Capture device identification from digital images using Kullback-Leibler divergence

It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 80; číslo 13; s. 19513 - 19538
Hlavní autori: Quintanar-Reséndiz, Ana L., Rodríguez-Santos, Francisco, Pichardo-Méndez, Josué L., Delgado-Gutiérrez, Guillermo, Ramírez, Omar Jiménez, Vázquez-Medina, Rubén
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.05.2021
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint , a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image . Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal.
AbstractList It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint, a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image. Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal.
It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint , a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image . Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal.
Author Delgado-Gutiérrez, Guillermo
Quintanar-Reséndiz, Ana L.
Vázquez-Medina, Rubén
Rodríguez-Santos, Francisco
Ramírez, Omar Jiménez
Pichardo-Méndez, Josué L.
Author_xml – sequence: 1
  givenname: Ana L.
  surname: Quintanar-Reséndiz
  fullname: Quintanar-Reséndiz, Ana L.
  organization: CICATA Querétaro, Instituto Politécnico Nacional
– sequence: 2
  givenname: Francisco
  surname: Rodríguez-Santos
  fullname: Rodríguez-Santos, Francisco
  organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional
– sequence: 3
  givenname: Josué L.
  surname: Pichardo-Méndez
  fullname: Pichardo-Méndez, Josué L.
  organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional
– sequence: 4
  givenname: Guillermo
  surname: Delgado-Gutiérrez
  fullname: Delgado-Gutiérrez, Guillermo
  organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional
– sequence: 5
  givenname: Omar Jiménez
  surname: Ramírez
  fullname: Ramírez, Omar Jiménez
  organization: ESIME Unidad Culhuacan, Instituto Politécnico Nacional
– sequence: 6
  givenname: Rubén
  orcidid: 0000-0002-6210-4097
  surname: Vázquez-Medina
  fullname: Vázquez-Medina, Rubén
  email: ruvazquez@ipn.mx
  organization: CICATA Querétaro, Instituto Politécnico Nacional
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxGy4sxs7GVHFl6jEAMyW41wilzQpdlKJf09KkZAYOt0N73Mfz4xN2q4lxi4RrhFA30REWAgOAjmCSiXHEzbFVEuutcDJ2MsMuE4Bz9gsxjUAqlQspux1abf9ECgpaecdJb6ktveVd7b3XZtUodskpa99b5vEb2xNMRmib-vkeWiawroPviJfNBTG1I5CTa2jc3Za2SbSxW-ds_f7u7flI1-9PDwtb1fcScx7nubO2qzMVeVkplyZl1mR5wgiJWFFCQvIlcssOiJdFVhCBtoqa62qlNapk3N2dZi7Dd3nQLE3624I7bjSiFSCUHIhcExlh5QLXYyBKuPGb_bf9cH6xiCYvUJzUGhGheZHodmj4h-6DaOE8HUckgcojuG2pvB31RHqG1tMhkk
CitedBy_id crossref_primary_10_1007_s11042_024_18255_3
crossref_primary_10_1142_S2196888823500136
crossref_primary_10_7717_peerj_cs_2513
crossref_primary_10_1080_13682199_2025_2533533
crossref_primary_10_1007_s11042_022_12468_0
crossref_primary_10_1155_2022_1574024
Cites_doi 10.1080/15567281.2010.531500
10.1117/12.703370
10.1007/978-3-642-04438-0_38
10.1007/978-1-4614-0757-7_6
10.1016/j.forsciint.2014.08.034
10.1186/s13635-021-00121-6
10.1007/s11042-018-6809-4
10.1109/APSIPAASC47483.2019.9023312
10.1109/TCYB.2020.3008248
10.1088/1475-7516/2015/06/051
10.1364/OE.14.011551
10.1007/s11042-017-5101-3
10.1109/TIFS.2017.2692683
10.6028/NIST.SP.800-86
10.1109/TIT.2014.2320500
10.1109/CVPRW50498.2020.00031
10.1117/12.2004348
10.3390/e21020189
10.1109/CDC.2010.5716982
10.1109/TSP.2003.810305
10.1109/TCSVT.2011.2160750
10.1109/CVPRW.2017.231
10.1109/TIP.2013.2290596
10.1109/ACCESS.2020.2968855
10.1016/j.diin.2008.06.004
10.1109/TITB.2011.2159806
10.1109/IWCMC48107.2020.9148073
10.1109/ICIP.2008.4712000
10.1080/00450618.2019.1569133
10.1016/j.neucom.2018.06.075
10.1214/aoms/1177729694
10.1109/ICIP.2017.8296534
10.1109/TIFS.2010.2099220
10.1016/j.forsciint.2012.12.018
10.1109/CVPR42600.2020.00721
10.1016/j.diin.2019.02.002
10.1016/j.patcog.2017.09.027
10.1109/ICIP.1999.817172
10.1109/TIFS.2006.873602
10.1016/j.image.2016.12.011
10.1016/j.diin.2018.02.005
10.1109/ICIP.2007.4379537
10.1109/ACCESS.2019.2955452
10.1117/12.805701
10.1007/978-3-642-21073-0_39
10.1109/TIFS.2007.916285
10.1109/ICECA.2019.8822212
10.25046/aj050347
10.1117/12.649775
10.1007/978-3-540-24654-1_13
10.1109/ISIT.2003.1228271
10.1109/TIFS.2007.916010
10.1007/s11042-019-7288-y
10.1109/TIFS.2010.2046268
10.1016/j.neucom.2016.05.012
10.1016/j.forsciint.2020.110311
10.1109/ICME.2007.4284792
10.1109/ISIT.2006.261977
10.1016/B978-012369476-8/50017-8
10.1016/j.image.2018.04.013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-021-10653-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19538
ExternalDocumentID 10_1007_s11042_021_10653_1
GrantInformation_xml – fundername: Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional
  grantid: SIP-20201156
  funderid: https://doi.org/10.13039/501100007161
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: CVU-746317
  funderid: https://doi.org/10.13039/501100003141
– fundername: Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional
  grantid: SIP-20200445
  funderid: https://doi.org/10.13039/501100007161
– fundername: Consejo Nacional de Ciencia y Tecnología
  grantid: CVU-377075
  funderid: https://doi.org/10.13039/501100003141
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-59caa8d96fc386cd9d8b991025e2a2d04096c8a1cee7fb1d0807a6aaa6f6775c3
IEDL.DBID M0C
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000622668700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 23:02:29 EST 2025
Tue Nov 18 21:44:13 EST 2025
Sat Nov 29 06:20:10 EST 2025
Fri Feb 21 02:48:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Photographic cameras (07.68.+m)
Statistical mechanics (05.20.-y)
Forensic science (89.20.Mn)
Image processing algorithms (07.05.Pj)
Statistics (02.50.-r)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-59caa8d96fc386cd9d8b991025e2a2d04096c8a1cee7fb1d0807a6aaa6f6775c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6210-4097
PQID 2530263421
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_2530263421
crossref_citationtrail_10_1007_s11042_021_10653_1
crossref_primary_10_1007_s11042_021_10653_1
springer_journals_10_1007_s11042_021_10653_1
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References NgT-TChangS-FLinC-YSunQPassive-blind image forensicsMultimed Secur Technol Digit Rights20061538341210.1016/B978-012369476-8/50017-8
ZhangWTangXYangZNiuSMulti-scale segmentation strategies in PRNU-based image tampering localizationMultimed Tools Appl20197814201132013210.1007/s11042-019-7288-y
DavidABLiubHJacksonADThe kullback-Leibler divergence as an estimator of the statistical properties of CMB mapsJ Cosmol Astropart Phys201520150605110.1088/1475-7516/2015/06/051
Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification. In: International conference on image processing, 2004. ICIP ’04., volume 1, vol 1, pp 709–712
GisolfFBarensPSnelEMalgoezarAVosMMieremetAGeradtsZCommon source identification of images in large databasesForen Sci Int201424422223010.1016/j.forsciint.2014.08.034
HeYBen HamzaAKrimHA generalized divergence measure for robust image registrationIEEE Trans Signal Process200351512111220204356510.1109/TSP.2003.810305
Choi KS, Lam EY, Wong KKY (2006) Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA (eds) Digital Photography II. SPIE
BayramSSencarHTMemonNClassification of digital camera-models based on demosaicing artifactsDigit Investig200851495910.1016/j.diin.2008.06.004
Vidyasagar M (2010) Kullback-Leibler divergence rate between probability distributions on sets of different cardinalities. In: 49th IEEE Conference on Decision and Control (CDC). IEEE
BondiLBestaginiPPérez-GonzálezFPreprocessingSTImproving PRNU compression through quantization, and codingIEEE Trans Inform Foren Secur2019143608,620
Goljan M, Fridrich J, Filler T (2009) Large scale test of sensor fingerprint camera identification. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp 72540I–72540I
Vázquez-Medina R (2008) Mapeos caóticos unidimensionales aplicados a la generación de ruido, PhD thesis, UAM Iztapalapa
Goljan M (2008) Digital camera identification from images–estimating false acceptance probability. In: International Workshop on Digital Watermarking. Springer, pp 454–468
SeshadriSKarunakarKRAkshathaAKPaulKHA preliminary approach to using PRNU based transfer learning for camera identificationAdv Intell Syst Comput2020944246,255
Zhang W-N, Liu Y-X, Zou Z-Y, Zang Y-L, Yang Y, Law BN-F (2019) Effective source camera identification based on MSEPLL denoising applied to small image patches. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, p 2019
Behare MS, Bhalchandra AS, Kumar R (2019) Source camera identification using photo response noise uniformity. In: 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE
Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proc. IEEE Int. Conf. Image Process. IEEE, pp 1296–1299
Yang S, Shaozuo Y, Zhao B, Zhao B (2020) Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, p 2020
MoCFridrichJGoljanMLukásJDetermining image origin and integrity using sensor noiseIEEE Trans Inform Foren Secur200831749010.1109/TIFS.2007.916285
LiBShuHLiuZShaoZLiCHuangMHuangJNonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributionsEntropy2019212189392392410.3390/e21020189
Fernández-Menduiña S, Pérez-González F (2020) On the information leakage of camera fingerprint estimates. In: arxiv.org: Electrical engineering and systems science, Image and video processing (eess.IV)
Goljan M, Mo C, Fridrich J (2007) Identifying common source digital camera from image pairs. In: 2007 IEEE International conference on image processing. IEEE
QiaoTRetraintFCogranneRThaiTHIndividual camera device identification from jpeg imagesSignal Process Image Commun201752748610.1016/j.image.2016.12.011
SaitoSTomiokaYKitazawaHA theoretical framework for estimating false acceptance rate of PRNU-based camera identificationIEEE Trans Inform Foren Secur20171292026203510.1109/TIFS.2017.2692683
Gilbert H, Handschuh H (2003) Security analysis of sha-256 and sisters. In: International workshop on selected areas in cryptography. Springer, pp 175–193
Silva J, Narayanan S (2006) Upper bound Kullback-Leibler Divergence for hidden Markov models with application as discrimination measure for speech recognition. In: 2006 IEEE international symposium on information theory. IEEE
van LT, Chong K-S, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. In: 2007 IEEE International conference on multimedia and expo. IEEE, pp 16–19
Ben Hamza A, Krim H (2003) Jensen-renyi divergence measure: theoretical and computational perspectives. In: IEEE international symposium on information theory, 2003. Proceedings. IEEE
LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inform Foren Secur20061220521410.1109/TIFS.2006.873602
KhaderMHamzaABNonrigid image registration using an entropic similarityIEEE Trans Inform Technol Biomed201115568169010.1109/TITB.2011.2159806
Chen M, Fridrich J, Goljan M (2007) Digital imaging sensor identification (further study). In: Electronic imaging 2007. International Society for Optics and Photonics, pp 65050P–65050P
Matthews R, Sorell M, Falkner N (2019) Isolating lens effects from source camera identification using sensor pattern noise, vol 51, pp S132–S135
Hai ThaiTCogranneRRetraintFCamera model identification based on the heteroscedastic noise modelIEEE Trans Image Process2014231250263326200110.1109/TIP.2013.2290596
LiC-TLiYColor-decoupled photo response non-uniformity for digital image forensicsIEEE Trans Circ Syst Video Technol2012222260271296202010.1109/TCSVT.2011.2160750
Sung-Hyuk CComprehensive survey on distance/similarity measures between probability density functionsInt J Math Models Methods Appl Sci200714300307
Qin J, Luo Y, Xiang X, Tan Y, Huang H (2019) Coverless image steganography: A survey, vol 7, pp 171372–171394
SaberAHKhanMAMejbelBGA survey on image forgery detection using different forensic approachesAdv Sci Technol Eng Syst J20205336137010.25046/aj050347
Zhao Y, Zheng N, Qiao T, Ming X u (2019) Source camera identification via low dimensional PRNU features. Multimed Tools Appl
ThakurRRohillaRRecent advances in digital image manipulation detection techniques: A brief reviewForen Sci Int202031211031110.1016/j.forsciint.2020.110311
Chen C, Zhao X, Stamm MC (2017) Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International conference on image processing (ICIP), pp 1512–1516
Ji S, Zhang Z, Ying S, Wang L, Zhao X, Gao Y (2020) Kullback-Leibler divergence metric learning. IEEE Trans Cybern 1–12
MatthewsRSorellMFalknerNAn analysis of optical contributions to a photo-sensor’s ballistic fingerprintsDigit Investig20192813914510.1016/j.diin.2019.02.002
Roy A, Chakraborty RS, Sameer U, Naskar R (2017) Camera source identification using discrete cosine transform residue features and ensemble classifier. In: 2017 IEEE Conference on computer vision and pattern recognition workshops (CVPRW), pp 1848–1854
SwaminathanAMinWRay LiuKJDigital image forensics via intrinsic fingerprintsIEEE Trans Inform Foren Secur20083110111710.1109/TIFS.2007.916010
de la República S (2019) Legislatura XLIV. Punto de acuerdo para modificar códigos penales o crear leyes para incorporar el delito de violencia virtual, agravado en los casos de agresión por motivos de género. In: de la República S (ed) Gaceta LXIV/1SPR-21. Gobierno de México
NYCE (2013) Tecnologías de la Información Metodología de Análisis Forense de Datos y Guías de Ejecución
MehrishASubramanyamAVEmmanuelSRobust PRNU estimation from probabilistic raw measurementsSignal Process Image Commun201866304110.1016/j.image.2018.04.013
CooperAJImproved photo response non-uniformity (PRNU) based source camera identificationForen Sci int2013226113214110.1016/j.forsciint.2012.12.018
HarremoesPTim vanERenyi divergence and kullback-leibler divergenceIEEE Trans Inf Theory20146073797382010.1109/TIT.2014.2320500
GloeTBöhmeRThe dresden image database for benchmarking digital image forensicsJ Digit Foren Pract20103150159,0110.1080/15567281.2010.531500
Khader M, Ben Hamza A (2011) An entropy-based technique for nonrigid medical image alignment. In: Lecture notes in computer science. Springer, Berlin, pp 444–455
SencarHTMemonNOverview of state-of-the-art in digital image forensicsAlgo Architect Inform Syst Secur20083325348
BingchaoXuWangXZhouXXiJWangSSource camera identification from image texture featuresNeurocomputing201620713114010.1016/j.neucom.2016.05.012
LongMPengFZhuYIdentifying natural images and computer generated graphics based on binary similarity measures of PRNUMultimed Tools Appl2019781489,50610.1007/s11042-017-5101-3
KullbackSLeiblerRAOn information and sufficiencyAnnals Math Stat195122179863996810.1214/aoms/1177729694
Titouna C, Nait-Abdesselam F, Moungla H (2020) An online anomaly detection approach for unmanned aerial vehicles. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE
GoljanMFridrichJMoCDefending against fingerprint-copy attack in sensor-based camera identificationIEEE Trans Inform Foren Secur20116122723610.1109/TIFS.2010.2099220
Fridrich J (2013) Sensor defects in digital image forensic. In: Digital image forensics, vol 1. Springer, pp 179–218
Fischer A, Gloe T (2013) Forensic analysis of interdependencies between vignetting and radial lens distortion. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013. SPIE
Chang-TsunLSource camera identification using enhanced sensor pattern noiseIEEE Trans Inform Foren Secur20105228028710.1109/TIFS.2010.2046268
ChoiKSLamEYWongKKYAutomatic source camera identification using the intrinsic lens radial distortionOpt Express200614241155110.1364/OE.14.011551
Kadhim IJ, Premarat
HT Sencar (10653_CR55) 2008; 3
W Zhang (10653_CR72) 2019; 78
10653_CR9
H Zeng (10653_CR70) 2020; 8
T-T Ng (10653_CR48) 2006; 15
AB David (10653_CR14) 2015; 2015
10653_CR16
10653_CR17
P Harremoes (10653_CR28) 2014; 60
R Li (10653_CR38) 2018; 74
10653_CR15
S Kullback (10653_CR36) 1951; 22
M Long (10653_CR40) 2019; 78
10653_CR13
10653_CR57
M Khader (10653_CR34) 2011; 15
10653_CR54
10653_CR11
10653_CR50
10653_CR51
L Chang-Tsun (10653_CR7) 2010; 5
S Bayram (10653_CR2) 2008; 5
Y He (10653_CR29) 2003; 51
T Qiao (10653_CR49) 2017; 52
C Meij (10653_CR45) 2018; 24
F Gisolf (10653_CR21) 2014; 244
C Mo (10653_CR46) 2008; 3
10653_CR47
J Lukas (10653_CR41) 2006; 1
10653_CR42
KS Choi (10653_CR10) 2006; 14
C-T Li (10653_CR37) 2012; 22
B Li (10653_CR39) 2019; 21
S Saito (10653_CR53) 2017; 12
Sung-Hyuk C (10653_CR58) 2007; 1
R Matthews (10653_CR43) 2019; 28
T Hai Thai (10653_CR27) 2014; 23
Xu Bingchao (10653_CR5) 2016; 207
S Seshadri (10653_CR56) 2020; 944
R Thakur (10653_CR61) 2020; 312
M Goljan (10653_CR25) 2011; 6
10653_CR35
10653_CR32
10653_CR33
10653_CR30
10653_CR31
10653_CR73
10653_CR71
AJ Cooper (10653_CR12) 2013; 226
AH Saber (10653_CR52) 2020; 5
T Gloe (10653_CR22) 2010; 3
A Mehrish (10653_CR44) 2018; 66
T van Erven (10653_CR65) 2014; 60
10653_CR18
10653_CR19
10653_CR8
10653_CR69
L Bondi (10653_CR6) 2019; 14
10653_CR26
A Swaminathan (10653_CR59) 2008; 3
10653_CR23
10653_CR67
10653_CR1
10653_CR24
10653_CR4
10653_CR3
10653_CR66
10653_CR63
10653_CR20
10653_CR64
10653_CR62
10653_CR60
J Wang (10653_CR68) 2019; 44
References_xml – reference: Fischer A, Gloe T (2013) Forensic analysis of interdependencies between vignetting and radial lens distortion. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013. SPIE
– reference: Goljan M (2008) Digital camera identification from images–estimating false acceptance probability. In: International Workshop on Digital Watermarking. Springer, pp 454–468
– reference: Kent K, Chevalier S, Grance T, Dang H (2006) SP 800-86 Guide to integrating forensic techniques into incident response
– reference: GisolfFBarensPSnelEMalgoezarAVosMMieremetAGeradtsZCommon source identification of images in large databasesForen Sci Int201424422223010.1016/j.forsciint.2014.08.034
– reference: van LT, Chong K-S, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. In: 2007 IEEE International conference on multimedia and expo. IEEE, pp 16–19
– reference: Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proc. IEEE Int. Conf. Image Process. IEEE, pp 1296–1299
– reference: Zhang W-N, Liu Y-X, Zou Z-Y, Zang Y-L, Yang Y, Law BN-F (2019) Effective source camera identification based on MSEPLL denoising applied to small image patches. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, p 2019
– reference: MehrishASubramanyamAVEmmanuelSRobust PRNU estimation from probabilistic raw measurementsSignal Process Image Commun201866304110.1016/j.image.2018.04.013
– reference: MeijCGeradtsZSource camera identification using Photo Response non-Uniformity on WhatsAppDigit Investig20182414215410.1016/j.diin.2018.02.005
– reference: SwaminathanAMinWRay LiuKJDigital image forensics via intrinsic fingerprintsIEEE Trans Inform Foren Secur20083110111710.1109/TIFS.2007.916010
– reference: Goljan M, Mo C, Fridrich J (2007) Identifying common source digital camera from image pairs. In: 2007 IEEE International conference on image processing. IEEE
– reference: Vázquez-Medina R (2008) Mapeos caóticos unidimensionales aplicados a la generación de ruido, PhD thesis, UAM Iztapalapa
– reference: Sung-Hyuk CComprehensive survey on distance/similarity measures between probability density functionsInt J Math Models Methods Appl Sci200714300307
– reference: Chang-TsunLSource camera identification using enhanced sensor pattern noiseIEEE Trans Inform Foren Secur20105228028710.1109/TIFS.2010.2046268
– reference: de la República S (2019) Legislatura XLIV. Punto de acuerdo para modificar códigos penales o crear leyes para incorporar el delito de violencia virtual, agravado en los casos de agresión por motivos de género. In: de la República S (ed) Gaceta LXIV/1SPR-21. Gobierno de México
– reference: Kadhim IJ, Premaratne P, Vial PJ, Halloran B (2019) Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research, vol 335, pp 299–326
– reference: LongMPengFZhuYIdentifying natural images and computer generated graphics based on binary similarity measures of PRNUMultimed Tools Appl2019781489,50610.1007/s11042-017-5101-3
– reference: DavidABLiubHJacksonADThe kullback-Leibler divergence as an estimator of the statistical properties of CMB mapsJ Cosmol Astropart Phys201520150605110.1088/1475-7516/2015/06/051
– reference: SeshadriSKarunakarKRAkshathaAKPaulKHA preliminary approach to using PRNU based transfer learning for camera identificationAdv Intell Syst Comput2020944246,255
– reference: van LT, Emmanuel S, Kankanhalli MS (2007) Identifying source cell phone using chromatic aberration. In: Multimedia and Expo 2007 IEEE International conference on. IEEE
– reference: Gilbert H, Handschuh H (2003) Security analysis of sha-256 and sisters. In: International workshop on selected areas in cryptography. Springer, pp 175–193
– reference: Khader M, Ben Hamza A (2011) An entropy-based technique for nonrigid medical image alignment. In: Lecture notes in computer science. Springer, Berlin, pp 444–455
– reference: LukasJFridrichJGoljanMDigital camera identification from sensor pattern noiseIEEE Trans Inform Foren Secur20061220521410.1109/TIFS.2006.873602
– reference: Goljan M, Fridrich J, Filler T (2009) Large scale test of sensor fingerprint camera identification. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp 72540I–72540I
– reference: SaberAHKhanMAMejbelBGA survey on image forgery detection using different forensic approachesAdv Sci Technol Eng Syst J20205336137010.25046/aj050347
– reference: HarremoesPTim vanERenyi divergence and kullback-leibler divergenceIEEE Trans Inf Theory20146073797382010.1109/TIT.2014.2320500
– reference: MoCFridrichJGoljanMLukásJDetermining image origin and integrity using sensor noiseIEEE Trans Inform Foren Secur200831749010.1109/TIFS.2007.916285
– reference: Roy A, Chakraborty RS, Sameer U, Naskar R (2017) Camera source identification using discrete cosine transform residue features and ensemble classifier. In: 2017 IEEE Conference on computer vision and pattern recognition workshops (CVPRW), pp 1848–1854
– reference: LiBShuHLiuZShaoZLiCHuangMHuangJNonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributionsEntropy2019212189392392410.3390/e21020189
– reference: NgT-TChangS-FLinC-YSunQPassive-blind image forensicsMultimed Secur Technol Digit Rights20061538341210.1016/B978-012369476-8/50017-8
– reference: ChoiKSLamEYWongKKYAutomatic source camera identification using the intrinsic lens radial distortionOpt Express200614241155110.1364/OE.14.011551
– reference: Fridrich J (2013) Sensor defects in digital image forensic. In: Digital image forensics, vol 1. Springer, pp 179–218
– reference: Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification. In: International conference on image processing, 2004. ICIP ’04., volume 1, vol 1, pp 709–712
– reference: BingchaoXuWangXZhouXXiJWangSSource camera identification from image texture featuresNeurocomputing201620713114010.1016/j.neucom.2016.05.012
– reference: Fernández-Menduiña S, Pérez-González F (2020) On the information leakage of camera fingerprint estimates. In: arxiv.org: Electrical engineering and systems science, Image and video processing (eess.IV)
– reference: LiC-TLiYColor-decoupled photo response non-uniformity for digital image forensicsIEEE Trans Circ Syst Video Technol2012222260271296202010.1109/TCSVT.2011.2160750
– reference: LiRLiC-TGuanYInference of a compact representation of sensor fingerprint for source camera identificationPattern Recogn20187455656710.1016/j.patcog.2017.09.027
– reference: SencarHTMemonNOverview of state-of-the-art in digital image forensicsAlgo Architect Inform Syst Secur20083325348
– reference: MatthewsRSorellMFalknerNAn analysis of optical contributions to a photo-sensor’s ballistic fingerprintsDigit Investig20192813914510.1016/j.diin.2019.02.002
– reference: Behare MS, Bhalchandra AS, Kumar R (2019) Source camera identification using photo response noise uniformity. In: 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE
– reference: HeYBen HamzaAKrimHA generalized divergence measure for robust image registrationIEEE Trans Signal Process200351512111220204356510.1109/TSP.2003.810305
– reference: Vidyasagar M (2010) Kullback-Leibler divergence rate between probability distributions on sets of different cardinalities. In: 49th IEEE Conference on Decision and Control (CDC). IEEE
– reference: Chen M, Fridrich J, Goljan M (2007) Digital imaging sensor identification (further study). In: Electronic imaging 2007. International Society for Optics and Photonics, pp 65050P–65050P
– reference: ThakurRRohillaRRecent advances in digital image manipulation detection techniques: A brief reviewForen Sci Int202031211031110.1016/j.forsciint.2020.110311
– reference: CooperAJImproved photo response non-uniformity (PRNU) based source camera identificationForen Sci int2013226113214110.1016/j.forsciint.2012.12.018
– reference: Thai TH, Cogranne R, Retraint F (2012) Camera model identification Based on hypothesis testing theory. In: 2012 Proceedings of the 20th european signal processing conference (EUSIPCO), pp 1747–1751
– reference: Saitoh N, Kurosawa K, Kuroki K (1999) Ccd fingerprint method-identification of a video camera from videotaped images, vol 3, pp 537–540
– reference: KhaderMHamzaABNonrigid image registration using an entropic similarityIEEE Trans Inform Technol Biomed201115568169010.1109/TITB.2011.2159806
– reference: Al-Zarouni M (2006) Mobile handset forensic evidence: a challenge for law enforcement. In: Australian Digital Forensics Conference Proceedings. School of Computer and Information Science, Edith Cowan University, Perth, Western Australia
– reference: Yang S, Shaozuo Y, Zhao B, Zhao B (2020) Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, p 2020
– reference: ZengHWanYDengKPengASource camera identification with Dual-Tree complex wavelet transformIEEE Access20208188741888310.1109/ACCESS.2020.2968855
– reference: KullbackSLeiblerRAOn information and sufficiencyAnnals Math Stat195122179863996810.1214/aoms/1177729694
– reference: GloeTBöhmeRThe dresden image database for benchmarking digital image forensicsJ Digit Foren Pract20103150159,0110.1080/15567281.2010.531500
– reference: GoljanMFridrichJMoCDefending against fingerprint-copy attack in sensor-based camera identificationIEEE Trans Inform Foren Secur20116122723610.1109/TIFS.2010.2099220
– reference: Zhao Y, Zheng N, Qiao T, Ming X u (2019) Source camera identification via low dimensional PRNU features. Multimed Tools Appl
– reference: Chen C, Zhao X, Stamm MC (2017) Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International conference on image processing (ICIP), pp 1512–1516
– reference: Choi KS, Lam EY, Wong KKY (2006) Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA (eds) Digital Photography II. SPIE
– reference: NYCE (2013) Tecnologías de la Información Metodología de Análisis Forense de Datos y Guías de Ejecución
– reference: Matthews R, Sorell M, Falkner N (2019) Isolating lens effects from source camera identification using sensor pattern noise, vol 51, pp S132–S135
– reference: Ji S, Zhang Z, Ying S, Wang L, Zhao X, Gao Y (2020) Kullback-Leibler divergence metric learning. IEEE Trans Cybern 1–12
– reference: Ben Hamza A, Krim H (2003) Jensen-renyi divergence measure: theoretical and computational perspectives. In: IEEE international symposium on information theory, 2003. Proceedings. IEEE
– reference: van ErvenTHarremoesPRényi divergence and Kullback-Leibler divergenceIEEE Trans Inform Theory201460737973820322593010.1109/TIT.2014.2320500
– reference: Danelljan M, Van Gool L, Timofte R (2020) Probabilistic regression for visual tracking. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE
– reference: Silva J, Narayanan S (2006) Upper bound Kullback-Leibler Divergence for hidden Markov models with application as discrimination measure for speech recognition. In: 2006 IEEE international symposium on information theory. IEEE
– reference: ZhangWTangXYangZNiuSMulti-scale segmentation strategies in PRNU-based image tampering localizationMultimed Tools Appl20197814201132013210.1007/s11042-019-7288-y
– reference: Hai ThaiTCogranneRRetraintFCamera model identification based on the heteroscedastic noise modelIEEE Trans Image Process2014231250263326200110.1109/TIP.2013.2290596
– reference: QiaoTRetraintFCogranneRThaiTHIndividual camera device identification from jpeg imagesSignal Process Image Commun201752748610.1016/j.image.2016.12.011
– reference: Qin J, Luo Y, Xiang X, Tan Y, Huang H (2019) Coverless image steganography: A survey, vol 7, pp 171372–171394
– reference: Titouna C, Nait-Abdesselam F, Moungla H (2020) An online anomaly detection approach for unmanned aerial vehicles. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE
– reference: SaitoSTomiokaYKitazawaHA theoretical framework for estimating false acceptance rate of PRNU-based camera identificationIEEE Trans Inform Foren Secur20171292026203510.1109/TIFS.2017.2692683
– reference: WangJGuojingWLiJJhaSKA new method estimating linear gaussian filter kernel by image PRNU noiseJ Inform Secur Appl2019441,11
– reference: BayramSSencarHTMemonNClassification of digital camera-models based on demosaicing artifactsDigit Investig200851495910.1016/j.diin.2008.06.004
– reference: BondiLBestaginiPPérez-GonzálezFPreprocessingSTImproving PRNU compression through quantization, and codingIEEE Trans Inform Foren Secur2019143608,620
– volume: 3
  start-page: 150
  year: 2010
  ident: 10653_CR22
  publication-title: J Digit Foren Pract
  doi: 10.1080/15567281.2010.531500
– volume: 14
  start-page: 608,620
  issue: 3
  year: 2019
  ident: 10653_CR6
  publication-title: IEEE Trans Inform Foren Secur
– ident: 10653_CR8
  doi: 10.1117/12.703370
– ident: 10653_CR23
  doi: 10.1007/978-3-642-04438-0_38
– ident: 10653_CR19
  doi: 10.1007/978-1-4614-0757-7_6
– volume: 1
  start-page: 300
  issue: 4
  year: 2007
  ident: 10653_CR58
  publication-title: Int J Math Models Methods Appl Sci
– volume: 44
  start-page: 1,11
  year: 2019
  ident: 10653_CR68
  publication-title: J Inform Secur Appl
– volume: 244
  start-page: 222
  year: 2014
  ident: 10653_CR21
  publication-title: Foren Sci Int
  doi: 10.1016/j.forsciint.2014.08.034
– ident: 10653_CR16
  doi: 10.1186/s13635-021-00121-6
– ident: 10653_CR73
  doi: 10.1007/s11042-018-6809-4
– ident: 10653_CR71
  doi: 10.1109/APSIPAASC47483.2019.9023312
– ident: 10653_CR30
  doi: 10.1109/TCYB.2020.3008248
– ident: 10653_CR15
– volume: 2015
  start-page: 051
  issue: 06
  year: 2015
  ident: 10653_CR14
  publication-title: J Cosmol Astropart Phys
  doi: 10.1088/1475-7516/2015/06/051
– volume: 14
  start-page: 11551
  issue: 24
  year: 2006
  ident: 10653_CR10
  publication-title: Opt Express
  doi: 10.1364/OE.14.011551
– volume: 78
  start-page: 489,506
  issue: 1
  year: 2019
  ident: 10653_CR40
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-017-5101-3
– ident: 10653_CR66
– volume: 12
  start-page: 2026
  issue: 9
  year: 2017
  ident: 10653_CR53
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2017.2692683
– ident: 10653_CR32
  doi: 10.6028/NIST.SP.800-86
– ident: 10653_CR47
– volume: 60
  start-page: 3797
  issue: 7
  year: 2014
  ident: 10653_CR65
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.2014.2320500
– ident: 10653_CR69
  doi: 10.1109/CVPRW50498.2020.00031
– ident: 10653_CR18
  doi: 10.1117/12.2004348
– volume: 21
  start-page: 189
  issue: 2
  year: 2019
  ident: 10653_CR39
  publication-title: Entropy
  doi: 10.3390/e21020189
– ident: 10653_CR67
  doi: 10.1109/CDC.2010.5716982
– volume: 51
  start-page: 1211
  issue: 5
  year: 2003
  ident: 10653_CR29
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2003.810305
– ident: 10653_CR35
– volume: 22
  start-page: 260
  issue: 2
  year: 2012
  ident: 10653_CR37
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2011.2160750
– ident: 10653_CR51
  doi: 10.1109/CVPRW.2017.231
– volume: 944
  start-page: 246,255
  year: 2020
  ident: 10653_CR56
  publication-title: Adv Intell Syst Comput
– volume: 23
  start-page: 250
  issue: 1
  year: 2014
  ident: 10653_CR27
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2290596
– ident: 10653_CR63
– volume: 8
  start-page: 18874
  year: 2020
  ident: 10653_CR70
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968855
– volume: 5
  start-page: 49
  issue: 1
  year: 2008
  ident: 10653_CR2
  publication-title: Digit Investig
  doi: 10.1016/j.diin.2008.06.004
– volume: 15
  start-page: 681
  issue: 5
  year: 2011
  ident: 10653_CR34
  publication-title: IEEE Trans Inform Technol Biomed
  doi: 10.1109/TITB.2011.2159806
– ident: 10653_CR62
  doi: 10.1109/IWCMC48107.2020.9148073
– ident: 10653_CR17
  doi: 10.1109/ICIP.2008.4712000
– ident: 10653_CR42
  doi: 10.1080/00450618.2019.1569133
– ident: 10653_CR31
  doi: 10.1016/j.neucom.2018.06.075
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10653_CR36
  publication-title: Annals Math Stat
  doi: 10.1214/aoms/1177729694
– ident: 10653_CR9
  doi: 10.1109/ICIP.2017.8296534
– volume: 6
  start-page: 227
  issue: 1
  year: 2011
  ident: 10653_CR25
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2010.2099220
– volume: 226
  start-page: 132
  issue: 1
  year: 2013
  ident: 10653_CR12
  publication-title: Foren Sci int
  doi: 10.1016/j.forsciint.2012.12.018
– ident: 10653_CR13
  doi: 10.1109/CVPR42600.2020.00721
– volume: 60
  start-page: 3797
  issue: 7
  year: 2014
  ident: 10653_CR28
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2014.2320500
– volume: 28
  start-page: 139
  year: 2019
  ident: 10653_CR43
  publication-title: Digit Investig
  doi: 10.1016/j.diin.2019.02.002
– volume: 74
  start-page: 556
  year: 2018
  ident: 10653_CR38
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.09.027
– ident: 10653_CR54
  doi: 10.1109/ICIP.1999.817172
– volume: 1
  start-page: 205
  issue: 2
  year: 2006
  ident: 10653_CR41
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2006.873602
– volume: 52
  start-page: 74
  year: 2017
  ident: 10653_CR49
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2016.12.011
– volume: 24
  start-page: 142
  year: 2018
  ident: 10653_CR45
  publication-title: Digit Investig
  doi: 10.1016/j.diin.2018.02.005
– ident: 10653_CR26
  doi: 10.1109/ICIP.2007.4379537
– ident: 10653_CR50
  doi: 10.1109/ACCESS.2019.2955452
– ident: 10653_CR60
– ident: 10653_CR24
  doi: 10.1117/12.805701
– ident: 10653_CR33
  doi: 10.1007/978-3-642-21073-0_39
– volume: 3
  start-page: 74
  issue: 1
  year: 2008
  ident: 10653_CR46
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2007.916285
– ident: 10653_CR3
  doi: 10.1109/ICECA.2019.8822212
– volume: 5
  start-page: 361
  issue: 3
  year: 2020
  ident: 10653_CR52
  publication-title: Adv Sci Technol Eng Syst J
  doi: 10.25046/aj050347
– volume: 3
  start-page: 325
  year: 2008
  ident: 10653_CR55
  publication-title: Algo Architect Inform Syst Secur
– ident: 10653_CR11
  doi: 10.1117/12.649775
– ident: 10653_CR20
  doi: 10.1007/978-3-540-24654-1_13
– ident: 10653_CR4
  doi: 10.1109/ISIT.2003.1228271
– volume: 3
  start-page: 101
  issue: 1
  year: 2008
  ident: 10653_CR59
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2007.916010
– volume: 78
  start-page: 20113
  issue: 14
  year: 2019
  ident: 10653_CR72
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7288-y
– volume: 5
  start-page: 280
  issue: 2
  year: 2010
  ident: 10653_CR7
  publication-title: IEEE Trans Inform Foren Secur
  doi: 10.1109/TIFS.2010.2046268
– volume: 207
  start-page: 131
  year: 2016
  ident: 10653_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.012
– volume: 312
  start-page: 110311
  year: 2020
  ident: 10653_CR61
  publication-title: Foren Sci Int
  doi: 10.1016/j.forsciint.2020.110311
– ident: 10653_CR1
– ident: 10653_CR64
  doi: 10.1109/ICME.2007.4284792
– ident: 10653_CR57
  doi: 10.1109/ISIT.2006.261977
– volume: 15
  start-page: 383
  year: 2006
  ident: 10653_CR48
  publication-title: Multimed Secur Technol Digit Rights
  doi: 10.1016/B978-012369476-8/50017-8
– volume: 66
  start-page: 30
  year: 2018
  ident: 10653_CR44
  publication-title: Signal Process Image Commun
  doi: 10.1016/j.image.2018.04.013
SSID ssj0016524
Score 2.2965243
Snippet It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19513
SubjectTerms Case studies
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Fingerprints
Forensic sciences
Multimedia Information Systems
Nonuniformity
Probability distribution
Signal processing
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6iPuiD06k4nZIH3zSwpG2aPspwCMoQp7K3kubHKM451unf76VLVxUV9DlpUu5yuQt3930InTKjglhTSxSLJAlFFBIZhJZYkQmuM8PjcEE2Eff7YjhMbn1TWFFVu1cpyfKmrpvdqGslcSUF1AGqEnjzrIG7E46w4W7wuMwd8MhT2YoOAX9IfavM92t8dkd1jPklLVp6m17jf_-5jbZ8dIkvFsdhB62YSRM1KuYG7A25iTY_wBDuokFXTl0iAWvj7g2ca19CVGoNuw4UrPORoxfB-TNcQAV25fIjfA3v10yqJ3Jj8mwMG2hX5VHCe-6hh97lffeKeLIFosAK5yRKlJRCJ9yqQHClEy0yiB0hJDJMMg22nnAlJAWnGtuMaog0Y8mllNzyOI5UsI9WJy8Tc4CwEFbHHQkvvY4JpWUZYzSw1BqHBAPxUgvRSuap8kjkjhBjnNYYyk6GKcgwLWWY0hY6W34zXeBw_Dq7Xaky9TZZpMwRJPEgZDB8XqmuHv55tcO_TT9CG8xpv6yKbKPV-ezVHKN19TbPi9lJeVbfAQyZ4cw
  priority: 102
  providerName: Springer Nature
Title Capture device identification from digital images using Kullback-Leibler divergence
URI https://link.springer.com/article/10.1007/s11042-021-10653-1
https://www.proquest.com/docview/2530263421
Volume 80
WOSCitedRecordID wos000622668700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KE9AIWiLtCVD71Rq2snsZ0ToisQEnS74lXoJXL8QBGwLOzC78eTdVhAgksvlqI8lfHMfPY8PoDv3JlEWuap4ZmmqcpSqpPUU69KJWzphEwnZBOy11NnZ3k_briNYlplYxNrQ21vDO6R_-RIbyOSlLOt4S1F1iiMrkYKjVmYR2SDKX2_O92nKILIIqmt6tDgGVksmpmUzjEsTMEEBYbtWSl76ZimaPNVgLT2O7uL__vFS7AQESfZnkyRzzDjBsuw2LA5kKjcy_DpWWvCFTjq6iEGF4h1aEtIZWNaUS1JglUpxFYXSDlCqutglEYEU-gvyH5Y05baXNIDV5VX4QUWMz_qlp9f4GR357i7RyMBAzVBM8c0y43WyubCm0QJY3OryoAnA0xyXHMb9D8XRmkWHK30JbMBfUottNbCCykzk6zC3OBm4L4CUcpb2dFh9ddxqfa85JwlnnmH3WEChmoBa_5-YWJ3ciTJuCqmfZVRYkWQWFFLrGAt2Hy6ZzjpzfHu1RuNmIqop6NiKqMW_GgEPT399tPW3n_aOnzkOLfqzMgNmBvf3btv8ME8jKvRXRtm5d_zNsz_2un1D8PRvqTteubiyP-EsZ_9C-Ph0ekjh5_yMA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqFR6AEpBXZ4-tCewWDuJ7RwQQjwE2u2qUqnELXX8QBF02bILiD_Fb8STB0srwY0D5yS2En-eGWdmvg_gK3cmkpZ5aniiaaySmOoo9tSrXAmbOyHjSmxC9nrq9DT9MQH3TS8MllU2NrE01PbS4D_yLY7yNiKKOdsZ_KWoGoXZ1UZCo4JFx93dhiPbcPt4P6zvN84PD072jmitKkBNgNuIJqnRWtlUeBMpYWxqVR6CpOD7HdfcBlCnwijNgveQPmc2hFRSC6218ELKxERh3HcwFUdK4r7qSPqYtRBJLaKr2jR4YlY36VStegwbYbAggiEdLGX_OsJxdPtfQrb0c4ezb-0LzcFMHVGT3WoLfIIJ15-H2UatgtTGax4-PqFe_Aw_9_QAkyfEOrSVpLB12VSJVIJdN8QWZyipQoo_wegOCbYInJFOOLPn2pzTrivyizCBxcqWktJ0AX69yosuwmT_su--AFHKW9nW4XTbdrH2POecRZ55h-w3IUZsAWtWOzM1-zqKgFxkY95oREgWEJKVCMlYCzYenxlU3CMv3r3SwCKr7dAwG2OiBZsNsMaXnx9t6eXR1uHD0cn3btY97nWWYZojrssq0BWYHF1du1V4b25GxfBqrdwhBH6_NuAeAGMqSho
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAcKBRQFwr4ACewunYS2zkghFpWVFutVgKkiktw_FFFtNulu4D4a_w6ZhKnC0j01gPnJI5iP8-MMzPvATyVwWXai8idLCzPTZFzm-WRR1Mb5eugdN6JTejJxBweltM1-Nn3wlBZZW8TW0PtTx39I9-RJG-jslyKnZjKIqZ7o1fzL5wUpCjT2stpdBAZhx_f8fi2eLm_h2v9TMrRm_e7b3lSGOAOobfkRemsNb5U0WVGOV96U2PAhHFAkFZ6BHipnLECPYmOtfAYXmmrrLUqKq0Ll-G4V-CqxjMmlRNOi4_nGQxVJEFdM-TolUVq2Ona9gQ1xVBxhCBqWC7-dIqrSPev5Gzr80Yb__Ns3YZbKdJmr7utcQfWwmwTNnoVC5aM2ibc_I2S8S6827VzSqowH8iGssancqoWwYy6cZhvjkhqhTUnaIwXjFoHjtgYJ6C27jM_CE19jC_wVPHSUp3egw-X8qH3YX12OgtbwIyJXg8tnnqHIbdR1lKKLIoYiBUHY8cBiH7lK5dY2Ukc5Lha8UkTWipES9WipRIDeH7-zLzjJLnw7u0eIlWyT4tqhY8BvOhBtrr879EeXDzaE7iOOKsO9ifjh3BDEsTb4tBtWF-efQ2P4Jr7tmwWZ4_bzcLg02Xj7RehfVM-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capture+device+identification+from+digital+images+using+Kullback-Leibler+divergence&rft.jtitle=Multimedia+tools+and+applications&rft.au=Quintanar-Res%C3%A9ndiz%2C+Ana+L&rft.au=Rodr%C3%ADguez-Santos%2C+Francisco&rft.au=Pichardo-M%C3%A9ndez%2C+Josu%C3%A9+L&rft.au=Delgado-Guti%C3%A9rrez%2C+Guillermo&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=13&rft.spage=19513&rft.epage=19538&rft_id=info:doi/10.1007%2Fs11042-021-10653-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon