Hanke–Raus rule for Landweber iteration in Banach spaces

We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerische Mathematik Ročník 156; číslo 1; s. 345 - 373
Hlavný autor: Real, Rommel R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Predmet:
ISSN:0029-599X, 0945-3245
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01389-1