Hanke–Raus rule for Landweber iteration in Banach spaces
We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it i...
Saved in:
| Published in: | Numerische Mathematik Vol. 156; no. 1; pp. 345 - 373 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0029-599X, 0945-3245 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported. |
|---|---|
| AbstractList | We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported. |
| Author | Real, Rommel R. |
| Author_xml | – sequence: 1 givenname: Rommel R. surname: Real fullname: Real, Rommel R. email: rrreal@up.edu.ph organization: Department of Mathematics, Physics, and Computer Science, University of the Philippines Mindanao |
| BookMark | eNp9kMFKAzEQhoNUsK2-gKcFz9GZZLPZeNOiVigIouAtZNNEt9ZsTXYRb76Db-iTuLaC4KGnmcP_zfx8IzIITXCEHCIcI4A8SQAMkQLjFJCXiuIOGYLKBeUsF4N-B6aoUOphj4xSWgCgLHIcktOpCc_u6-Pz1nQpi93SZb6J2cyE-ZurXMzq1kXT1k3I6pCdm2DsU5ZWxrq0T3a9WSZ38DvH5P7y4m4ypbObq-vJ2YxajqqlopTSIlOFLCteKKYgZ9wLaxUvKwPe58Ig8wVUwJhipVTO8znHXLoyR1fwMTna3F3F5rVzqdWLpouhf6n7PEouRMH6VLlJ2dikFJ3Xtm7Xxdto6qVG0D-m9MaU7k3ptSmNPcr-oatYv5j4vh3iGyj14fDo4l-rLdQ3-pl7iQ |
| CitedBy_id | crossref_primary_10_1007_s12190_025_02614_w crossref_primary_10_1016_j_matcom_2025_04_004 |
| Cites_doi | 10.1088/1361-6420/ab844a 10.1007/BF01379665 10.1142/5021 10.1016/0041-5553(84)90253-2 10.1137/0917062 10.1137/130940505 10.1088/1361-6420/ab8448 10.1088/1361-6420/aad918 10.1088/1361-6420/aaa0fb 10.1007/BF00281469 10.1088/0266-5611/32/8/085008 10.1007/s00211-019-01038-6 10.1137/100784369 10.1088/1361-6420/ab8bc4 10.1007/s00211-009-0275-x 10.1007/978-94-009-2121-4 10.1016/S0074-6142(05)80014-2 10.1007/s00211-019-01068-0 10.1088/0266-5611/28/10/104007 10.1007/s00211-016-0860-8 10.1088/0266-5611/32/10/104005 10.1088/0266-5611/22/1/017 10.1515/9783110255720 10.1007/BF03167065 10.1553/etna_vol57s216 10.1090/gsm/112 10.1088/0266-5611/29/8/085011 10.3934/mcrf.2018011 10.1007/s002110050158 10.1088/0266-5611/25/6/065003 10.1016/0167-2789(92)90242-F 10.1088/0266-5611/28/10/104010 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00211-023-01389-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 0945-3245 |
| EndPage | 373 |
| ExternalDocumentID | 10_1007_s00211_023_01389_1 |
| GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KQ8 LAS LLZTM LO0 M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI RNS ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XJT YLTOR YNT YQT Z45 Z5O Z7R Z7X Z83 Z86 Z88 Z8M Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ABUFD ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-5877c129678b369290423f5cc938ba0ff45a12f60b02292879ef3d3147e841e63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001126465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-599X |
| IngestDate | Mon Oct 06 16:25:43 EDT 2025 Sat Nov 29 01:36:01 EST 2025 Tue Nov 18 20:49:46 EST 2025 Fri Feb 21 02:40:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 65J20 Numerical solutions of ill-posed problems in abstract spaces regularization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-5877c129678b369290423f5cc938ba0ff45a12f60b02292879ef3d3147e841e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2921735562 |
| PQPubID | 2043616 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2921735562 crossref_citationtrail_10_1007_s00211_023_01389_1 crossref_primary_10_1007_s00211_023_01389_1 springer_journals_10_1007_s00211_023_01389_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Numerische Mathematik |
| PublicationTitleAbbrev | Numer. Math |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | SchusterTKaltenbacherBHofmannBKazimierskiKRegularization Methods in Banach Spaces2012BerlinWalter de Gruyter GmbH Co.KG10.1515/9783110255720 BakushinskiiABRemarks on choosing a regularization parameter using the quasioptimality and ratio criterionUSSR Comput. Math. Math. Phys.198424418118210.1016/0041-5553(84)90253-2 JinQOn a regularized Levenberg–Marquardt method for solving nonlinear inverse problemsNumer. Math.20101152229259260696110.1007/s00211-009-0275-x ChristofCMeyerCWaltherSClasonCOptimal control of a non-smooth semilinear elliptic equationMath. Control Relat. Fields201881247276381087610.3934/mcrf.2018011 ClasonCL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} fitting for inverse problems with uniform noiseInverse Probl.20122810298790210.1088/0266-5611/28/10/104007 ClasonCNhuVHBouligand–Landweber iteration for a non-smooth ill-posed problemNumer. Math.20191424789832397585010.1007/s00211-019-01038-6 JinQInexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty termsSIAM J. Numer. Anal.201553523892413341446910.1137/130940505 Jin, Q., Wang, W.: Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 34(3) (2018) ZhongMWangWJinQRegularization of inverse problems by two-point gradient methods in Banach spacesNumer. Math.20191433713747402066910.1007/s00211-019-01068-0 FuZJinQZhangZHanBChenYAnalysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization termsInverse Probl.202036775002412131410.1088/1361-6420/ab8448 CioranescuIGeometry of Banach Spaces, Duality Mappings, and Nonlinear Problems1990DordrechtKluwer10.1007/978-94-009-2121-4 Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM Report (May 2008) KikuchiFNakazatoKUshijimaTFinite element approximation of a nonlinear eigenvalue problem related to MHD equilibriaJpn. J. Appl. Math.19841236940384080310.1007/BF03167065 ZǎlinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific10.1142/5021 ZhangZJinQHeuristic rule for non-stationary iterated Tikhonov regularization in Banach spacesInverse Probl.20183411385608810.1088/1361-6420/aad918 Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1) (2006) Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear inverse ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25(6) (2009) JinQLandweber–Kaczmarz method in Banach spaces with inexact inner solversInverse Probl.20163210362702110.1088/0266-5611/32/10/104005 JinBLorenzDAHeuristic parameter-choice rules for convex variational regularization based on error estimatesSIAM J. Numer. Anal.201048312081229267957810.1137/100784369 Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975/76) Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI, pp. xvi+399 (2010) JinQOn a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian methodNumer. Math.20161364973992367159410.1007/s00211-016-0860-8 Boţ, R.I., Hein, T.: Iterative regularization with a geeral penalty term—theory and applications to L1 and TV regularization. Inverse Probl. 28 (2012) HankeMNeubauerAScherzerOA convergence analysis of the Landweber iteration for nonlinear ill-posed problemsNumer. Math.19957212137135970610.1007/s002110050158 AsterRCBorchersBThurberCHParameter Estimation and Inverse Problems2005AmsterdamElsevier Academic Press10.1016/S0074-6142(05)80014-2 HubmerSSherinaEKindermannSRaikKA numerical comparison of some heuristic stopping rules for nonlinear Landweber iterationElectron. Trans. Numer. Anal.202257216241451652210.1553/etna_vol57s216 Liu, H., Real, R., Lu, X., Jia, X., Jin, Q.: Heuristic discrepancy principle for variational regularization of inverse problems. Inverse Probl. 36(7) (2020) HankeMRausTA general heuristic for choosing the regularization parameter in ill-posed problemsSIAM J. Sci. Comput.1996174956972139535810.1137/0917062 RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D Nonlinear Phenom.1992601–4259268336340110.1016/0167-2789(92)90242-F Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32(8) (2016) JinQWangWLandweber iteration of Kaczmarz type with general non-smooth convex penalty functionalsInverse Probl.2013298122308468510.1088/0266-5611/29/8/085011 RappazJApproximation of a nondifferentiable nonlinear problem related to MHD equilibriaNumer. Math.198445111713376188410.1007/BF01379665 RealRJinQA revisit on Landweber iterationInverse Probl.202036775011412132310.1088/1361-6420/ab8bc4 1389_CR18 M Hanke (1389_CR9) 1995; 72 M Hanke (1389_CR10) 1996; 17 B Jin (1389_CR12) 2010; 48 LI Rudin (1389_CR25) 1992; 60 S Hubmer (1389_CR11) 2022; 57 C Clason (1389_CR6) 2012; 28 Q Jin (1389_CR17) 2010; 115 J Rappaz (1389_CR23) 1984; 45 1389_CR32 1389_CR13 Q Jin (1389_CR15) 2016; 32 1389_CR3 1389_CR28 RC Aster (1389_CR1) 2005 Q Jin (1389_CR16) 2016; 136 1389_CR29 C Clason (1389_CR7) 2019; 142 Q Jin (1389_CR14) 2015; 53 AB Bakushinskii (1389_CR2) 1984; 24 C Christof (1389_CR4) 2018; 8 F Kikuchi (1389_CR21) 1984; 1 Z Fu (1389_CR8) 2020; 36 Q Jin (1389_CR19) 2013; 29 C Zǎlinescu (1389_CR33) 2002 I Cioranescu (1389_CR5) 1990 T Schuster (1389_CR27) 2012 Z Zhang (1389_CR30) 2018; 34 R Real (1389_CR24) 2020; 36 M Zhong (1389_CR31) 2019; 143 1389_CR20 1389_CR22 1389_CR26 |
| References_xml | – reference: HankeMNeubauerAScherzerOA convergence analysis of the Landweber iteration for nonlinear ill-posed problemsNumer. Math.19957212137135970610.1007/s002110050158 – reference: ChristofCMeyerCWaltherSClasonCOptimal control of a non-smooth semilinear elliptic equationMath. Control Relat. Fields201881247276381087610.3934/mcrf.2018011 – reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D Nonlinear Phenom.1992601–4259268336340110.1016/0167-2789(92)90242-F – reference: SchusterTKaltenbacherBHofmannBKazimierskiKRegularization Methods in Banach Spaces2012BerlinWalter de Gruyter GmbH Co.KG10.1515/9783110255720 – reference: Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32(8) (2016) – reference: BakushinskiiABRemarks on choosing a regularization parameter using the quasioptimality and ratio criterionUSSR Comput. Math. Math. Phys.198424418118210.1016/0041-5553(84)90253-2 – reference: ClasonCNhuVHBouligand–Landweber iteration for a non-smooth ill-posed problemNumer. Math.20191424789832397585010.1007/s00211-019-01038-6 – reference: JinQOn a regularized Levenberg–Marquardt method for solving nonlinear inverse problemsNumer. Math.20101152229259260696110.1007/s00211-009-0275-x – reference: Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI, pp. xvi+399 (2010) – reference: JinQInexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty termsSIAM J. Numer. Anal.201553523892413341446910.1137/130940505 – reference: Boţ, R.I., Hein, T.: Iterative regularization with a geeral penalty term—theory and applications to L1 and TV regularization. Inverse Probl. 28 (2012) – reference: HankeMRausTA general heuristic for choosing the regularization parameter in ill-posed problemsSIAM J. Sci. Comput.1996174956972139535810.1137/0917062 – reference: Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear inverse ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25(6) (2009) – reference: Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1) (2006) – reference: RappazJApproximation of a nondifferentiable nonlinear problem related to MHD equilibriaNumer. Math.198445111713376188410.1007/BF01379665 – reference: Jin, Q., Wang, W.: Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 34(3) (2018) – reference: RealRJinQA revisit on Landweber iterationInverse Probl.202036775011412132310.1088/1361-6420/ab8bc4 – reference: ZhangZJinQHeuristic rule for non-stationary iterated Tikhonov regularization in Banach spacesInverse Probl.20183411385608810.1088/1361-6420/aad918 – reference: JinQOn a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian methodNumer. Math.20161364973992367159410.1007/s00211-016-0860-8 – reference: Liu, H., Real, R., Lu, X., Jia, X., Jin, Q.: Heuristic discrepancy principle for variational regularization of inverse problems. Inverse Probl. 36(7) (2020) – reference: FuZJinQZhangZHanBChenYAnalysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization termsInverse Probl.202036775002412131410.1088/1361-6420/ab8448 – reference: JinQWangWLandweber iteration of Kaczmarz type with general non-smooth convex penalty functionalsInverse Probl.2013298122308468510.1088/0266-5611/29/8/085011 – reference: HubmerSSherinaEKindermannSRaikKA numerical comparison of some heuristic stopping rules for nonlinear Landweber iterationElectron. Trans. Numer. Anal.202257216241451652210.1553/etna_vol57s216 – reference: ZǎlinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific10.1142/5021 – reference: CioranescuIGeometry of Banach Spaces, Duality Mappings, and Nonlinear Problems1990DordrechtKluwer10.1007/978-94-009-2121-4 – reference: Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975/76) – reference: ZhongMWangWJinQRegularization of inverse problems by two-point gradient methods in Banach spacesNumer. Math.20191433713747402066910.1007/s00211-019-01068-0 – reference: Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM Report (May 2008) – reference: AsterRCBorchersBThurberCHParameter Estimation and Inverse Problems2005AmsterdamElsevier Academic Press10.1016/S0074-6142(05)80014-2 – reference: ClasonCL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} fitting for inverse problems with uniform noiseInverse Probl.20122810298790210.1088/0266-5611/28/10/104007 – reference: JinBLorenzDAHeuristic parameter-choice rules for convex variational regularization based on error estimatesSIAM J. Numer. Anal.201048312081229267957810.1137/100784369 – reference: JinQLandweber–Kaczmarz method in Banach spaces with inexact inner solversInverse Probl.20163210362702110.1088/0266-5611/32/10/104005 – reference: KikuchiFNakazatoKUshijimaTFinite element approximation of a nonlinear eigenvalue problem related to MHD equilibriaJpn. J. Appl. Math.19841236940384080310.1007/BF03167065 – ident: 1389_CR22 doi: 10.1088/1361-6420/ab844a – volume: 45 start-page: 117 issue: 1 year: 1984 ident: 1389_CR23 publication-title: Numer. Math. doi: 10.1007/BF01379665 – volume-title: Convex Analysis in General Vector Spaces year: 2002 ident: 1389_CR33 doi: 10.1142/5021 – volume: 24 start-page: 181 issue: 4 year: 1984 ident: 1389_CR2 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(84)90253-2 – volume: 17 start-page: 956 issue: 4 year: 1996 ident: 1389_CR10 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0917062 – volume: 53 start-page: 2389 issue: 5 year: 2015 ident: 1389_CR14 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130940505 – volume: 36 start-page: 75002 issue: 7 year: 2020 ident: 1389_CR8 publication-title: Inverse Probl. doi: 10.1088/1361-6420/ab8448 – volume: 34 issue: 11 year: 2018 ident: 1389_CR30 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aad918 – ident: 1389_CR32 – ident: 1389_CR18 doi: 10.1088/1361-6420/aaa0fb – ident: 1389_CR28 doi: 10.1007/BF00281469 – ident: 1389_CR13 doi: 10.1088/0266-5611/32/8/085008 – volume: 142 start-page: 789 issue: 4 year: 2019 ident: 1389_CR7 publication-title: Numer. Math. doi: 10.1007/s00211-019-01038-6 – volume: 48 start-page: 1208 issue: 3 year: 2010 ident: 1389_CR12 publication-title: SIAM J. Numer. Anal. doi: 10.1137/100784369 – volume: 36 start-page: 75011 issue: 7 year: 2020 ident: 1389_CR24 publication-title: Inverse Probl. doi: 10.1088/1361-6420/ab8bc4 – volume: 115 start-page: 229 issue: 2 year: 2010 ident: 1389_CR17 publication-title: Numer. Math. doi: 10.1007/s00211-009-0275-x – volume-title: Geometry of Banach Spaces, Duality Mappings, and Nonlinear Problems year: 1990 ident: 1389_CR5 doi: 10.1007/978-94-009-2121-4 – volume-title: Parameter Estimation and Inverse Problems year: 2005 ident: 1389_CR1 doi: 10.1016/S0074-6142(05)80014-2 – volume: 143 start-page: 713 issue: 3 year: 2019 ident: 1389_CR31 publication-title: Numer. Math. doi: 10.1007/s00211-019-01068-0 – volume: 28 issue: 10 year: 2012 ident: 1389_CR6 publication-title: Inverse Probl. doi: 10.1088/0266-5611/28/10/104007 – volume: 136 start-page: 973 issue: 4 year: 2016 ident: 1389_CR16 publication-title: Numer. Math. doi: 10.1007/s00211-016-0860-8 – volume: 32 issue: 10 year: 2016 ident: 1389_CR15 publication-title: Inverse Probl. doi: 10.1088/0266-5611/32/10/104005 – ident: 1389_CR26 doi: 10.1088/0266-5611/22/1/017 – volume-title: Regularization Methods in Banach Spaces year: 2012 ident: 1389_CR27 doi: 10.1515/9783110255720 – volume: 1 start-page: 369 issue: 2 year: 1984 ident: 1389_CR21 publication-title: Jpn. J. Appl. Math. doi: 10.1007/BF03167065 – volume: 57 start-page: 216 year: 2022 ident: 1389_CR11 publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol57s216 – ident: 1389_CR29 doi: 10.1090/gsm/112 – volume: 29 start-page: 1 issue: 8 year: 2013 ident: 1389_CR19 publication-title: Inverse Probl. doi: 10.1088/0266-5611/29/8/085011 – volume: 8 start-page: 247 issue: 1 year: 2018 ident: 1389_CR4 publication-title: Math. Control Relat. Fields doi: 10.3934/mcrf.2018011 – volume: 72 start-page: 21 issue: 1 year: 1995 ident: 1389_CR9 publication-title: Numer. Math. doi: 10.1007/s002110050158 – ident: 1389_CR20 doi: 10.1088/0266-5611/25/6/065003 – volume: 60 start-page: 259 issue: 1–4 year: 1992 ident: 1389_CR25 publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(92)90242-F – ident: 1389_CR3 doi: 10.1088/0266-5611/28/10/104010 |
| SSID | ssj0017641 |
| Score | 2.3948402 |
| Snippet | We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 345 |
| SubjectTerms | Banach spaces Convergence Inverse problems Iterative methods Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Noise levels Numerical Analysis Numerical and Computational Physics Parameters Regularization Simulation Theoretical |
| Title | Hanke–Raus rule for Landweber iteration in Banach spaces |
| URI | https://link.springer.com/article/10.1007/s00211-023-01389-1 https://www.proquest.com/docview/2921735562 |
| Volume | 156 |
| WOSCitedRecordID | wos001126465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0945-3245 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017641 issn: 0029-599X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6ketCD1apYrZKDNw3sI9nselOx9FCL1Ae9LdlsgsWySrf17H_wH_pLnH0WRQU950GYycw3w7wAjgyXjAttqGLcpYxHikpjBGUiDoxrOTrWecv8vhgM_NEouC6LwtIq270KSeaaui52y-AIXV8ny_9BmKXo8ywj3PmZOA5v7uvYgfCYXSV28CAYlaUy39_xGY4WNuaXsGiONt3m_965AeuldUnOiu-wCUs6aUGzmtxASkFuwdpV3a013YLTnkwe9fvr21DOUzKdTzRBU5b0ZRKjksVzRetl5CAZJ-RcJlI9ENREqGK24a57eXvRo-VMBapQ2GaU-0IoxHjEqMj10DbK8mIMVypw_UhaxjAubcd4VoTgHqA7FWjjxq7NhPaZrT13BxrJU6J3gXCNx6woc9k082QcqRhhUBnJfUtIJtpgV6QNVdlwPJt7MQnrVsk5qUIkVZiTKrTbcFyfeS7abfy6u1NxLCxFLw3x1bZAK8pz2nBScWix_PNte3_bvg-rDho4RQZ3Bxqz6VwfwIp6mY3T6WH-JT8AhTfYSQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kCurBalWsVt2DNw3ksZtNvKlYKrZFapXewmazi8USpWk9-x_8h_4SJ2mSoqig532wzOzMN8O8AI40E5RxpQ1JmWNQFkpDaM0NyiNfO6atIpW1zG_zbtcbDPybvCgsKbLdi5BkpqnLYrcUjtD1tdP8H4RZA32eRYqIlSby9W7vy9gBd6lVJHYw3x_kpTLf3_EZjuY25pewaIY2zer_3rkOa7l1Sc5m32EDFlRcg2oxuYHkglyD1U7ZrTXZhNOWiB_V--tbT0wTMp6OFEFTlrRFHKGSxXOz1svIQTKMybmIhXwgqIlQxWzBXfOyf9Ey8pkKhkRhmxjM41wixiNGhY6LtlGaF6OZlL7jhcLUmjJh2do1QwR3H90pX2kncizKlUct5TrbUImfYrUDhCk8Zoapy6aoK6JQRgiDUgvmmVxQXgerIG0g84bj6dyLUVC2Ss5IFSCpgoxUgVWH4_LM86zdxq-7GwXHglz0kgBfbXG0oly7DicFh-bLP9-2-7fth7Dc6nfaQfuqe70HKzYaO7Ns7gZUJuOp2ocl-TIZJuOD7Ht-ALG42y0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEC1ERfTguOLoqDl408Zekk63N7dBcRzEjbk16XSCorTDLJ79B__QL7HS26ioIJ6zEKqSvCqq6hXAlmaCMq60JSnzLMpiaQmtuUV5EmrPdlWiMsr8Fm-3g04nvPhQxZ9lu5chybymwbA0pYPdbqJ3q8I3A03oBrsmFwgh10L_Z4KapkHGX7-6reII3KdOmeTBwrBTlM18v8dnaBrZm19CpBnyNGv_P_MczBZWJ9nPr8k8jKl0AWplRwdSPPAFmDmvWFz7i7B3ItIH9fbyeimGfdIbPiqCJi5piTTBzxfX5ZTMqFlyn5IDkQp5R_CHwq9nCW6ax9eHJ1bRa8GS-AgHFgs4l4j9iF2x56PNZPJlNJMy9IJY2FpTJhxX-3aMoB-imxUq7SWeQ7kKqKN8bxnG06dUrQBhCpfZsXHlFPVFEssE4VFqwQKbC8rr4JRijmRBRG76YTxGFYVyJqoIRRVlooqcOmxXa7o5Dcevsxul9qLiSfYjPLXD0bry3TrslNoaDf-82-rfpm_C1MVRM2qdts_WYNpFGyhP8m7A-KA3VOswKZ8H9_3eRnZT3wHmCeQR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hanke%E2%80%93Raus+rule+for+Landweber+iteration+in+Banach+spaces&rft.jtitle=Numerische+Mathematik&rft.au=Real%2C+Rommel+R&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft.issue=1&rft.spage=345&rft.epage=373&rft_id=info:doi/10.1007%2Fs00211-023-01389-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon |