: Math Comput Simul – volume: 47 start-page: 3138 year: 2006 end-page: 3148 ident: CR12 article-title: Three different applications of genetic algorithm (GA) search techniques on oil demand estimation publication-title: Energy Conv Manag – volume: 57 start-page: 102138 year: 2020 ident: CR5 article-title: Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: evidence from Quantile ARDL approach publication-title: Sustain Cities Soc – volume: 26 start-page: 959 year: 2020 end-page: 965 ident: CR44 article-title: A new model based on vortex search algorithm for estimating energy demand of Turkey Pamukkale University publication-title: J Eng Sci – volume: 47 start-page: 3683 year: 2022 end-page: 3706 ident: CR62 article-title: A novel archimedes optimization algorithm with levy flight for designing microstrip patch antenna publication-title: Arab J Sci Eng – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: CR18 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build – volume: 34 start-page: 17455 year: 2022 end-page: 17471 ident: CR6 article-title: A new modified artificial bee colony algorithm for energy demand forecasting problem publication-title: Neural Comput Appl – volume: 77 start-page: 831 year: 2014 end-page: 843 ident: CR11 article-title: General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN publication-title: Energy – volume: 35 start-page: 1129 year: 2007 end-page: 1146 ident: CR16 article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey publication-title: Energy Policy – volume: 26 start-page: 299 year: 2004 ident: 8769_CR30 publication-title: Energy Sources doi: 10.1080/00908310490256626 – volume: 105 start-page: 107275 year: 2021 ident: 8769_CR47 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107275 – volume: 51 start-page: 1998 year: 2010 ident: 8769_CR10 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.02.033 – volume: 26 start-page: 959 year: 2020 ident: 8769_CR44 publication-title: J Eng Sci – volume: 47 start-page: 3138 year: 2006 ident: 8769_CR12 publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2006.03.009 – volume: 122 start-page: 301 year: 2017 ident: 8769_CR13 publication-title: Energy doi: 10.1016/j.energy.2017.01.074 – volume: 6 start-page: 345 year: 2015 ident: 8769_CR40 publication-title: Int J Energy Environ Eng doi: 10.1007/s40095-015-0179-8 – ident: 8769_CR52 – volume: 6 start-page: 349 year: 2018 ident: 8769_CR51 publication-title: J Clean Energy Technol doi: 10.18178/JOCET.2018.6.4.487 – volume: 8 start-page: 18 year: 2022 ident: 8769_CR14 publication-title: Energy Rep doi: 10.1016/j.egyr.2022.06.101 – ident: 8769_CR46 – volume: 16 start-page: 1223 year: 2012 ident: 8769_CR2 publication-title: Renewable Sustain Energy Rev doi: 10.1016/j.rser.2011.08.014 – volume: 130 start-page: 305 year: 2014 ident: 8769_CR24 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.05.062 – volume: 301 start-page: 117449 year: 2021 ident: 8769_CR57 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117449 – volume: 35 start-page: 3984 year: 2007 ident: 8769_CR35 publication-title: Energy Policy doi: 10.1016/j.enpol.2007.01.028 – volume: 7 start-page: 423 year: 2019 ident: 8769_CR28 publication-title: Transp Policy – volume: 15 start-page: 5950 year: 2022 ident: 8769_CR65 publication-title: Energies doi: 10.3390/en15165950 – volume: 22 start-page: 15561 year: 2022 ident: 8769_CR64 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3186063 – volume: 43 start-page: 473 year: 2002 ident: 8769_CR15 publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(01)00033-4 – volume: 51 start-page: 1531 year: 2021 ident: 8769_CR50 publication-title: Appl Intell doi: 10.1007/s10489-020-01893-z – volume: 36 start-page: 1937 year: 2008 ident: 8769_CR17 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.018 – volume: 42 start-page: 1705 year: 2017 ident: 8769_CR41 publication-title: Sādhanā doi: 10.1007/s12046-017-0724-7 – volume: 49 start-page: 2165 year: 2008 ident: 8769_CR20 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.02.021 – ident: 8769_CR39 doi: 10.1109/ACSAT.2015.12 – ident: 8769_CR9 – volume: 47 start-page: 3683 year: 2022 ident: 8769_CR62 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06307-x – volume: 77 start-page: 831 year: 2014 ident: 8769_CR11 publication-title: Energy doi: 10.1016/j.energy.2014.09.067 – ident: 8769_CR53 – volume: 57 start-page: 102138 year: 2020 ident: 8769_CR5 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2020.102138 – volume: 53 start-page: 75 year: 2012 ident: 8769_CR22 publication-title: Energy Conv Manag doi: 10.1016/j.enconman.2011.08.004 – volume: 111 start-page: 64 year: 2017 ident: 8769_CR42 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2017.06.011 – volume: 84 start-page: 203 year: 2020 ident: 8769_CR7 publication-title: Econ Modell doi: 10.1016/j.econmod.2019.04.010 – volume: 28 start-page: 737 year: 2017 ident: 8769_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2409-2 – volume: 8 start-page: 411 year: 2017 ident: 8769_CR3 publication-title: Energy Syst doi: 10.1007/s12667-016-0203-y – volume: 37 start-page: 1181 year: 2009 ident: 8769_CR36 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.11.017 – volume: 82 start-page: 105576 year: 2019 ident: 8769_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105576 – volume: 9 start-page: 120795 year: 2021 ident: 8769_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3108533 – volume: 7 start-page: 1 year: 2018 ident: 8769_CR27 publication-title: J Energy Res Rev doi: 10.9734/jenrr/2018/v1i429711 – volume: 39 start-page: 194 year: 2013 ident: 8769_CR38 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.10.017 – volume: 224 start-page: 120090 year: 2021 ident: 8769_CR54 publication-title: Energy doi: 10.1016/j.energy.2021.120090 – volume: 35 start-page: 5223 year: 2010 ident: 8769_CR55 publication-title: Energy doi: 10.1016/j.energy.2010.07.043 – ident: 8769_CR4 – volume: 65 start-page: 1065 year: 2016 ident: 8769_CR1 publication-title: Renewable Sustain Energy Rev doi: 10.1016/j.rser.2016.07.037 – volume: 17 start-page: 113 year: 2019 ident: 8769_CR43 publication-title: Ann Faculty Eng Hunedoara – volume: 8 start-page: 52 year: 2018 ident: 8769_CR26 publication-title: J Asian Sci Res – volume: 206 year: 2022 ident: 8769_CR60 publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2022.107796 – volume: 203 start-page: 306 year: 2023 ident: 8769_CR61 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.06.027 – volume: 103 start-page: 104309 year: 2021 ident: 8769_CR58 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104309 – volume: 144 start-page: 776 year: 2018 ident: 8769_CR25 publication-title: Energy doi: 10.1016/j.energy.2017.12.049 – volume: 13 start-page: 69 year: 2020 ident: 8769_CR29 publication-title: J Build Perform Simul doi: 10.1080/19401493.2019.1698657 – ident: 8769_CR63 doi: 10.1007/978-3-030-73882-2_7 – volume: 29 start-page: 495 issue: 3 year: 2014 ident: 8769_CR32 publication-title: J Faculty Eng Arch Gazi Univ – volume: 34 start-page: S429 year: 2012 ident: 8769_CR8 publication-title: Energy Econ doi: 10.1016/j.eneco.2011.12.010 – volume: 29 start-page: 141 year: 2022 ident: 8769_CR34 publication-title: Sustain Prod Consum doi: 10.1016/j.spc.2021.10.001 – volume: 35 start-page: 1129 year: 2007 ident: 8769_CR16 publication-title: Energy Policy doi: 10.1016/j.enpol.2006.02.013 – volume: 13 start-page: 2188 year: 2013 ident: 8769_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.12.007 – volume: 13 start-page: 101548 year: 2022 ident: 8769_CR56 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.06.032 – volume: 35 start-page: 512 year: 2010 ident: 8769_CR31 publication-title: Energy doi: 10.1016/j.energy.2009.10.018 – volume: 186 start-page: 1731 year: 2007 ident: 8769_CR19 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.08.093 – volume: 35 start-page: 1709 year: 2010 ident: 8769_CR21 publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 34 start-page: 17455 year: 2022 ident: 8769_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07675-7 – ident: 8769_CR49 – volume: 37 start-page: 545 year: 2005 ident: 8769_CR18 publication-title: Energy Build doi: 10.1016/j.enbuild.2004.09.009 – volume: 33 start-page: 426 year: 2011 ident: 8769_CR23 publication-title: Energy Econ doi: 10.1016/j.eneco.2010.10.001 – volume: 1 start-page: 36 year: 2012 ident: 8769_CR48 publication-title: Nevşehir Üniversitesi Fen Bilimleri Enstitü Dergisi |
| SSID | ssj0004685 |
| Score | 2.361997 |
| Snippet | Energy consumption is getting rising gradually around the planet. Therefore, the importance of energy management has increased for all nations worldwide, and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19627 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Demand Energy consumption Energy management Image Processing and Computer Vision Imports Mathematical models Natural resources Optimization Original Article Parameter sensitivity Probability and Statistics in Computer Science Robustness (mathematics) Sensitivity analysis |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA5uBy_u4jJKDt400CbpJPUmongS0VG8lWzVgZmpzFTx5_hb_GW-ZNJxQQU99zWE5K1Jvu8htMetFrmzjpiSasJzLUguk4xwpXPHIOSmrAzNJsT5uby9zS8iKGzUvHZvriSDp56A3fwJJpS-lBFPo5aT9jSahXAnvTleXt18QEOGRpxQt_g3PZxFqMz3Y3wOR-855pdr0RBtThf_N88ltBCzS3w0VodlNOUGK2ix6dyAoyGvoudAOAuB0I1wBU6jH9GYWPXuqmG3vu-_vvj4ZnHDOQ6CkN5i0FR_AoFdgAxi6_pqYLFn6hhDIHFsUHOIFTYwAA70tbgqcedxCP5iDV2fnnSOz0jswUAMGGdNMk2pEtboNLFKQe1RUmlUKYzQ0jDplJYcMhxPA2cyToWABENxZ61UhnJWsnU0M6gGbgPhzCVWq4TRVFueCadSJbWwzKVaaXBzmyhttqIwkaDc98noFRNq5bC0BSxtEZa2aG-i_ck_D2N6jl-lW80OF9FURwWVGTgyIQRM4KDZ0ffPP4-29TfxbTRPg1L492ktNFMPH90OmjNPdXc03A0q_AZgcO21 priority: 102 providerName: Springer Nature |
| Title | Archimedes optimization algorithm based approaches for solving energy demand estimation problem: a case study of Turkey |
| URI | https://link.springer.com/article/10.1007/s00521-023-08769-6 https://www.proquest.com/docview/2850407773 |
| Volume | 35 |
| WOSCitedRecordID | wos001020150200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: P5Z dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3058 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6VwKEXoC0V4aU59NZaZG0v9nJBgEA9RRGlFepl5dfSSiSBJMDfZ-x4SYtULr3sYdcerTTjmfHY830An6S3qgo-MNdwy2RlFat0r2TS2CoICrmFaBLZhOr39dVVNcgFt2m-Vtn6xOSo_djFGvk-1yXZm1JKHN3escgaFU9XM4XGEixHpDLZgeWTs_7g4o_OyETKSXuYeL9Hitw2k5rnYkWU3nLBIixbxQ7-Dk2LfPPFEWmKPOdr__vP67Cac048nhvJO3gTRu9hreVzwLy8P8BjgqGl8BimOCZXMsw9mmhurkns7NcQY9Dz2AKR0zjKeZHMN5YlMKQ-QvRhaEYeI3zHvC8SM2vNIRp0JAATpi2OG7y8n5AT2YDv52eXp19ZJmZgjlbsjJWWc6O8s0XPG0MbkoZrZxrllNVO6GCslpT2RGw4V0quFGUdRgbvtXFcikZ8hM5oPAqbgGXoeWt6ghfWy1IFUxhtlRehsMaS7-tC0eqkdhm1PJJn3NTPeMtJjzXpsU56rA-68Pl5zu0cs-PV0Tut8uq8fqf1QnNd-NKqf_H539K2Xpe2DW95srh4SW0HOrPJfdiFFfcw-z2d7GXr3YOlQfmTnhfffjwBCCD51g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4AmsAFVCQsItZBT9Jxp7uH7jExxggEAm44rAnxMvZrlITdhX248U_5G63unWHVBG4cvM6jkp756tGP-j6Al9JbVQQfmKu4ZbKwihW6nTNpbBEEpdxMVElsQnU6-vy8OFuAX00vTDxW2cTEFKj9wMU18jdc54Q3pZR4f3XNompU3F1tJDRmsDgJP6c0ZRu9O96n__uK88OD7scjVqsKMEdwG7Pccm6UdzZre2Oomq64dqZSTlnthA7Gakk5OxKbuVxypShlGhm818ZxKSpBdhfhgZQ0WSL_Ocu__NGHmSRAacYUTxNJUTfppFa9uP5KV7lgkQSuYHt_J8J5dfvPhmzKc4dr_9sXegSrdUWNH2Yu8BgWQv8JrDVqFVgHr3WYJpJdSv5hhAMKlL26AxXN5Tcaxvh7D2NK99jQrNNzVNEjOWdcdMGQuiTRh57pe4zkJLOuT6w1ed6iQUcGMDH24qDC7mRIIfIpfL6X4W_AUn_QD5uAeWh7a9qCZ9bLXAWTGW2VFyGzxlJkb0HWYKB0NSd7lAa5LG_YpBNuSsJNmXBT7rXg9c07VzNGkjuf3m7AUtbRaVTOkdKC3QZu89u3W9u629oLWD7qfjotT487J89ghSe0x-N427A0Hk7Cc3jofowvRsOd5DcIX-8bhr8B1BtUQg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZSgMxFA1uiC_uYl3z4JsGO0mmyfgmalGUIrjg25BttGCn0o7i5_gtfpk36UxdUEF8nkwIyc1dkpxzENriVovEWUdMRjXhiRYkkfWYcKUTxyDkRiwLYhOi1ZI3N8n5BxR_eO1eXUkOMA2epSkvdh9stjsEvvnTTCiDKSOeUi0hjVE0zr1okK_XL64_ICODKCfUMP59D2clbOb7Pj6Hpvd888sVaYg8zZn_j3kWTZdZJ94fmMkcGnH5PJqpFB1wucEX0HMgooUA6fq4C86kU6I0sbq_7fbaxV3n9cXHPYsrLnJoCGkvBgv2JxPYBSghtq6jcos9g8cAGolL4Zo9rLCBDnCgtcXdDF8-9sCPLKKr5tHlwTEptRmIgU1bkFhTqoQ1OqpbpaAmyag0KhNGaGmYdEpLDpmPp4czMadCQOKhuLNWKkM5y9gSGsu7uVtGOHZ1q1Wd0UhbHgunIiW1sMxFWmlwfzUUVcuSmpK43Otn3KdDyuUwtSlMbRqmNm3U0Pbwn4cBbcevrdeq1U7LLdxPqYzBwQkhYAA71eq-f_65t5W_Nd9Ek-eHzfTspHW6iqZosA__hG0NjRW9R7eOJsxT0e73NoJlvwFedfl9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Archimedes+optimization+algorithm+based+approaches+for+solving+energy+demand+estimation+problem%3A+a+case+study+of+Turkey&rft.jtitle=Neural+computing+%26+applications&rft.au=Aslan%2C+Murat&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=26&rft.spage=19627&rft.epage=19649&rft_id=info:doi/10.1007%2Fs00521-023-08769-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |