Capture device identification from digital images using Kullback-Leibler divergence
It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a d...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 80; číslo 13; s. 19513 - 19538 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named
disputed image
and ii) a set of eligible capture devices with which the
disputed image
could have been shot. In order to define a
device statistical fingerprint
, a set of reference digital images is produced for each eligible capture device. The
device statistical fingerprint
is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the
disputed image
. Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal. |
|---|---|
| AbstractList | It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint, a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image. Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal. It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint , a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image . Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal. |
| Author | Delgado-Gutiérrez, Guillermo Quintanar-Reséndiz, Ana L. Vázquez-Medina, Rubén Rodríguez-Santos, Francisco Ramírez, Omar Jiménez Pichardo-Méndez, Josué L. |
| Author_xml | – sequence: 1 givenname: Ana L. surname: Quintanar-Reséndiz fullname: Quintanar-Reséndiz, Ana L. organization: CICATA Querétaro, Instituto Politécnico Nacional – sequence: 2 givenname: Francisco surname: Rodríguez-Santos fullname: Rodríguez-Santos, Francisco organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional – sequence: 3 givenname: Josué L. surname: Pichardo-Méndez fullname: Pichardo-Méndez, Josué L. organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional – sequence: 4 givenname: Guillermo surname: Delgado-Gutiérrez fullname: Delgado-Gutiérrez, Guillermo organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional – sequence: 5 givenname: Omar Jiménez surname: Ramírez fullname: Ramírez, Omar Jiménez organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional – sequence: 6 givenname: Rubén orcidid: 0000-0002-6210-4097 surname: Vázquez-Medina fullname: Vázquez-Medina, Rubén email: ruvazquez@ipn.mx organization: CICATA Querétaro, Instituto Politécnico Nacional |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxGy4sxs7GVHFl6jEAMyW41wilzQpdlKJf09KkZAYOt0N73Mfz4xN2q4lxi4RrhFA30REWAgOAjmCSiXHEzbFVEuutcDJ2MsMuE4Bz9gsxjUAqlQspux1abf9ECgpaecdJb6ktveVd7b3XZtUodskpa99b5vEb2xNMRmib-vkeWiawroPviJfNBTG1I5CTa2jc3Za2SbSxW-ds_f7u7flI1-9PDwtb1fcScx7nubO2qzMVeVkplyZl1mR5wgiJWFFCQvIlcssOiJdFVhCBtoqa62qlNapk3N2dZi7Dd3nQLE3624I7bjSiFSCUHIhcExlh5QLXYyBKuPGb_bf9cH6xiCYvUJzUGhGheZHodmj4h-6DaOE8HUckgcojuG2pvB31RHqG1tMhkk |
| CitedBy_id | crossref_primary_10_1007_s11042_024_18255_3 crossref_primary_10_1142_S2196888823500136 crossref_primary_10_7717_peerj_cs_2513 crossref_primary_10_1080_13682199_2025_2533533 crossref_primary_10_1007_s11042_022_12468_0 crossref_primary_10_1155_2022_1574024 |
| Cites_doi | 10.1080/15567281.2010.531500 10.1117/12.703370 10.1007/978-3-642-04438-0_38 10.1007/978-1-4614-0757-7_6 10.1016/j.forsciint.2014.08.034 10.1186/s13635-021-00121-6 10.1007/s11042-018-6809-4 10.1109/APSIPAASC47483.2019.9023312 10.1109/TCYB.2020.3008248 10.1088/1475-7516/2015/06/051 10.1364/OE.14.011551 10.1007/s11042-017-5101-3 10.1109/TIFS.2017.2692683 10.6028/NIST.SP.800-86 10.1109/TIT.2014.2320500 10.1109/CVPRW50498.2020.00031 10.1117/12.2004348 10.3390/e21020189 10.1109/CDC.2010.5716982 10.1109/TSP.2003.810305 10.1109/TCSVT.2011.2160750 10.1109/CVPRW.2017.231 10.1109/TIP.2013.2290596 10.1109/ACCESS.2020.2968855 10.1016/j.diin.2008.06.004 10.1109/TITB.2011.2159806 10.1109/IWCMC48107.2020.9148073 10.1109/ICIP.2008.4712000 10.1080/00450618.2019.1569133 10.1016/j.neucom.2018.06.075 10.1214/aoms/1177729694 10.1109/ICIP.2017.8296534 10.1109/TIFS.2010.2099220 10.1016/j.forsciint.2012.12.018 10.1109/CVPR42600.2020.00721 10.1016/j.diin.2019.02.002 10.1016/j.patcog.2017.09.027 10.1109/ICIP.1999.817172 10.1109/TIFS.2006.873602 10.1016/j.image.2016.12.011 10.1016/j.diin.2018.02.005 10.1109/ICIP.2007.4379537 10.1109/ACCESS.2019.2955452 10.1117/12.805701 10.1007/978-3-642-21073-0_39 10.1109/TIFS.2007.916285 10.1109/ICECA.2019.8822212 10.25046/aj050347 10.1117/12.649775 10.1007/978-3-540-24654-1_13 10.1109/ISIT.2003.1228271 10.1109/TIFS.2007.916010 10.1007/s11042-019-7288-y 10.1109/TIFS.2010.2046268 10.1016/j.neucom.2016.05.012 10.1016/j.forsciint.2020.110311 10.1109/ICME.2007.4284792 10.1109/ISIT.2006.261977 10.1016/B978-012369476-8/50017-8 10.1016/j.image.2018.04.013 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-021-10653-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 19538 |
| ExternalDocumentID | 10_1007_s11042_021_10653_1 |
| GrantInformation_xml | – fundername: Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional grantid: SIP-20201156 funderid: https://doi.org/10.13039/501100007161 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: CVU-746317 funderid: https://doi.org/10.13039/501100003141 – fundername: Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional grantid: SIP-20200445 funderid: https://doi.org/10.13039/501100007161 – fundername: Consejo Nacional de Ciencia y Tecnología grantid: CVU-377075 funderid: https://doi.org/10.13039/501100003141 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-59caa8d96fc386cd9d8b991025e2a2d04096c8a1cee7fb1d0807a6aaa6f6775c3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622668700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 04 23:02:29 EST 2025 Tue Nov 18 21:44:13 EST 2025 Sat Nov 29 06:20:10 EST 2025 Fri Feb 21 02:48:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Photographic cameras (07.68.+m) Statistical mechanics (05.20.-y) Forensic science (89.20.Mn) Image processing algorithms (07.05.Pj) Statistics (02.50.-r) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-59caa8d96fc386cd9d8b991025e2a2d04096c8a1cee7fb1d0807a6aaa6f6775c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6210-4097 |
| PQID | 2530263421 |
| PQPubID | 54626 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2530263421 crossref_citationtrail_10_1007_s11042_021_10653_1 crossref_primary_10_1007_s11042_021_10653_1 springer_journals_10_1007_s11042_021_10653_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20210500 2021-05-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | NgT-TChangS-FLinC-YSunQPassive-blind image forensicsMultimed Secur Technol Digit Rights20061538341210.1016/B978-012369476-8/50017-8 ZhangWTangXYangZNiuSMulti-scale segmentation strategies in PRNU-based image tampering localizationMultimed Tools Appl20197814201132013210.1007/s11042-019-7288-y DavidABLiubHJacksonADThe kullback-Leibler divergence as an estimator of the statistical properties of CMB mapsJ Cosmol Astropart Phys201520150605110.1088/1475-7516/2015/06/051 Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification. In: International conference on image processing, 2004. ICIP ’04., volume 1, vol 1, pp 709–712 GisolfFBarensPSnelEMalgoezarAVosMMieremetAGeradtsZCommon source identification of images in large databasesForen Sci Int201424422223010.1016/j.forsciint.2014.08.034 HeYBen HamzaAKrimHA generalized divergence measure for robust image registrationIEEE Trans Signal Process200351512111220204356510.1109/TSP.2003.810305 Choi KS, Lam EY, Wong KKY (2006) Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA (eds) Digital Photography II. SPIE BayramSSencarHTMemonNClassification of digital camera-models based on demosaicing artifactsDigit Investig200851495910.1016/j.diin.2008.06.004 Vidyasagar M (2010) Kullback-Leibler divergence rate between probability distributions on sets of different cardinalities. In: 49th IEEE Conference on Decision and Control (CDC). IEEE BondiLBestaginiPPérez-GonzálezFPreprocessingSTImproving PRNU compression through quantization, and codingIEEE Trans Inform Foren Secur2019143608,620 Goljan M, Fridrich J, Filler T (2009) Large scale test of sensor fingerprint camera identification. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp 72540I–72540I Vázquez-Medina R (2008) Mapeos caóticos unidimensionales aplicados a la generación de ruido, PhD thesis, UAM Iztapalapa Goljan M (2008) Digital camera identification from images–estimating false acceptance probability. In: International Workshop on Digital Watermarking. Springer, pp 454–468 SeshadriSKarunakarKRAkshathaAKPaulKHA preliminary approach to using PRNU based transfer learning for camera identificationAdv Intell Syst Comput2020944246,255 Zhang W-N, Liu Y-X, Zou Z-Y, Zang Y-L, Yang Y, Law BN-F (2019) Effective source camera identification based on MSEPLL denoising applied to small image patches. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, p 2019 Behare MS, Bhalchandra AS, Kumar R (2019) Source camera identification using photo response noise uniformity. In: 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proc. IEEE Int. Conf. Image Process. IEEE, pp 1296–1299 Yang S, Shaozuo Y, Zhao B, Zhao B (2020) Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, p 2020 MoCFridrichJGoljanMLukásJDetermining image origin and integrity using sensor noiseIEEE Trans Inform Foren Secur200831749010.1109/TIFS.2007.916285 LiBShuHLiuZShaoZLiCHuangMHuangJNonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributionsEntropy2019212189392392410.3390/e21020189 Fernández-Menduiña S, Pérez-González F (2020) On the information leakage of camera fingerprint estimates. In: arxiv.org: Electrical engineering and systems science, Image and video processing (eess.IV) Goljan M, Mo C, Fridrich J (2007) Identifying common source digital camera from image pairs. In: 2007 IEEE International conference on image processing. IEEE QiaoTRetraintFCogranneRThaiTHIndividual camera device identification from jpeg imagesSignal Process Image Commun201752748610.1016/j.image.2016.12.011 SaitoSTomiokaYKitazawaHA theoretical framework for estimating false acceptance rate of PRNU-based camera identificationIEEE Trans Inform Foren Secur20171292026203510.1109/TIFS.2017.2692683 Gilbert H, Handschuh H (2003) Security analysis of sha-256 and sisters. In: International workshop on selected areas in cryptography. Springer, pp 175–193 Silva J, Narayanan S (2006) Upper bound Kullback-Leibler Divergence for hidden Markov models with application as discrimination measure for speech recognition. In: 2006 IEEE international symposium on information theory. IEEE van LT, Chong K-S, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. In: 2007 IEEE International conference on multimedia and expo. IEEE, pp 16–19 Ben Hamza A, Krim H (2003) Jensen-renyi divergence measure: theoretical and computational perspectives. In: IEEE international symposium on information theory, 2003. Proceedings. IEEE LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inform Foren Secur20061220521410.1109/TIFS.2006.873602 KhaderMHamzaABNonrigid image registration using an entropic similarityIEEE Trans Inform Technol Biomed201115568169010.1109/TITB.2011.2159806 Chen M, Fridrich J, Goljan M (2007) Digital imaging sensor identification (further study). In: Electronic imaging 2007. International Society for Optics and Photonics, pp 65050P–65050P Matthews R, Sorell M, Falkner N (2019) Isolating lens effects from source camera identification using sensor pattern noise, vol 51, pp S132–S135 Hai ThaiTCogranneRRetraintFCamera model identification based on the heteroscedastic noise modelIEEE Trans Image Process2014231250263326200110.1109/TIP.2013.2290596 LiC-TLiYColor-decoupled photo response non-uniformity for digital image forensicsIEEE Trans Circ Syst Video Technol2012222260271296202010.1109/TCSVT.2011.2160750 Sung-Hyuk CComprehensive survey on distance/similarity measures between probability density functionsInt J Math Models Methods Appl Sci200714300307 Qin J, Luo Y, Xiang X, Tan Y, Huang H (2019) Coverless image steganography: A survey, vol 7, pp 171372–171394 SaberAHKhanMAMejbelBGA survey on image forgery detection using different forensic approachesAdv Sci Technol Eng Syst J20205336137010.25046/aj050347 Zhao Y, Zheng N, Qiao T, Ming X u (2019) Source camera identification via low dimensional PRNU features. Multimed Tools Appl ThakurRRohillaRRecent advances in digital image manipulation detection techniques: A brief reviewForen Sci Int202031211031110.1016/j.forsciint.2020.110311 Chen C, Zhao X, Stamm MC (2017) Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International conference on image processing (ICIP), pp 1512–1516 Ji S, Zhang Z, Ying S, Wang L, Zhao X, Gao Y (2020) Kullback-Leibler divergence metric learning. IEEE Trans Cybern 1–12 MatthewsRSorellMFalknerNAn analysis of optical contributions to a photo-sensor’s ballistic fingerprintsDigit Investig20192813914510.1016/j.diin.2019.02.002 Roy A, Chakraborty RS, Sameer U, Naskar R (2017) Camera source identification using discrete cosine transform residue features and ensemble classifier. In: 2017 IEEE Conference on computer vision and pattern recognition workshops (CVPRW), pp 1848–1854 SwaminathanAMinWRay LiuKJDigital image forensics via intrinsic fingerprintsIEEE Trans Inform Foren Secur20083110111710.1109/TIFS.2007.916010 de la República S (2019) Legislatura XLIV. Punto de acuerdo para modificar códigos penales o crear leyes para incorporar el delito de violencia virtual, agravado en los casos de agresión por motivos de género. In: de la República S (ed) Gaceta LXIV/1SPR-21. Gobierno de México NYCE (2013) Tecnologías de la Información Metodología de Análisis Forense de Datos y Guías de Ejecución MehrishASubramanyamAVEmmanuelSRobust PRNU estimation from probabilistic raw measurementsSignal Process Image Commun201866304110.1016/j.image.2018.04.013 CooperAJImproved photo response non-uniformity (PRNU) based source camera identificationForen Sci int2013226113214110.1016/j.forsciint.2012.12.018 HarremoesPTim vanERenyi divergence and kullback-leibler divergenceIEEE Trans Inf Theory20146073797382010.1109/TIT.2014.2320500 GloeTBöhmeRThe dresden image database for benchmarking digital image forensicsJ Digit Foren Pract20103150159,0110.1080/15567281.2010.531500 Khader M, Ben Hamza A (2011) An entropy-based technique for nonrigid medical image alignment. In: Lecture notes in computer science. Springer, Berlin, pp 444–455 SencarHTMemonNOverview of state-of-the-art in digital image forensicsAlgo Architect Inform Syst Secur20083325348 BingchaoXuWangXZhouXXiJWangSSource camera identification from image texture featuresNeurocomputing201620713114010.1016/j.neucom.2016.05.012 LongMPengFZhuYIdentifying natural images and computer generated graphics based on binary similarity measures of PRNUMultimed Tools Appl2019781489,50610.1007/s11042-017-5101-3 KullbackSLeiblerRAOn information and sufficiencyAnnals Math Stat195122179863996810.1214/aoms/1177729694 Titouna C, Nait-Abdesselam F, Moungla H (2020) An online anomaly detection approach for unmanned aerial vehicles. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE GoljanMFridrichJMoCDefending against fingerprint-copy attack in sensor-based camera identificationIEEE Trans Inform Foren Secur20116122723610.1109/TIFS.2010.2099220 Fridrich J (2013) Sensor defects in digital image forensic. In: Digital image forensics, vol 1. Springer, pp 179–218 Fischer A, Gloe T (2013) Forensic analysis of interdependencies between vignetting and radial lens distortion. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013. SPIE Chang-TsunLSource camera identification using enhanced sensor pattern noiseIEEE Trans Inform Foren Secur20105228028710.1109/TIFS.2010.2046268 ChoiKSLamEYWongKKYAutomatic source camera identification using the intrinsic lens radial distortionOpt Express200614241155110.1364/OE.14.011551 Kadhim IJ, Premarat HT Sencar (10653_CR55) 2008; 3 W Zhang (10653_CR72) 2019; 78 10653_CR9 H Zeng (10653_CR70) 2020; 8 T-T Ng (10653_CR48) 2006; 15 AB David (10653_CR14) 2015; 2015 10653_CR16 10653_CR17 P Harremoes (10653_CR28) 2014; 60 R Li (10653_CR38) 2018; 74 10653_CR15 S Kullback (10653_CR36) 1951; 22 M Long (10653_CR40) 2019; 78 10653_CR13 10653_CR57 M Khader (10653_CR34) 2011; 15 10653_CR54 10653_CR11 10653_CR50 10653_CR51 L Chang-Tsun (10653_CR7) 2010; 5 S Bayram (10653_CR2) 2008; 5 Y He (10653_CR29) 2003; 51 T Qiao (10653_CR49) 2017; 52 C Meij (10653_CR45) 2018; 24 F Gisolf (10653_CR21) 2014; 244 C Mo (10653_CR46) 2008; 3 10653_CR47 J Lukas (10653_CR41) 2006; 1 10653_CR42 KS Choi (10653_CR10) 2006; 14 C-T Li (10653_CR37) 2012; 22 B Li (10653_CR39) 2019; 21 S Saito (10653_CR53) 2017; 12 Sung-Hyuk C (10653_CR58) 2007; 1 R Matthews (10653_CR43) 2019; 28 T Hai Thai (10653_CR27) 2014; 23 Xu Bingchao (10653_CR5) 2016; 207 S Seshadri (10653_CR56) 2020; 944 R Thakur (10653_CR61) 2020; 312 M Goljan (10653_CR25) 2011; 6 10653_CR35 10653_CR32 10653_CR33 10653_CR30 10653_CR31 10653_CR73 10653_CR71 AJ Cooper (10653_CR12) 2013; 226 AH Saber (10653_CR52) 2020; 5 T Gloe (10653_CR22) 2010; 3 A Mehrish (10653_CR44) 2018; 66 T van Erven (10653_CR65) 2014; 60 10653_CR18 10653_CR19 10653_CR8 10653_CR69 L Bondi (10653_CR6) 2019; 14 10653_CR26 A Swaminathan (10653_CR59) 2008; 3 10653_CR23 10653_CR67 10653_CR1 10653_CR24 10653_CR4 10653_CR3 10653_CR66 10653_CR63 10653_CR20 10653_CR64 10653_CR62 10653_CR60 J Wang (10653_CR68) 2019; 44 |
| References_xml | – reference: Fischer A, Gloe T (2013) Forensic analysis of interdependencies between vignetting and radial lens distortion. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013. SPIE – reference: Goljan M (2008) Digital camera identification from images–estimating false acceptance probability. In: International Workshop on Digital Watermarking. Springer, pp 454–468 – reference: Kent K, Chevalier S, Grance T, Dang H (2006) SP 800-86 Guide to integrating forensic techniques into incident response – reference: GisolfFBarensPSnelEMalgoezarAVosMMieremetAGeradtsZCommon source identification of images in large databasesForen Sci Int201424422223010.1016/j.forsciint.2014.08.034 – reference: van LT, Chong K-S, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. In: 2007 IEEE International conference on multimedia and expo. IEEE, pp 16–19 – reference: Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proc. IEEE Int. Conf. Image Process. IEEE, pp 1296–1299 – reference: Zhang W-N, Liu Y-X, Zou Z-Y, Zang Y-L, Yang Y, Law BN-F (2019) Effective source camera identification based on MSEPLL denoising applied to small image patches. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, p 2019 – reference: MehrishASubramanyamAVEmmanuelSRobust PRNU estimation from probabilistic raw measurementsSignal Process Image Commun201866304110.1016/j.image.2018.04.013 – reference: MeijCGeradtsZSource camera identification using Photo Response non-Uniformity on WhatsAppDigit Investig20182414215410.1016/j.diin.2018.02.005 – reference: SwaminathanAMinWRay LiuKJDigital image forensics via intrinsic fingerprintsIEEE Trans Inform Foren Secur20083110111710.1109/TIFS.2007.916010 – reference: Goljan M, Mo C, Fridrich J (2007) Identifying common source digital camera from image pairs. In: 2007 IEEE International conference on image processing. IEEE – reference: Vázquez-Medina R (2008) Mapeos caóticos unidimensionales aplicados a la generación de ruido, PhD thesis, UAM Iztapalapa – reference: Sung-Hyuk CComprehensive survey on distance/similarity measures between probability density functionsInt J Math Models Methods Appl Sci200714300307 – reference: Chang-TsunLSource camera identification using enhanced sensor pattern noiseIEEE Trans Inform Foren Secur20105228028710.1109/TIFS.2010.2046268 – reference: de la República S (2019) Legislatura XLIV. Punto de acuerdo para modificar códigos penales o crear leyes para incorporar el delito de violencia virtual, agravado en los casos de agresión por motivos de género. In: de la República S (ed) Gaceta LXIV/1SPR-21. Gobierno de México – reference: Kadhim IJ, Premaratne P, Vial PJ, Halloran B (2019) Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research, vol 335, pp 299–326 – reference: LongMPengFZhuYIdentifying natural images and computer generated graphics based on binary similarity measures of PRNUMultimed Tools Appl2019781489,50610.1007/s11042-017-5101-3 – reference: DavidABLiubHJacksonADThe kullback-Leibler divergence as an estimator of the statistical properties of CMB mapsJ Cosmol Astropart Phys201520150605110.1088/1475-7516/2015/06/051 – reference: SeshadriSKarunakarKRAkshathaAKPaulKHA preliminary approach to using PRNU based transfer learning for camera identificationAdv Intell Syst Comput2020944246,255 – reference: van LT, Emmanuel S, Kankanhalli MS (2007) Identifying source cell phone using chromatic aberration. In: Multimedia and Expo 2007 IEEE International conference on. IEEE – reference: Gilbert H, Handschuh H (2003) Security analysis of sha-256 and sisters. In: International workshop on selected areas in cryptography. Springer, pp 175–193 – reference: Khader M, Ben Hamza A (2011) An entropy-based technique for nonrigid medical image alignment. In: Lecture notes in computer science. Springer, Berlin, pp 444–455 – reference: LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inform Foren Secur20061220521410.1109/TIFS.2006.873602 – reference: Goljan M, Fridrich J, Filler T (2009) Large scale test of sensor fingerprint camera identification. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp 72540I–72540I – reference: SaberAHKhanMAMejbelBGA survey on image forgery detection using different forensic approachesAdv Sci Technol Eng Syst J20205336137010.25046/aj050347 – reference: HarremoesPTim vanERenyi divergence and kullback-leibler divergenceIEEE Trans Inf Theory20146073797382010.1109/TIT.2014.2320500 – reference: MoCFridrichJGoljanMLukásJDetermining image origin and integrity using sensor noiseIEEE Trans Inform Foren Secur200831749010.1109/TIFS.2007.916285 – reference: Roy A, Chakraborty RS, Sameer U, Naskar R (2017) Camera source identification using discrete cosine transform residue features and ensemble classifier. In: 2017 IEEE Conference on computer vision and pattern recognition workshops (CVPRW), pp 1848–1854 – reference: LiBShuHLiuZShaoZLiCHuangMHuangJNonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributionsEntropy2019212189392392410.3390/e21020189 – reference: NgT-TChangS-FLinC-YSunQPassive-blind image forensicsMultimed Secur Technol Digit Rights20061538341210.1016/B978-012369476-8/50017-8 – reference: ChoiKSLamEYWongKKYAutomatic source camera identification using the intrinsic lens radial distortionOpt Express200614241155110.1364/OE.14.011551 – reference: Fridrich J (2013) Sensor defects in digital image forensic. In: Digital image forensics, vol 1. Springer, pp 179–218 – reference: Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification. In: International conference on image processing, 2004. ICIP ’04., volume 1, vol 1, pp 709–712 – reference: BingchaoXuWangXZhouXXiJWangSSource camera identification from image texture featuresNeurocomputing201620713114010.1016/j.neucom.2016.05.012 – reference: Fernández-Menduiña S, Pérez-González F (2020) On the information leakage of camera fingerprint estimates. In: arxiv.org: Electrical engineering and systems science, Image and video processing (eess.IV) – reference: LiC-TLiYColor-decoupled photo response non-uniformity for digital image forensicsIEEE Trans Circ Syst Video Technol2012222260271296202010.1109/TCSVT.2011.2160750 – reference: LiRLiC-TGuanYInference of a compact representation of sensor fingerprint for source camera identificationPattern Recogn20187455656710.1016/j.patcog.2017.09.027 – reference: SencarHTMemonNOverview of state-of-the-art in digital image forensicsAlgo Architect Inform Syst Secur20083325348 – reference: MatthewsRSorellMFalknerNAn analysis of optical contributions to a photo-sensor’s ballistic fingerprintsDigit Investig20192813914510.1016/j.diin.2019.02.002 – reference: Behare MS, Bhalchandra AS, Kumar R (2019) Source camera identification using photo response noise uniformity. In: 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE – reference: HeYBen HamzaAKrimHA generalized divergence measure for robust image registrationIEEE Trans Signal Process200351512111220204356510.1109/TSP.2003.810305 – reference: Vidyasagar M (2010) Kullback-Leibler divergence rate between probability distributions on sets of different cardinalities. In: 49th IEEE Conference on Decision and Control (CDC). IEEE – reference: Chen M, Fridrich J, Goljan M (2007) Digital imaging sensor identification (further study). In: Electronic imaging 2007. International Society for Optics and Photonics, pp 65050P–65050P – reference: ThakurRRohillaRRecent advances in digital image manipulation detection techniques: A brief reviewForen Sci Int202031211031110.1016/j.forsciint.2020.110311 – reference: CooperAJImproved photo response non-uniformity (PRNU) based source camera identificationForen Sci int2013226113214110.1016/j.forsciint.2012.12.018 – reference: Thai TH, Cogranne R, Retraint F (2012) Camera model identification Based on hypothesis testing theory. In: 2012 Proceedings of the 20th european signal processing conference (EUSIPCO), pp 1747–1751 – reference: Saitoh N, Kurosawa K, Kuroki K (1999) Ccd fingerprint method-identification of a video camera from videotaped images, vol 3, pp 537–540 – reference: KhaderMHamzaABNonrigid image registration using an entropic similarityIEEE Trans Inform Technol Biomed201115568169010.1109/TITB.2011.2159806 – reference: Al-Zarouni M (2006) Mobile handset forensic evidence: a challenge for law enforcement. In: Australian Digital Forensics Conference Proceedings. School of Computer and Information Science, Edith Cowan University, Perth, Western Australia – reference: Yang S, Shaozuo Y, Zhao B, Zhao B (2020) Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, p 2020 – reference: ZengHWanYDengKPengASource camera identification with Dual-Tree complex wavelet transformIEEE Access20208188741888310.1109/ACCESS.2020.2968855 – reference: KullbackSLeiblerRAOn information and sufficiencyAnnals Math Stat195122179863996810.1214/aoms/1177729694 – reference: GloeTBöhmeRThe dresden image database for benchmarking digital image forensicsJ Digit Foren Pract20103150159,0110.1080/15567281.2010.531500 – reference: GoljanMFridrichJMoCDefending against fingerprint-copy attack in sensor-based camera identificationIEEE Trans Inform Foren Secur20116122723610.1109/TIFS.2010.2099220 – reference: Zhao Y, Zheng N, Qiao T, Ming X u (2019) Source camera identification via low dimensional PRNU features. Multimed Tools Appl – reference: Chen C, Zhao X, Stamm MC (2017) Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International conference on image processing (ICIP), pp 1512–1516 – reference: Choi KS, Lam EY, Wong KKY (2006) Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA (eds) Digital Photography II. SPIE – reference: NYCE (2013) Tecnologías de la Información Metodología de Análisis Forense de Datos y Guías de Ejecución – reference: Matthews R, Sorell M, Falkner N (2019) Isolating lens effects from source camera identification using sensor pattern noise, vol 51, pp S132–S135 – reference: Ji S, Zhang Z, Ying S, Wang L, Zhao X, Gao Y (2020) Kullback-Leibler divergence metric learning. IEEE Trans Cybern 1–12 – reference: Ben Hamza A, Krim H (2003) Jensen-renyi divergence measure: theoretical and computational perspectives. In: IEEE international symposium on information theory, 2003. Proceedings. IEEE – reference: van ErvenTHarremoesPRényi divergence and Kullback-Leibler divergenceIEEE Trans Inform Theory201460737973820322593010.1109/TIT.2014.2320500 – reference: Danelljan M, Van Gool L, Timofte R (2020) Probabilistic regression for visual tracking. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE – reference: Silva J, Narayanan S (2006) Upper bound Kullback-Leibler Divergence for hidden Markov models with application as discrimination measure for speech recognition. In: 2006 IEEE international symposium on information theory. IEEE – reference: ZhangWTangXYangZNiuSMulti-scale segmentation strategies in PRNU-based image tampering localizationMultimed Tools Appl20197814201132013210.1007/s11042-019-7288-y – reference: Hai ThaiTCogranneRRetraintFCamera model identification based on the heteroscedastic noise modelIEEE Trans Image Process2014231250263326200110.1109/TIP.2013.2290596 – reference: QiaoTRetraintFCogranneRThaiTHIndividual camera device identification from jpeg imagesSignal Process Image Commun201752748610.1016/j.image.2016.12.011 – reference: Qin J, Luo Y, Xiang X, Tan Y, Huang H (2019) Coverless image steganography: A survey, vol 7, pp 171372–171394 – reference: Titouna C, Nait-Abdesselam F, Moungla H (2020) An online anomaly detection approach for unmanned aerial vehicles. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE – reference: SaitoSTomiokaYKitazawaHA theoretical framework for estimating false acceptance rate of PRNU-based camera identificationIEEE Trans Inform Foren Secur20171292026203510.1109/TIFS.2017.2692683 – reference: WangJGuojingWLiJJhaSKA new method estimating linear gaussian filter kernel by image PRNU noiseJ Inform Secur Appl2019441,11 – reference: BayramSSencarHTMemonNClassification of digital camera-models based on demosaicing artifactsDigit Investig200851495910.1016/j.diin.2008.06.004 – reference: BondiLBestaginiPPérez-GonzálezFPreprocessingSTImproving PRNU compression through quantization, and codingIEEE Trans Inform Foren Secur2019143608,620 – volume: 3 start-page: 150 year: 2010 ident: 10653_CR22 publication-title: J Digit Foren Pract doi: 10.1080/15567281.2010.531500 – volume: 14 start-page: 608,620 issue: 3 year: 2019 ident: 10653_CR6 publication-title: IEEE Trans Inform Foren Secur – ident: 10653_CR8 doi: 10.1117/12.703370 – ident: 10653_CR23 doi: 10.1007/978-3-642-04438-0_38 – ident: 10653_CR19 doi: 10.1007/978-1-4614-0757-7_6 – volume: 1 start-page: 300 issue: 4 year: 2007 ident: 10653_CR58 publication-title: Int J Math Models Methods Appl Sci – volume: 44 start-page: 1,11 year: 2019 ident: 10653_CR68 publication-title: J Inform Secur Appl – volume: 244 start-page: 222 year: 2014 ident: 10653_CR21 publication-title: Foren Sci Int doi: 10.1016/j.forsciint.2014.08.034 – ident: 10653_CR16 doi: 10.1186/s13635-021-00121-6 – ident: 10653_CR73 doi: 10.1007/s11042-018-6809-4 – ident: 10653_CR71 doi: 10.1109/APSIPAASC47483.2019.9023312 – ident: 10653_CR30 doi: 10.1109/TCYB.2020.3008248 – ident: 10653_CR15 – volume: 2015 start-page: 051 issue: 06 year: 2015 ident: 10653_CR14 publication-title: J Cosmol Astropart Phys doi: 10.1088/1475-7516/2015/06/051 – volume: 14 start-page: 11551 issue: 24 year: 2006 ident: 10653_CR10 publication-title: Opt Express doi: 10.1364/OE.14.011551 – volume: 78 start-page: 489,506 issue: 1 year: 2019 ident: 10653_CR40 publication-title: Multimed Tools Appl doi: 10.1007/s11042-017-5101-3 – ident: 10653_CR66 – volume: 12 start-page: 2026 issue: 9 year: 2017 ident: 10653_CR53 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2017.2692683 – ident: 10653_CR32 doi: 10.6028/NIST.SP.800-86 – ident: 10653_CR47 – volume: 60 start-page: 3797 issue: 7 year: 2014 ident: 10653_CR65 publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.2014.2320500 – ident: 10653_CR69 doi: 10.1109/CVPRW50498.2020.00031 – ident: 10653_CR18 doi: 10.1117/12.2004348 – volume: 21 start-page: 189 issue: 2 year: 2019 ident: 10653_CR39 publication-title: Entropy doi: 10.3390/e21020189 – ident: 10653_CR67 doi: 10.1109/CDC.2010.5716982 – volume: 51 start-page: 1211 issue: 5 year: 2003 ident: 10653_CR29 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2003.810305 – ident: 10653_CR35 – volume: 22 start-page: 260 issue: 2 year: 2012 ident: 10653_CR37 publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2011.2160750 – ident: 10653_CR51 doi: 10.1109/CVPRW.2017.231 – volume: 944 start-page: 246,255 year: 2020 ident: 10653_CR56 publication-title: Adv Intell Syst Comput – volume: 23 start-page: 250 issue: 1 year: 2014 ident: 10653_CR27 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2290596 – ident: 10653_CR63 – volume: 8 start-page: 18874 year: 2020 ident: 10653_CR70 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968855 – volume: 5 start-page: 49 issue: 1 year: 2008 ident: 10653_CR2 publication-title: Digit Investig doi: 10.1016/j.diin.2008.06.004 – volume: 15 start-page: 681 issue: 5 year: 2011 ident: 10653_CR34 publication-title: IEEE Trans Inform Technol Biomed doi: 10.1109/TITB.2011.2159806 – ident: 10653_CR62 doi: 10.1109/IWCMC48107.2020.9148073 – ident: 10653_CR17 doi: 10.1109/ICIP.2008.4712000 – ident: 10653_CR42 doi: 10.1080/00450618.2019.1569133 – ident: 10653_CR31 doi: 10.1016/j.neucom.2018.06.075 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10653_CR36 publication-title: Annals Math Stat doi: 10.1214/aoms/1177729694 – ident: 10653_CR9 doi: 10.1109/ICIP.2017.8296534 – volume: 6 start-page: 227 issue: 1 year: 2011 ident: 10653_CR25 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2010.2099220 – volume: 226 start-page: 132 issue: 1 year: 2013 ident: 10653_CR12 publication-title: Foren Sci int doi: 10.1016/j.forsciint.2012.12.018 – ident: 10653_CR13 doi: 10.1109/CVPR42600.2020.00721 – volume: 60 start-page: 3797 issue: 7 year: 2014 ident: 10653_CR28 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2014.2320500 – volume: 28 start-page: 139 year: 2019 ident: 10653_CR43 publication-title: Digit Investig doi: 10.1016/j.diin.2019.02.002 – volume: 74 start-page: 556 year: 2018 ident: 10653_CR38 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.09.027 – ident: 10653_CR54 doi: 10.1109/ICIP.1999.817172 – volume: 1 start-page: 205 issue: 2 year: 2006 ident: 10653_CR41 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2006.873602 – volume: 52 start-page: 74 year: 2017 ident: 10653_CR49 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2016.12.011 – volume: 24 start-page: 142 year: 2018 ident: 10653_CR45 publication-title: Digit Investig doi: 10.1016/j.diin.2018.02.005 – ident: 10653_CR26 doi: 10.1109/ICIP.2007.4379537 – ident: 10653_CR50 doi: 10.1109/ACCESS.2019.2955452 – ident: 10653_CR60 – ident: 10653_CR24 doi: 10.1117/12.805701 – ident: 10653_CR33 doi: 10.1007/978-3-642-21073-0_39 – volume: 3 start-page: 74 issue: 1 year: 2008 ident: 10653_CR46 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2007.916285 – ident: 10653_CR3 doi: 10.1109/ICECA.2019.8822212 – volume: 5 start-page: 361 issue: 3 year: 2020 ident: 10653_CR52 publication-title: Adv Sci Technol Eng Syst J doi: 10.25046/aj050347 – volume: 3 start-page: 325 year: 2008 ident: 10653_CR55 publication-title: Algo Architect Inform Syst Secur – ident: 10653_CR11 doi: 10.1117/12.649775 – ident: 10653_CR20 doi: 10.1007/978-3-540-24654-1_13 – ident: 10653_CR4 doi: 10.1109/ISIT.2003.1228271 – volume: 3 start-page: 101 issue: 1 year: 2008 ident: 10653_CR59 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2007.916010 – volume: 78 start-page: 20113 issue: 14 year: 2019 ident: 10653_CR72 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7288-y – volume: 5 start-page: 280 issue: 2 year: 2010 ident: 10653_CR7 publication-title: IEEE Trans Inform Foren Secur doi: 10.1109/TIFS.2010.2046268 – volume: 207 start-page: 131 year: 2016 ident: 10653_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.012 – volume: 312 start-page: 110311 year: 2020 ident: 10653_CR61 publication-title: Foren Sci Int doi: 10.1016/j.forsciint.2020.110311 – ident: 10653_CR1 – ident: 10653_CR64 doi: 10.1109/ICME.2007.4284792 – ident: 10653_CR57 doi: 10.1109/ISIT.2006.261977 – volume: 15 start-page: 383 year: 2006 ident: 10653_CR48 publication-title: Multimed Secur Technol Digit Rights doi: 10.1016/B978-012369476-8/50017-8 – volume: 66 start-page: 30 year: 2018 ident: 10653_CR44 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2018.04.013 |
| SSID | ssj0016524 |
| Score | 2.2965243 |
| Snippet | It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19513 |
| SubjectTerms | Case studies Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Fingerprints Forensic sciences Multimedia Information Systems Nonuniformity Probability distribution Signal processing Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6iPuiD06k4nZIH3zSwpG2aPspwCMoQp7K3kubHKM451unf76VLVxUV9DlpUu5yuQt3930InTKjglhTSxSLJAlFFBIZhJZYkQmuM8PjcEE2Eff7YjhMbn1TWFFVu1cpyfKmrpvdqGslcSUF1AGqEnjzrIG7E46w4W7wuMwd8MhT2YoOAX9IfavM92t8dkd1jPklLVp6m17jf_-5jbZ8dIkvFsdhB62YSRM1KuYG7A25iTY_wBDuokFXTl0iAWvj7g2ca19CVGoNuw4UrPORoxfB-TNcQAV25fIjfA3v10yqJ3Jj8mwMG2hX5VHCe-6hh97lffeKeLIFosAK5yRKlJRCJ9yqQHClEy0yiB0hJDJMMg22nnAlJAWnGtuMaog0Y8mllNzyOI5UsI9WJy8Tc4CwEFbHHQkvvY4JpWUZYzSw1BqHBAPxUgvRSuap8kjkjhBjnNYYyk6GKcgwLWWY0hY6W34zXeBw_Dq7Xaky9TZZpMwRJPEgZDB8XqmuHv55tcO_TT9CG8xpv6yKbKPV-ezVHKN19TbPi9lJeVbfAQyZ4cw priority: 102 providerName: Springer Nature |
| Title | Capture device identification from digital images using Kullback-Leibler divergence |
| URI | https://link.springer.com/article/10.1007/s11042-021-10653-1 https://www.proquest.com/docview/2530263421 |
| Volume | 80 |
| WOSCitedRecordID | wos000622668700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KE9AIWiLtCVD71Rq2snsZ0ToisQEnS74lXoJXL8QBGwLOzC78eTdVhAgksvlqI8lfHMfPY8PoDv3JlEWuap4ZmmqcpSqpPUU69KJWzphEwnZBOy11NnZ3k_briNYlplYxNrQ21vDO6R_-RIbyOSlLOt4S1F1iiMrkYKjVmYR2SDKX2_O92nKILIIqmt6tDgGVksmpmUzjEsTMEEBYbtWSl76ZimaPNVgLT2O7uL__vFS7AQESfZnkyRzzDjBsuw2LA5kKjcy_DpWWvCFTjq6iEGF4h1aEtIZWNaUS1JglUpxFYXSDlCqutglEYEU-gvyH5Y05baXNIDV5VX4QUWMz_qlp9f4GR357i7RyMBAzVBM8c0y43WyubCm0QJY3OryoAnA0xyXHMb9D8XRmkWHK30JbMBfUottNbCCykzk6zC3OBm4L4CUcpb2dFh9ddxqfa85JwlnnmH3WEChmoBa_5-YWJ3ciTJuCqmfZVRYkWQWFFLrGAt2Hy6ZzjpzfHu1RuNmIqop6NiKqMW_GgEPT399tPW3n_aOnzkOLfqzMgNmBvf3btv8ME8jKvRXRtm5d_zNsz_2un1D8PRvqTteubiyP-EsZ_9C-Ph0ekjh5_yMA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqFR6AEpBXZ4-tCewWDuJ7RwQQjwE2u2qUqnELXX8QBF02bILiD_Fb8STB0srwY0D5yS2En-eGWdmvg_gK3cmkpZ5aniiaaySmOoo9tSrXAmbOyHjSmxC9nrq9DT9MQH3TS8MllU2NrE01PbS4D_yLY7yNiKKOdsZ_KWoGoXZ1UZCo4JFx93dhiPbcPt4P6zvN84PD072jmitKkBNgNuIJqnRWtlUeBMpYWxqVR6CpOD7HdfcBlCnwijNgveQPmc2hFRSC6218ELKxERh3HcwFUdK4r7qSPqYtRBJLaKr2jR4YlY36VStegwbYbAggiEdLGX_OsJxdPtfQrb0c4ezb-0LzcFMHVGT3WoLfIIJ15-H2UatgtTGax4-PqFe_Aw_9_QAkyfEOrSVpLB12VSJVIJdN8QWZyipQoo_wegOCbYInJFOOLPn2pzTrivyizCBxcqWktJ0AX69yosuwmT_su--AFHKW9nW4XTbdrH2POecRZ55h-w3IUZsAWtWOzM1-zqKgFxkY95oREgWEJKVCMlYCzYenxlU3CMv3r3SwCKr7dAwG2OiBZsNsMaXnx9t6eXR1uHD0cn3btY97nWWYZojrssq0BWYHF1du1V4b25GxfBqrdwhBH6_NuAeAGMqSho |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcKBRQFwr4ACewunYS2zkghFpWVFutVgKkiktw_FFFtNulu4D4a_w6ZhKnC0j01gPnJI5iP8-MMzPvATyVwWXai8idLCzPTZFzm-WRR1Mb5eugdN6JTejJxBweltM1-Nn3wlBZZW8TW0PtTx39I9-RJG-jslyKnZjKIqZ7o1fzL5wUpCjT2stpdBAZhx_f8fi2eLm_h2v9TMrRm_e7b3lSGOAOobfkRemsNb5U0WVGOV96U2PAhHFAkFZ6BHipnLECPYmOtfAYXmmrrLUqKq0Ll-G4V-CqxjMmlRNOi4_nGQxVJEFdM-TolUVq2Ona9gQ1xVBxhCBqWC7-dIqrSPev5Gzr80Yb__Ns3YZbKdJmr7utcQfWwmwTNnoVC5aM2ibc_I2S8S6827VzSqowH8iGssancqoWwYy6cZhvjkhqhTUnaIwXjFoHjtgYJ6C27jM_CE19jC_wVPHSUp3egw-X8qH3YX12OgtbwIyJXg8tnnqHIbdR1lKKLIoYiBUHY8cBiH7lK5dY2Ukc5Lha8UkTWipES9WipRIDeH7-zLzjJLnw7u0eIlWyT4tqhY8BvOhBtrr879EeXDzaE7iOOKsO9ifjh3BDEsTb4tBtWF-efQ2P4Jr7tmwWZ4_bzcLg02Xj7RehfVM- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capture+device+identification+from+digital+images+using+Kullback-Leibler+divergence&rft.jtitle=Multimedia+tools+and+applications&rft.au=Quintanar-Res%C3%A9ndiz%2C+Ana+L&rft.au=Rodr%C3%ADguez-Santos%2C+Francisco&rft.au=Pichardo-M%C3%A9ndez%2C+Josu%C3%A9+L&rft.au=Delgado-Guti%C3%A9rrez%2C+Guillermo&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=13&rft.spage=19513&rft.epage=19538&rft_id=info:doi/10.1007%2Fs11042-021-10653-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |