Staged encoder training for cross-camera person re-identification

As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 18; no. 3; pp. 2323 - 2331
Main Authors: Xu, Zhi, Yang, Jiawei, Liu, Yuxuan, Zhao, Longyang, Liu, Jiajia
Format: Journal Article
Language:English
Published: London Springer London 01.04.2024
Springer Nature B.V
Subjects:
ISSN:1863-1703, 1863-1711
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at https://github.com/yjwyuanwu/SET.
AbstractList As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at https://github.com/yjwyuanwu/SET.
As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at https://github.com/yjwyuanwu/SET.
Author Liu, Yuxuan
Xu, Zhi
Zhao, Longyang
Yang, Jiawei
Liu, Jiajia
Author_xml – sequence: 1
  givenname: Zhi
  surname: Xu
  fullname: Xu, Zhi
  email: xuzhi@guet.edu.cn
  organization: School of Computer Information and Security, Guilin University of Electronic Technology
– sequence: 2
  givenname: Jiawei
  surname: Yang
  fullname: Yang, Jiawei
  organization: School of Computer Information and Security, Guilin University of Electronic Technology
– sequence: 3
  givenname: Yuxuan
  surname: Liu
  fullname: Liu, Yuxuan
  organization: School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology
– sequence: 4
  givenname: Longyang
  surname: Zhao
  fullname: Zhao, Longyang
  organization: School of Computer Information and Security, Guilin University of Electronic Technology
– sequence: 5
  givenname: Jiajia
  surname: Liu
  fullname: Liu, Jiajia
  organization: School of Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China
BookMark eNp9kE9LAzEQxYMoWGu_gKcFz9GZTTa7eyzFf1DwoJ5DNpuUlDapyfbgtzftioKHBobM4f1m3rwrcu6DN4TcINwhQH2fEGsBFEqWq4WWwhmZYCMYxRrx_LcHdklmKa0hP1bWjWgmZP42qJXpC-N16E0shqicd35V2BALHUNKVKutiarYmZiCL6Khrjd-cNZpNbjgr8mFVZtkZj__lHw8Prwvnuny9ellMV9SzbAdaKVAdWCs5r1Q2IPm3Daiq3gPJaAWZcdQAbfcoupqzW1bKug5w6aqrQXLpuR2nLuL4XNv0iDXYR99XilZWYm2hUrwrGpG1dF7NFZqNxx9Hi7bSAR5yEyOmcmcmTxmJiGj5T90F91Wxa_TEBuhlMV-ZeKfqxPUN1V2gD0
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130123
crossref_primary_10_12677_csa_2025_158199
Cites_doi 10.1109/TPAMI.2017.2666805
10.1016/j.cviu.2007.01.003
10.1109/TPAMI.2021.3054775
10.1109/CVPR42600.2020.00345
10.1109/CVPR.2018.00016
10.1109/CVPR.2018.00541
10.1109/CVPR42600.2020.01367
10.1109/CVPR.2018.00110
10.1609/aaai.v33i01.33018738
10.1109/ICCV.2015.133
10.1109/ICCV.2019.00801
10.1109/ICIP.2003.1246634
10.1109/CVPR46437.2021.01175
10.1007/978-3-030-01261-8_11
10.1109/CVPR.2019.00070
10.1007/978-3-030-58536-5_6
10.1109/CVPR.2009.5206848
10.1007/978-3-030-58621-8_31
10.1007/978-3-319-48881-3_2
10.1109/CVPR.2016.90
10.1109/CVPR42600.2020.01099
10.1109/CVPR.2018.00454
10.1109/CVPR.2019.00224
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11760-023-02909-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: AAdvanced Technologies & Aerospace Database (subscription)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 2331
ExternalDocumentID 10_1007_s11760_023_02909_0
GrantInformation_xml – fundername: Guangxi Key Laboratory of Precision Navigation Technology and Application
  grantid: No. DH202227
– fundername: Guilin Key Research and Development Program
  grantid: No. 20210206-1
– fundername: Jiangsu Province Agricultural Science and Technology Innovation and Promotion Special Project
  grantid: No. NJ2021-21
– fundername: Guangxi Key Laboratory of Image and Graphic Intelligent Processing
  grantid: No. GIIP2301
– fundername: Guangxi Natural Science Foundation
  grantid: No. 2020GXNSFAA297186
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-5a0ab0efc4d6a1d0c44f86b54d0201c62b31a04f4f1ab7c4f92a0d431857ff0f3
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001162939100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Tue Oct 07 06:14:59 EDT 2025
Sat Nov 29 05:31:02 EST 2025
Tue Nov 18 22:26:07 EST 2025
Fri Feb 21 02:39:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Unsupervised
Person re-identification
Camera variation
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5a0ab0efc4d6a1d0c44f86b54d0201c62b31a04f4f1ab7c4f92a0d431857ff0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256990564
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_3256990564
crossref_citationtrail_10_1007_s11760_023_02909_0
crossref_primary_10_1007_s11760_023_02909_0
springer_journals_10_1007_s11760_023_02909_0
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Ye, Shen, Lin, Xiang, Shao, Hoi (CR20) 2021; 44
CR19
CR18
CR17
CR16
CR15
CR14
Javed, Shafique, Rasheed, Shah (CR9) 2008; 109
CR12
CR11
CR10
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR13) 2011; 12
Chen, Zhu, Zheng, Lai (CR1) 2017; 40
CR2
CR4
CR3
CR5
CR8
CR7
CR28
CR27
CR26
CR25
CR24
CR23
CR22
Ge, Zhu, Chen, Zhao (CR6) 2020; 33
CR21
2909_CR4
2909_CR5
F Pedregosa (2909_CR13) 2011; 12
2909_CR2
2909_CR3
YC Chen (2909_CR1) 2017; 40
2909_CR26
2909_CR27
2909_CR24
2909_CR25
2909_CR8
2909_CR28
Y Ge (2909_CR6) 2020; 33
2909_CR7
2909_CR11
2909_CR12
2909_CR10
M Ye (2909_CR20) 2021; 44
2909_CR15
2909_CR16
2909_CR14
2909_CR19
2909_CR17
2909_CR18
2909_CR22
2909_CR23
2909_CR21
O Javed (2909_CR9) 2008; 109
References_xml – volume: 33
  start-page: 11309
  year: 2020
  end-page: 11321
  ident: CR6
  article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: CR22
– ident: CR18
– ident: CR4
– ident: CR14
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 40
  start-page: 392
  issue: 2
  year: 2017
  end-page: 408
  ident: CR1
  article-title: Person re-identification by camera correlation aware feature augmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2666805
– ident: CR10
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR13
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– ident: CR8
– ident: CR25
– ident: CR27
– ident: CR23
– ident: CR21
– ident: CR19
– ident: CR3
– ident: CR15
– ident: CR17
– ident: CR11
– volume: 109
  start-page: 146
  issue: 2
  year: 2008
  end-page: 162
  ident: CR9
  article-title: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.01.003
– volume: 44
  start-page: 2872
  issue: 6
  year: 2021
  end-page: 2893
  ident: CR20
  article-title: Deep learning for person re-identification: a survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054775
– ident: CR5
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: 2909_CR12
  doi: 10.1109/CVPR42600.2020.00345
– ident: 2909_CR18
  doi: 10.1109/CVPR.2018.00016
– ident: 2909_CR27
  doi: 10.1109/CVPR.2018.00541
– volume: 33
  start-page: 11309
  year: 2020
  ident: 2909_CR6
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 2909_CR21
  doi: 10.1109/CVPR42600.2020.01367
– ident: 2909_CR3
  doi: 10.1109/CVPR.2018.00110
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2909_CR13
  publication-title: J Mach Learn Res
– ident: 2909_CR4
– ident: 2909_CR11
  doi: 10.1609/aaai.v33i01.33018738
– ident: 2909_CR24
  doi: 10.1109/ICCV.2015.133
– ident: 2909_CR8
– volume: 109
  start-page: 146
  issue: 2
  year: 2008
  ident: 2909_CR9
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2007.01.003
– ident: 2909_CR10
  doi: 10.1109/ICCV.2019.00801
– ident: 2909_CR14
  doi: 10.1109/ICIP.2003.1246634
– ident: 2909_CR19
  doi: 10.1109/CVPR46437.2021.01175
– ident: 2909_CR26
  doi: 10.1007/978-3-030-01261-8_11
– ident: 2909_CR16
  doi: 10.1109/CVPR.2019.00070
– ident: 2909_CR28
  doi: 10.1007/978-3-030-58536-5_6
– ident: 2909_CR2
  doi: 10.1109/CVPR.2009.5206848
– ident: 2909_CR23
  doi: 10.1007/978-3-030-58621-8_31
– ident: 2909_CR15
  doi: 10.1007/978-3-319-48881-3_2
– ident: 2909_CR7
  doi: 10.1109/CVPR.2016.90
– ident: 2909_CR17
  doi: 10.1109/CVPR42600.2020.01099
– volume: 44
  start-page: 2872
  issue: 6
  year: 2021
  ident: 2909_CR20
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054775
– volume: 40
  start-page: 392
  issue: 2
  year: 2017
  ident: 2909_CR1
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2666805
– ident: 2909_CR22
  doi: 10.1109/CVPR.2018.00454
– ident: 2909_CR25
  doi: 10.1109/CVPR.2019.00224
– ident: 2909_CR5
SSID ssj0000327868
Score 2.3157833
Snippet As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2323
SubjectTerms Accuracy
Cameras
Classification
Coders
Computer Imaging
Computer Science
Computer vision
Datasets
Dictionaries
Image coding
Image Processing and Computer Vision
Methods
Multimedia Information Systems
Original Paper
Parameter identification
Pattern recognition
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
SummonAdditionalLinks – databaseName: Springer Journals New Starts & Take-Overs Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBalWsL3LwpoHsK7s5ilg8SBEfpbclTyhILe3q73eSzXZVVNDDnnY2ZGcymY95InTGIpGD1nCidSJJKm1CCiU1AeOkAGBngvuI6eg2Hw6L8ZjfhaKwRZPt3oQk_U3dFrtFOaMEbAw83Ln0V9EamLvCDWy4fxgtPSs0ifOiroErmOu_SZNQLfP9Mp8tUgszv0RGvcEZdP-31W20FQAmvqxPxA5aMdMe6jbDG3DQ5R7a_NCJcBdu1wouFo1dW0sNZM3kCAyYFvt9EyWc_wrPPETHc0MmOmQaeeHuoafB9ePVDQnTFYgCtatIJqiQ1FiVaiYiDaJJbcFklmpAkJFisUwiQVOb2kjIXKWWx4Lq1FVb59ZSm-yjzvRlag4QZrGyrDBUxy5PsZA8zySXhnFjuACM1kdRw-FShdbj7j-ey7ZpsuNYCRwrPcdK2kfny29mdeONX6mPG8GVQQkXZQJwDoxtxmADF42g2tc_r3b4N_IjtBED1KnzeY5Rp5q_mhO0rt6qyWJ-6g_nOzgw3Ho
  priority: 102
  providerName: Springer Nature
Title Staged encoder training for cross-camera person re-identification
URI https://link.springer.com/article/10.1007/s11760-023-02909-0
https://www.proquest.com/docview/3256990564
Volume 18
WOSCitedRecordID wos001162939100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgLo6OQw_eNJi2adqcREURlGEYF8RLyQqCjOPM6O_3pU0dFfTiob20DWm-5L2PtwLs81jmeGoEMSZVhCmXkkIrQ1A5aSTYmRSVx_T-Ou92i4cH0QsGt3EIq2xkYiWozYv2NvKjFHUzSs6Ms-PhK_Fdo7x3NbTQmIV5XyXBt27oZY-fNhaaJnlRZ8MV3FfipGnIm6mz5-KcU4JKCy_hfQTfddOUcP7wkVaq52Llv5NeheVAOqOTepeswYwdrMPSl1KEGyheJyhZTOTrWho7iprWERGS2qiaLtHSG7CiYcXRo5ElTyaEGlXobsLdxfnt2SUJ7RWIxnM3IZmkUlHrNDNcxgaxYa7gKmMGKWSseaLSWFLmmIulyjVzIpHUMJ9unTtHXboFc4OXgd2GiCfa8cJSk_hAxUKJPFNCWS6sFRJJWgviZmFLHWqP-_94LqdVkz0YJYJRVmCUtAUHn98M68obf77dbhAowykcl9Plb8Fhg-H08e-j7fw92i4sJsht6gCeNsxNRm92Dxb0--RpPOrA_Ol5t9fvwOxVTjrVjsR7_-b-A9MW4-4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5ik2gPBbqow-pDOVELJ3Hs-ICqqoBAMx1xAMQt9SohVcN0ZtqKP8Vv5DkLA0hw48AhpyRW4u_5vc9-G8AXkWiJq0ZR5zJDuQkZLaxxFI2TRYKda1V5TM97st8vLi7UyQzctLkwMayy1YmVonZXNp6R72Zom1Fz5oJ_G_6hsWtU9K62LTRqsej66_-4ZRvvHe8jvttpenhw-uOINl0FqEVxm9BcM22YD5Y7oROHn8RDIUzOHTKnxIrUZIlmPPCQaCMtDyrVzPGYZSxDYCHDcWdhnmeFjOuqK-ndmQ7LUlnU2XeFiJU_Wdbk6dTZeokUjKKRxEtFn8RDWzgluI98spWpO1x6bZO0DO8aUk2-16tgBWb84D28vVdq8QOajwlqTkdi3U7nR6RtjUGQtJNqeqjV8YCODKs9CBl5eumaUKpKej_C2Yv8wyeYG1wN_GcgIrVBFJ65NAZiFkbJ3CjjhfJeaSShHUhaIEvb1FaP__G7nFaFjuCXCH5ZgV-yDuzcvTOsK4s8-_R6i3jZaJlxOYW7A19bmZnefnq01edH24LFo9OfvbJ33O-uwZsUeVwdrLQOc5PRX78BC_bf5HI82qzkn8Cvl5alW4yuPew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTB6VScTu2DbxqWtmnaPIo6FMcYqGNvJZ8wkDm26t_vpR_bFBXEhz41DcldLvfr5e4XhM6ZL2KwGo61DiWm0oY4UVJjcE4KAHYkeH5iOujGvV4yHPL-UhV_nu1eHUkWNQ2OpWmctSfatheFb37MCAZ_Aw934f1VtEZdIr37X38czKMsJAzipKiHS5jj4iRhWTnzfTefvdMCcn45Jc2dT6f-_2HvoO0SeHpXxUrZRStm3ED16lIHr7TxBtpaYijcg103gw1He47uUkOz6kYJD7Cul88BK-HiWt4kh-7e1OCRLjOQcqXvo-fO7dP1HS5vXcAKzDHDkSBCEmMV1Uz4GlRGbcJkRDUgS1-xQIa-INRS6wsZK2p5IIimrgo7tpbY8ADVxq9jc4g8FijLEkN04PIXE8njSHJpGDeGC8BuTeRX0k5VSUnu5vGSLsiUncRSkFiaSywlTXQx_2ZSEHL82rpVKTEtjXOWhgDzwAlHDAZwWSlt8frn3o7-1vwMbfRvOmn3vvdwjDYDQENFyk8L1bLpmzlB6-o9G82mp_ma_QAYHehC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staged+encoder+training+for+cross-camera+person+re-identification&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Xu%2C+Zhi&rft.au=Yang%2C+Jiawei&rft.au=Liu%2C+Yuxuan&rft.au=Zhao%2C+Longyang&rft.date=2024-04-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=3&rft.spage=2323&rft.epage=2331&rft_id=info:doi/10.1007%2Fs11760-023-02909-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_023_02909_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon