Staged encoder training for cross-camera person re-identification
As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning...
Saved in:
| Published in: | Signal, image and video processing Vol. 18; no. 3; pp. 2323 - 2331 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.04.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1863-1703, 1863-1711 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at
https://github.com/yjwyuanwu/SET. |
|---|---|
| AbstractList | As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at
https://github.com/yjwyuanwu/SET. As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other reasons, which will seriously affect the model recognition accuracy. To address this problem, this paper proposes a two-stage contrastive learning method to gradually reduce the impact of camera variations. In the first stage, we train an encoder for each camera using only images from the respective camera. This ensures that each encoder has better recognition performance on images from its respective camera while being unaffected by camera variations. In the second stage, we encode the same image using all trained encoders to generate a new combination code that is robust against camera variations. We also use Cross-Camera Encouragement (Lin et al., in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020) distance that complements the advantages of combined encoding to further mitigate the impact of camera variations. Our method achieves high accuracy on several commonly used person ReID datasets, e.g., on the Market-1501, achieves 90.8% rank-1 accuracy and 85.2% mAP, outperforming the recent unsupervised works by 12+% in terms of mAP. Code is available at https://github.com/yjwyuanwu/SET. |
| Author | Liu, Yuxuan Xu, Zhi Zhao, Longyang Yang, Jiawei Liu, Jiajia |
| Author_xml | – sequence: 1 givenname: Zhi surname: Xu fullname: Xu, Zhi email: xuzhi@guet.edu.cn organization: School of Computer Information and Security, Guilin University of Electronic Technology – sequence: 2 givenname: Jiawei surname: Yang fullname: Yang, Jiawei organization: School of Computer Information and Security, Guilin University of Electronic Technology – sequence: 3 givenname: Yuxuan surname: Liu fullname: Liu, Yuxuan organization: School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology – sequence: 4 givenname: Longyang surname: Zhao fullname: Zhao, Longyang organization: School of Computer Information and Security, Guilin University of Electronic Technology – sequence: 5 givenname: Jiajia surname: Liu fullname: Liu, Jiajia organization: School of Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China |
| BookMark | eNp9kE9LAzEQxYMoWGu_gKcFz9GZTTa7eyzFf1DwoJ5DNpuUlDapyfbgtzftioKHBobM4f1m3rwrcu6DN4TcINwhQH2fEGsBFEqWq4WWwhmZYCMYxRrx_LcHdklmKa0hP1bWjWgmZP42qJXpC-N16E0shqicd35V2BALHUNKVKutiarYmZiCL6Khrjd-cNZpNbjgr8mFVZtkZj__lHw8Prwvnuny9ellMV9SzbAdaKVAdWCs5r1Q2IPm3Daiq3gPJaAWZcdQAbfcoupqzW1bKug5w6aqrQXLpuR2nLuL4XNv0iDXYR99XilZWYm2hUrwrGpG1dF7NFZqNxx9Hi7bSAR5yEyOmcmcmTxmJiGj5T90F91Wxa_TEBuhlMV-ZeKfqxPUN1V2gD0 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_130123 crossref_primary_10_12677_csa_2025_158199 |
| Cites_doi | 10.1109/TPAMI.2017.2666805 10.1016/j.cviu.2007.01.003 10.1109/TPAMI.2021.3054775 10.1109/CVPR42600.2020.00345 10.1109/CVPR.2018.00016 10.1109/CVPR.2018.00541 10.1109/CVPR42600.2020.01367 10.1109/CVPR.2018.00110 10.1609/aaai.v33i01.33018738 10.1109/ICCV.2015.133 10.1109/ICCV.2019.00801 10.1109/ICIP.2003.1246634 10.1109/CVPR46437.2021.01175 10.1007/978-3-030-01261-8_11 10.1109/CVPR.2019.00070 10.1007/978-3-030-58536-5_6 10.1109/CVPR.2009.5206848 10.1007/978-3-030-58621-8_31 10.1007/978-3-319-48881-3_2 10.1109/CVPR.2016.90 10.1109/CVPR42600.2020.01099 10.1109/CVPR.2018.00454 10.1109/CVPR.2019.00224 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s11760-023-02909-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: AAdvanced Technologies & Aerospace Database (subscription) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 2331 |
| ExternalDocumentID | 10_1007_s11760_023_02909_0 |
| GrantInformation_xml | – fundername: Guangxi Key Laboratory of Precision Navigation Technology and Application grantid: No. DH202227 – fundername: Guilin Key Research and Development Program grantid: No. 20210206-1 – fundername: Jiangsu Province Agricultural Science and Technology Innovation and Promotion Special Project grantid: No. NJ2021-21 – fundername: Guangxi Key Laboratory of Image and Graphic Intelligent Processing grantid: No. GIIP2301 – fundername: Guangxi Natural Science Foundation grantid: No. 2020GXNSFAA297186 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-5a0ab0efc4d6a1d0c44f86b54d0201c62b31a04f4f1ab7c4f92a0d431857ff0f3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001162939100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Tue Oct 07 06:14:59 EDT 2025 Sat Nov 29 05:31:02 EST 2025 Tue Nov 18 22:26:07 EST 2025 Fri Feb 21 02:39:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Unsupervised Person re-identification Camera variation Contrastive learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5a0ab0efc4d6a1d0c44f86b54d0201c62b31a04f4f1ab7c4f92a0d431857ff0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256990564 |
| PQPubID | 2044169 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3256990564 crossref_citationtrail_10_1007_s11760_023_02909_0 crossref_primary_10_1007_s11760_023_02909_0 springer_journals_10_1007_s11760_023_02909_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 2024-04-00 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ye, Shen, Lin, Xiang, Shao, Hoi (CR20) 2021; 44 CR19 CR18 CR17 CR16 CR15 CR14 Javed, Shafique, Rasheed, Shah (CR9) 2008; 109 CR12 CR11 CR10 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (CR13) 2011; 12 Chen, Zhu, Zheng, Lai (CR1) 2017; 40 CR2 CR4 CR3 CR5 CR8 CR7 CR28 CR27 CR26 CR25 CR24 CR23 CR22 Ge, Zhu, Chen, Zhao (CR6) 2020; 33 CR21 2909_CR4 2909_CR5 F Pedregosa (2909_CR13) 2011; 12 2909_CR2 2909_CR3 YC Chen (2909_CR1) 2017; 40 2909_CR26 2909_CR27 2909_CR24 2909_CR25 2909_CR8 2909_CR28 Y Ge (2909_CR6) 2020; 33 2909_CR7 2909_CR11 2909_CR12 2909_CR10 M Ye (2909_CR20) 2021; 44 2909_CR15 2909_CR16 2909_CR14 2909_CR19 2909_CR17 2909_CR18 2909_CR22 2909_CR23 2909_CR21 O Javed (2909_CR9) 2008; 109 |
| References_xml | – volume: 33 start-page: 11309 year: 2020 end-page: 11321 ident: CR6 article-title: Self-paced contrastive learning with hybrid memory for domain adaptive object re-id publication-title: Adv. Neural. Inf. Process. Syst. – ident: CR22 – ident: CR18 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 40 start-page: 392 issue: 2 year: 2017 end-page: 408 ident: CR1 article-title: Person re-identification by camera correlation aware feature augmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2666805 – ident: CR10 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR13 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – ident: CR8 – ident: CR25 – ident: CR27 – ident: CR23 – ident: CR21 – ident: CR19 – ident: CR3 – ident: CR15 – ident: CR17 – ident: CR11 – volume: 109 start-page: 146 issue: 2 year: 2008 end-page: 162 ident: CR9 article-title: Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.01.003 – volume: 44 start-page: 2872 issue: 6 year: 2021 end-page: 2893 ident: CR20 article-title: Deep learning for person re-identification: a survey and outlook publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3054775 – ident: CR5 – ident: CR7 – ident: CR28 – ident: CR26 – ident: CR24 – ident: 2909_CR12 doi: 10.1109/CVPR42600.2020.00345 – ident: 2909_CR18 doi: 10.1109/CVPR.2018.00016 – ident: 2909_CR27 doi: 10.1109/CVPR.2018.00541 – volume: 33 start-page: 11309 year: 2020 ident: 2909_CR6 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 2909_CR21 doi: 10.1109/CVPR42600.2020.01367 – ident: 2909_CR3 doi: 10.1109/CVPR.2018.00110 – volume: 12 start-page: 2825 year: 2011 ident: 2909_CR13 publication-title: J Mach Learn Res – ident: 2909_CR4 – ident: 2909_CR11 doi: 10.1609/aaai.v33i01.33018738 – ident: 2909_CR24 doi: 10.1109/ICCV.2015.133 – ident: 2909_CR8 – volume: 109 start-page: 146 issue: 2 year: 2008 ident: 2909_CR9 publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2007.01.003 – ident: 2909_CR10 doi: 10.1109/ICCV.2019.00801 – ident: 2909_CR14 doi: 10.1109/ICIP.2003.1246634 – ident: 2909_CR19 doi: 10.1109/CVPR46437.2021.01175 – ident: 2909_CR26 doi: 10.1007/978-3-030-01261-8_11 – ident: 2909_CR16 doi: 10.1109/CVPR.2019.00070 – ident: 2909_CR28 doi: 10.1007/978-3-030-58536-5_6 – ident: 2909_CR2 doi: 10.1109/CVPR.2009.5206848 – ident: 2909_CR23 doi: 10.1007/978-3-030-58621-8_31 – ident: 2909_CR15 doi: 10.1007/978-3-319-48881-3_2 – ident: 2909_CR7 doi: 10.1109/CVPR.2016.90 – ident: 2909_CR17 doi: 10.1109/CVPR42600.2020.01099 – volume: 44 start-page: 2872 issue: 6 year: 2021 ident: 2909_CR20 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3054775 – volume: 40 start-page: 392 issue: 2 year: 2017 ident: 2909_CR1 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2666805 – ident: 2909_CR22 doi: 10.1109/CVPR.2018.00454 – ident: 2909_CR25 doi: 10.1109/CVPR.2019.00224 – ident: 2909_CR5 |
| SSID | ssj0000327868 |
| Score | 2.3157833 |
| Snippet | As a cross-camera retrieval problem, person re-identification (ReID) suffers from image style variations caused by camera parameters, lighting and other... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2323 |
| SubjectTerms | Accuracy Cameras Classification Coders Computer Imaging Computer Science Computer vision Datasets Dictionaries Image coding Image Processing and Computer Vision Methods Multimedia Information Systems Original Paper Parameter identification Pattern recognition Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
| SummonAdditionalLinks | – databaseName: Springer Journals New Starts & Take-Overs Collection dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBalWsL3LwpoHsK7s5ilg8SBEfpbclTyhILe3q73eSzXZVVNDDnnY2ZGcymY95InTGIpGD1nCidSJJKm1CCiU1AeOkAGBngvuI6eg2Hw6L8ZjfhaKwRZPt3oQk_U3dFrtFOaMEbAw83Ln0V9EamLvCDWy4fxgtPSs0ifOiroErmOu_SZNQLfP9Mp8tUgszv0RGvcEZdP-31W20FQAmvqxPxA5aMdMe6jbDG3DQ5R7a_NCJcBdu1wouFo1dW0sNZM3kCAyYFvt9EyWc_wrPPETHc0MmOmQaeeHuoafB9ePVDQnTFYgCtatIJqiQ1FiVaiYiDaJJbcFklmpAkJFisUwiQVOb2kjIXKWWx4Lq1FVb59ZSm-yjzvRlag4QZrGyrDBUxy5PsZA8zySXhnFjuACM1kdRw-FShdbj7j-ey7ZpsuNYCRwrPcdK2kfny29mdeONX6mPG8GVQQkXZQJwDoxtxmADF42g2tc_r3b4N_IjtBED1KnzeY5Rp5q_mhO0rt6qyWJ-6g_nOzgw3Ho priority: 102 providerName: Springer Nature |
| Title | Staged encoder training for cross-camera person re-identification |
| URI | https://link.springer.com/article/10.1007/s11760-023-02909-0 https://www.proquest.com/docview/3256990564 |
| Volume | 18 |
| WOSCitedRecordID | wos001162939100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 1863-1711 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1863-1711 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-1711 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgLo6OQw_eNJi2adqcREURlGEYF8RLyQqCjOPM6O_3pU0dFfTiob20DWm-5L2PtwLs81jmeGoEMSZVhCmXkkIrQ1A5aSTYmRSVx_T-Ou92i4cH0QsGt3EIq2xkYiWozYv2NvKjFHUzSs6Ms-PhK_Fdo7x3NbTQmIV5XyXBt27oZY-fNhaaJnlRZ8MV3FfipGnIm6mz5-KcU4JKCy_hfQTfddOUcP7wkVaq52Llv5NeheVAOqOTepeswYwdrMPSl1KEGyheJyhZTOTrWho7iprWERGS2qiaLtHSG7CiYcXRo5ElTyaEGlXobsLdxfnt2SUJ7RWIxnM3IZmkUlHrNDNcxgaxYa7gKmMGKWSseaLSWFLmmIulyjVzIpHUMJ9unTtHXboFc4OXgd2GiCfa8cJSk_hAxUKJPFNCWS6sFRJJWgviZmFLHWqP-_94LqdVkz0YJYJRVmCUtAUHn98M68obf77dbhAowykcl9Plb8Fhg-H08e-j7fw92i4sJsht6gCeNsxNRm92Dxb0--RpPOrA_Ol5t9fvwOxVTjrVjsR7_-b-A9MW4-4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5ik2gPBbqow-pDOVELJ3Hs-ICqqoBAMx1xAMQt9SohVcN0ZtqKP8Vv5DkLA0hw48AhpyRW4u_5vc9-G8AXkWiJq0ZR5zJDuQkZLaxxFI2TRYKda1V5TM97st8vLi7UyQzctLkwMayy1YmVonZXNp6R72Zom1Fz5oJ_G_6hsWtU9K62LTRqsej66_-4ZRvvHe8jvttpenhw-uOINl0FqEVxm9BcM22YD5Y7oROHn8RDIUzOHTKnxIrUZIlmPPCQaCMtDyrVzPGYZSxDYCHDcWdhnmeFjOuqK-ndmQ7LUlnU2XeFiJU_Wdbk6dTZeokUjKKRxEtFn8RDWzgluI98spWpO1x6bZO0DO8aUk2-16tgBWb84D28vVdq8QOajwlqTkdi3U7nR6RtjUGQtJNqeqjV8YCODKs9CBl5eumaUKpKej_C2Yv8wyeYG1wN_GcgIrVBFJ65NAZiFkbJ3CjjhfJeaSShHUhaIEvb1FaP__G7nFaFjuCXCH5ZgV-yDuzcvTOsK4s8-_R6i3jZaJlxOYW7A19bmZnefnq01edH24LFo9OfvbJ33O-uwZsUeVwdrLQOc5PRX78BC_bf5HI82qzkn8Cvl5alW4yuPew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTB6VScTu2DbxqWtmnaPIo6FMcYqGNvJZ8wkDm26t_vpR_bFBXEhz41DcldLvfr5e4XhM6ZL2KwGo61DiWm0oY4UVJjcE4KAHYkeH5iOujGvV4yHPL-UhV_nu1eHUkWNQ2OpWmctSfatheFb37MCAZ_Aw934f1VtEZdIr37X38czKMsJAzipKiHS5jj4iRhWTnzfTefvdMCcn45Jc2dT6f-_2HvoO0SeHpXxUrZRStm3ED16lIHr7TxBtpaYijcg103gw1He47uUkOz6kYJD7Cul88BK-HiWt4kh-7e1OCRLjOQcqXvo-fO7dP1HS5vXcAKzDHDkSBCEmMV1Uz4GlRGbcJkRDUgS1-xQIa-INRS6wsZK2p5IIimrgo7tpbY8ADVxq9jc4g8FijLEkN04PIXE8njSHJpGDeGC8BuTeRX0k5VSUnu5vGSLsiUncRSkFiaSywlTXQx_2ZSEHL82rpVKTEtjXOWhgDzwAlHDAZwWSlt8frn3o7-1vwMbfRvOmn3vvdwjDYDQENFyk8L1bLpmzlB6-o9G82mp_ma_QAYHehC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staged+encoder+training+for+cross-camera+person+re-identification&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Xu%2C+Zhi&rft.au=Yang%2C+Jiawei&rft.au=Liu%2C+Yuxuan&rft.au=Zhao%2C+Longyang&rft.date=2024-04-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=3&rft.spage=2323&rft.epage=2331&rft_id=info:doi/10.1007%2Fs11760-023-02909-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_023_02909_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |