Hanke–Raus rule for Landweber iteration in Banach spaces

We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it i...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik Vol. 156; no. 1; pp. 345 - 373
Main Author: Real, Rommel R.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects:
ISSN:0029-599X, 0945-3245
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported.
AbstractList We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a heuristic parameter choice rule for choosing the regularization parameter which does not require the information on the noise level, so it is purely data-driven. According to a famous veto, convergence in the worst-case scenario cannot be expected in general. However, by imposing certain conditions on the noisy data, we establish a new convergence result which, in addition, requires neither the Gâteaux differentiability of the forward operator nor the reflexivity of the image space. Therefore, we also expand the applied range of the Landweber iteration to cover non-smooth ill-posed inverse problems and to handle the situation that the data is contaminated by various types of noise. Numerical simulations are also reported.
Author Real, Rommel R.
Author_xml – sequence: 1
  givenname: Rommel R.
  surname: Real
  fullname: Real, Rommel R.
  email: rrreal@up.edu.ph
  organization: Department of Mathematics, Physics, and Computer Science, University of the Philippines Mindanao
BookMark eNp9kMFKAzEQhoNUsK2-gKcFz9GZZLPZeNOiVigIouAtZNNEt9ZsTXYRb76Db-iTuLaC4KGnmcP_zfx8IzIITXCEHCIcI4A8SQAMkQLjFJCXiuIOGYLKBeUsF4N-B6aoUOphj4xSWgCgLHIcktOpCc_u6-Pz1nQpi93SZb6J2cyE-ZurXMzq1kXT1k3I6pCdm2DsU5ZWxrq0T3a9WSZ38DvH5P7y4m4ypbObq-vJ2YxajqqlopTSIlOFLCteKKYgZ9wLaxUvKwPe58Ig8wVUwJhipVTO8znHXLoyR1fwMTna3F3F5rVzqdWLpouhf6n7PEouRMH6VLlJ2dikFJ3Xtm7Xxdto6qVG0D-m9MaU7k3ptSmNPcr-oatYv5j4vh3iGyj14fDo4l-rLdQ3-pl7iQ
CitedBy_id crossref_primary_10_1007_s12190_025_02614_w
crossref_primary_10_1016_j_matcom_2025_04_004
Cites_doi 10.1088/1361-6420/ab844a
10.1007/BF01379665
10.1142/5021
10.1016/0041-5553(84)90253-2
10.1137/0917062
10.1137/130940505
10.1088/1361-6420/ab8448
10.1088/1361-6420/aad918
10.1088/1361-6420/aaa0fb
10.1007/BF00281469
10.1088/0266-5611/32/8/085008
10.1007/s00211-019-01038-6
10.1137/100784369
10.1088/1361-6420/ab8bc4
10.1007/s00211-009-0275-x
10.1007/978-94-009-2121-4
10.1016/S0074-6142(05)80014-2
10.1007/s00211-019-01068-0
10.1088/0266-5611/28/10/104007
10.1007/s00211-016-0860-8
10.1088/0266-5611/32/10/104005
10.1088/0266-5611/22/1/017
10.1515/9783110255720
10.1007/BF03167065
10.1553/etna_vol57s216
10.1090/gsm/112
10.1088/0266-5611/29/8/085011
10.3934/mcrf.2018011
10.1007/s002110050158
10.1088/0266-5611/25/6/065003
10.1016/0167-2789(92)90242-F
10.1088/0266-5611/28/10/104010
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00211-023-01389-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 0945-3245
EndPage 373
ExternalDocumentID 10_1007_s00211_023_01389_1
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
LO0
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
YNT
YQT
Z45
Z5O
Z7R
Z7X
Z83
Z86
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c319t-5877c129678b369290423f5cc938ba0ff45a12f60b02292879ef3d3147e841e63
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001126465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-599X
IngestDate Mon Oct 06 16:25:43 EDT 2025
Sat Nov 29 01:36:01 EST 2025
Tue Nov 18 20:49:46 EST 2025
Fri Feb 21 02:40:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65J20 Numerical solutions of ill-posed problems in abstract spaces
regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-5877c129678b369290423f5cc938ba0ff45a12f60b02292879ef3d3147e841e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921735562
PQPubID 2043616
PageCount 29
ParticipantIDs proquest_journals_2921735562
crossref_citationtrail_10_1007_s00211_023_01389_1
crossref_primary_10_1007_s00211_023_01389_1
springer_journals_10_1007_s00211_023_01389_1
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Numerische Mathematik
PublicationTitleAbbrev Numer. Math
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SchusterTKaltenbacherBHofmannBKazimierskiKRegularization Methods in Banach Spaces2012BerlinWalter de Gruyter GmbH Co.KG10.1515/9783110255720
BakushinskiiABRemarks on choosing a regularization parameter using the quasioptimality and ratio criterionUSSR Comput. Math. Math. Phys.198424418118210.1016/0041-5553(84)90253-2
JinQOn a regularized Levenberg–Marquardt method for solving nonlinear inverse problemsNumer. Math.20101152229259260696110.1007/s00211-009-0275-x
ChristofCMeyerCWaltherSClasonCOptimal control of a non-smooth semilinear elliptic equationMath. Control Relat. Fields201881247276381087610.3934/mcrf.2018011
ClasonCL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} fitting for inverse problems with uniform noiseInverse Probl.20122810298790210.1088/0266-5611/28/10/104007
ClasonCNhuVHBouligand–Landweber iteration for a non-smooth ill-posed problemNumer. Math.20191424789832397585010.1007/s00211-019-01038-6
JinQInexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty termsSIAM J. Numer. Anal.201553523892413341446910.1137/130940505
Jin, Q., Wang, W.: Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 34(3) (2018)
ZhongMWangWJinQRegularization of inverse problems by two-point gradient methods in Banach spacesNumer. Math.20191433713747402066910.1007/s00211-019-01068-0
FuZJinQZhangZHanBChenYAnalysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization termsInverse Probl.202036775002412131410.1088/1361-6420/ab8448
CioranescuIGeometry of Banach Spaces, Duality Mappings, and Nonlinear Problems1990DordrechtKluwer10.1007/978-94-009-2121-4
Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM Report (May 2008)
KikuchiFNakazatoKUshijimaTFinite element approximation of a nonlinear eigenvalue problem related to MHD equilibriaJpn. J. Appl. Math.19841236940384080310.1007/BF03167065
ZǎlinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific10.1142/5021
ZhangZJinQHeuristic rule for non-stationary iterated Tikhonov regularization in Banach spacesInverse Probl.20183411385608810.1088/1361-6420/aad918
Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1) (2006)
Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear inverse ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25(6) (2009)
JinQLandweber–Kaczmarz method in Banach spaces with inexact inner solversInverse Probl.20163210362702110.1088/0266-5611/32/10/104005
JinBLorenzDAHeuristic parameter-choice rules for convex variational regularization based on error estimatesSIAM J. Numer. Anal.201048312081229267957810.1137/100784369
Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975/76)
Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI, pp. xvi+399 (2010)
JinQOn a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian methodNumer. Math.20161364973992367159410.1007/s00211-016-0860-8
Boţ, R.I., Hein, T.: Iterative regularization with a geeral penalty term—theory and applications to L1 and TV regularization. Inverse Probl. 28 (2012)
HankeMNeubauerAScherzerOA convergence analysis of the Landweber iteration for nonlinear ill-posed problemsNumer. Math.19957212137135970610.1007/s002110050158
AsterRCBorchersBThurberCHParameter Estimation and Inverse Problems2005AmsterdamElsevier Academic Press10.1016/S0074-6142(05)80014-2
HubmerSSherinaEKindermannSRaikKA numerical comparison of some heuristic stopping rules for nonlinear Landweber iterationElectron. Trans. Numer. Anal.202257216241451652210.1553/etna_vol57s216
Liu, H., Real, R., Lu, X., Jia, X., Jin, Q.: Heuristic discrepancy principle for variational regularization of inverse problems. Inverse Probl. 36(7) (2020)
HankeMRausTA general heuristic for choosing the regularization parameter in ill-posed problemsSIAM J. Sci. Comput.1996174956972139535810.1137/0917062
RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D Nonlinear Phenom.1992601–4259268336340110.1016/0167-2789(92)90242-F
Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32(8) (2016)
JinQWangWLandweber iteration of Kaczmarz type with general non-smooth convex penalty functionalsInverse Probl.2013298122308468510.1088/0266-5611/29/8/085011
RappazJApproximation of a nondifferentiable nonlinear problem related to MHD equilibriaNumer. Math.198445111713376188410.1007/BF01379665
RealRJinQA revisit on Landweber iterationInverse Probl.202036775011412132310.1088/1361-6420/ab8bc4
1389_CR18
M Hanke (1389_CR9) 1995; 72
M Hanke (1389_CR10) 1996; 17
B Jin (1389_CR12) 2010; 48
LI Rudin (1389_CR25) 1992; 60
S Hubmer (1389_CR11) 2022; 57
C Clason (1389_CR6) 2012; 28
Q Jin (1389_CR17) 2010; 115
J Rappaz (1389_CR23) 1984; 45
1389_CR32
1389_CR13
Q Jin (1389_CR15) 2016; 32
1389_CR3
1389_CR28
RC Aster (1389_CR1) 2005
Q Jin (1389_CR16) 2016; 136
1389_CR29
C Clason (1389_CR7) 2019; 142
Q Jin (1389_CR14) 2015; 53
AB Bakushinskii (1389_CR2) 1984; 24
C Christof (1389_CR4) 2018; 8
F Kikuchi (1389_CR21) 1984; 1
Z Fu (1389_CR8) 2020; 36
Q Jin (1389_CR19) 2013; 29
C Zǎlinescu (1389_CR33) 2002
I Cioranescu (1389_CR5) 1990
T Schuster (1389_CR27) 2012
Z Zhang (1389_CR30) 2018; 34
R Real (1389_CR24) 2020; 36
M Zhong (1389_CR31) 2019; 143
1389_CR20
1389_CR22
1389_CR26
References_xml – reference: HankeMNeubauerAScherzerOA convergence analysis of the Landweber iteration for nonlinear ill-posed problemsNumer. Math.19957212137135970610.1007/s002110050158
– reference: ChristofCMeyerCWaltherSClasonCOptimal control of a non-smooth semilinear elliptic equationMath. Control Relat. Fields201881247276381087610.3934/mcrf.2018011
– reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D Nonlinear Phenom.1992601–4259268336340110.1016/0167-2789(92)90242-F
– reference: SchusterTKaltenbacherBHofmannBKazimierskiKRegularization Methods in Banach Spaces2012BerlinWalter de Gruyter GmbH Co.KG10.1515/9783110255720
– reference: Jin, Q.: Hanke–Raus heuristic rule for variational regularization in Banach spaces. Inverse Probl. 32(8) (2016)
– reference: BakushinskiiABRemarks on choosing a regularization parameter using the quasioptimality and ratio criterionUSSR Comput. Math. Math. Phys.198424418118210.1016/0041-5553(84)90253-2
– reference: ClasonCNhuVHBouligand–Landweber iteration for a non-smooth ill-posed problemNumer. Math.20191424789832397585010.1007/s00211-019-01038-6
– reference: JinQOn a regularized Levenberg–Marquardt method for solving nonlinear inverse problemsNumer. Math.20101152229259260696110.1007/s00211-009-0275-x
– reference: Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. Graduate Studies in Mathematics. Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels. American Mathematical Society, Providence, RI, pp. xvi+399 (2010)
– reference: JinQInexact Newton-Landweber iteration in Banach spaces with nonsmooth convex penalty termsSIAM J. Numer. Anal.201553523892413341446910.1137/130940505
– reference: Boţ, R.I., Hein, T.: Iterative regularization with a geeral penalty term—theory and applications to L1 and TV regularization. Inverse Probl. 28 (2012)
– reference: HankeMRausTA general heuristic for choosing the regularization parameter in ill-posed problemsSIAM J. Sci. Comput.1996174956972139535810.1137/0917062
– reference: Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear inverse ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25(6) (2009)
– reference: Schöpfer, F., Louis, A.K., Schuster, T.: Nonlinear iterative methods for linear ill-posed problems in Banach spaces. Inverse Probl. 22(1) (2006)
– reference: RappazJApproximation of a nondifferentiable nonlinear problem related to MHD equilibriaNumer. Math.198445111713376188410.1007/BF01379665
– reference: Jin, Q., Wang, W.: Analysis of the iteratively regularized Gauss–Newton method under a heuristic rule. Inverse Probl. 34(3) (2018)
– reference: RealRJinQA revisit on Landweber iterationInverse Probl.202036775011412132310.1088/1361-6420/ab8bc4
– reference: ZhangZJinQHeuristic rule for non-stationary iterated Tikhonov regularization in Banach spacesInverse Probl.20183411385608810.1088/1361-6420/aad918
– reference: JinQOn a heuristic stopping rule for the regularization of inverse problems by the augmented Lagrangian methodNumer. Math.20161364973992367159410.1007/s00211-016-0860-8
– reference: Liu, H., Real, R., Lu, X., Jia, X., Jin, Q.: Heuristic discrepancy principle for variational regularization of inverse problems. Inverse Probl. 36(7) (2020)
– reference: FuZJinQZhangZHanBChenYAnalysis of a heuristic rule for the IRGNM in Banach spaces with convex regularization termsInverse Probl.202036775002412131410.1088/1361-6420/ab8448
– reference: JinQWangWLandweber iteration of Kaczmarz type with general non-smooth convex penalty functionalsInverse Probl.2013298122308468510.1088/0266-5611/29/8/085011
– reference: HubmerSSherinaEKindermannSRaikKA numerical comparison of some heuristic stopping rules for nonlinear Landweber iterationElectron. Trans. Numer. Anal.202257216241451652210.1553/etna_vol57s216
– reference: ZǎlinescuCConvex Analysis in General Vector Spaces2002River Edge, NJWorld Scientific10.1142/5021
– reference: CioranescuIGeometry of Banach Spaces, Duality Mappings, and Nonlinear Problems1990DordrechtKluwer10.1007/978-94-009-2121-4
– reference: Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51–73 (1975/76)
– reference: ZhongMWangWJinQRegularization of inverse problems by two-point gradient methods in Banach spacesNumer. Math.20191433713747402066910.1007/s00211-019-01068-0
– reference: Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. In: UCLA CAM Report (May 2008)
– reference: AsterRCBorchersBThurberCHParameter Estimation and Inverse Problems2005AmsterdamElsevier Academic Press10.1016/S0074-6142(05)80014-2
– reference: ClasonCL∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} fitting for inverse problems with uniform noiseInverse Probl.20122810298790210.1088/0266-5611/28/10/104007
– reference: JinBLorenzDAHeuristic parameter-choice rules for convex variational regularization based on error estimatesSIAM J. Numer. Anal.201048312081229267957810.1137/100784369
– reference: JinQLandweber–Kaczmarz method in Banach spaces with inexact inner solversInverse Probl.20163210362702110.1088/0266-5611/32/10/104005
– reference: KikuchiFNakazatoKUshijimaTFinite element approximation of a nonlinear eigenvalue problem related to MHD equilibriaJpn. J. Appl. Math.19841236940384080310.1007/BF03167065
– ident: 1389_CR22
  doi: 10.1088/1361-6420/ab844a
– volume: 45
  start-page: 117
  issue: 1
  year: 1984
  ident: 1389_CR23
  publication-title: Numer. Math.
  doi: 10.1007/BF01379665
– volume-title: Convex Analysis in General Vector Spaces
  year: 2002
  ident: 1389_CR33
  doi: 10.1142/5021
– volume: 24
  start-page: 181
  issue: 4
  year: 1984
  ident: 1389_CR2
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(84)90253-2
– volume: 17
  start-page: 956
  issue: 4
  year: 1996
  ident: 1389_CR10
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0917062
– volume: 53
  start-page: 2389
  issue: 5
  year: 2015
  ident: 1389_CR14
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130940505
– volume: 36
  start-page: 75002
  issue: 7
  year: 2020
  ident: 1389_CR8
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ab8448
– volume: 34
  issue: 11
  year: 2018
  ident: 1389_CR30
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/aad918
– ident: 1389_CR32
– ident: 1389_CR18
  doi: 10.1088/1361-6420/aaa0fb
– ident: 1389_CR28
  doi: 10.1007/BF00281469
– ident: 1389_CR13
  doi: 10.1088/0266-5611/32/8/085008
– volume: 142
  start-page: 789
  issue: 4
  year: 2019
  ident: 1389_CR7
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01038-6
– volume: 48
  start-page: 1208
  issue: 3
  year: 2010
  ident: 1389_CR12
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/100784369
– volume: 36
  start-page: 75011
  issue: 7
  year: 2020
  ident: 1389_CR24
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ab8bc4
– volume: 115
  start-page: 229
  issue: 2
  year: 2010
  ident: 1389_CR17
  publication-title: Numer. Math.
  doi: 10.1007/s00211-009-0275-x
– volume-title: Geometry of Banach Spaces, Duality Mappings, and Nonlinear Problems
  year: 1990
  ident: 1389_CR5
  doi: 10.1007/978-94-009-2121-4
– volume-title: Parameter Estimation and Inverse Problems
  year: 2005
  ident: 1389_CR1
  doi: 10.1016/S0074-6142(05)80014-2
– volume: 143
  start-page: 713
  issue: 3
  year: 2019
  ident: 1389_CR31
  publication-title: Numer. Math.
  doi: 10.1007/s00211-019-01068-0
– volume: 28
  issue: 10
  year: 2012
  ident: 1389_CR6
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/28/10/104007
– volume: 136
  start-page: 973
  issue: 4
  year: 2016
  ident: 1389_CR16
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0860-8
– volume: 32
  issue: 10
  year: 2016
  ident: 1389_CR15
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/32/10/104005
– ident: 1389_CR26
  doi: 10.1088/0266-5611/22/1/017
– volume-title: Regularization Methods in Banach Spaces
  year: 2012
  ident: 1389_CR27
  doi: 10.1515/9783110255720
– volume: 1
  start-page: 369
  issue: 2
  year: 1984
  ident: 1389_CR21
  publication-title: Jpn. J. Appl. Math.
  doi: 10.1007/BF03167065
– volume: 57
  start-page: 216
  year: 2022
  ident: 1389_CR11
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol57s216
– ident: 1389_CR29
  doi: 10.1090/gsm/112
– volume: 29
  start-page: 1
  issue: 8
  year: 2013
  ident: 1389_CR19
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/29/8/085011
– volume: 8
  start-page: 247
  issue: 1
  year: 2018
  ident: 1389_CR4
  publication-title: Math. Control Relat. Fields
  doi: 10.3934/mcrf.2018011
– volume: 72
  start-page: 21
  issue: 1
  year: 1995
  ident: 1389_CR9
  publication-title: Numer. Math.
  doi: 10.1007/s002110050158
– ident: 1389_CR20
  doi: 10.1088/0266-5611/25/6/065003
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 1389_CR25
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– ident: 1389_CR3
  doi: 10.1088/0266-5611/28/10/104010
SSID ssj0017641
Score 2.3948402
Snippet We consider the Landweber iteration for solving linear as well as nonlinear inverse problems in Banach spaces. Based on the discrepancy principle, we propose a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 345
SubjectTerms Banach spaces
Convergence
Inverse problems
Iterative methods
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Noise levels
Numerical Analysis
Numerical and Computational Physics
Parameters
Regularization
Simulation
Theoretical
Title Hanke–Raus rule for Landweber iteration in Banach spaces
URI https://link.springer.com/article/10.1007/s00211-023-01389-1
https://www.proquest.com/docview/2921735562
Volume 156
WOSCitedRecordID wos001126465900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0945-3245
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017641
  issn: 0029-599X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6ketCD1apYrZKDNw3sI9nselOx9FCL1Ae9LdlsgsWySrf17H_wH_pLnH0WRQU950GYycw3w7wAjgyXjAttqGLcpYxHikpjBGUiDoxrOTrWecv8vhgM_NEouC6LwtIq270KSeaaui52y-AIXV8ny_9BmKXo8ywj3PmZOA5v7uvYgfCYXSV28CAYlaUy39_xGY4WNuaXsGiONt3m_965AeuldUnOiu-wCUs6aUGzmtxASkFuwdpV3a013YLTnkwe9fvr21DOUzKdTzRBU5b0ZRKjksVzRetl5CAZJ-RcJlI9ENREqGK24a57eXvRo-VMBapQ2GaU-0IoxHjEqMj10DbK8mIMVypw_UhaxjAubcd4VoTgHqA7FWjjxq7NhPaZrT13BxrJU6J3gXCNx6woc9k082QcqRhhUBnJfUtIJtpgV6QNVdlwPJt7MQnrVsk5qUIkVZiTKrTbcFyfeS7abfy6u1NxLCxFLw3x1bZAK8pz2nBScWix_PNte3_bvg-rDho4RQZ3Bxqz6VwfwIp6mY3T6WH-JT8AhTfYSQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kCurBalWsVt2DNw3ksZtNvKlYKrZFapXewmazi8USpWk9-x_8h_4SJ2mSoqig532wzOzMN8O8AI40E5RxpQ1JmWNQFkpDaM0NyiNfO6atIpW1zG_zbtcbDPybvCgsKbLdi5BkpqnLYrcUjtD1tdP8H4RZA32eRYqIlSby9W7vy9gBd6lVJHYw3x_kpTLf3_EZjuY25pewaIY2zer_3rkOa7l1Sc5m32EDFlRcg2oxuYHkglyD1U7ZrTXZhNOWiB_V--tbT0wTMp6OFEFTlrRFHKGSxXOz1svIQTKMybmIhXwgqIlQxWzBXfOyf9Ey8pkKhkRhmxjM41wixiNGhY6LtlGaF6OZlL7jhcLUmjJh2do1QwR3H90pX2kncizKlUct5TrbUImfYrUDhCk8Zoapy6aoK6JQRgiDUgvmmVxQXgerIG0g84bj6dyLUVC2Ss5IFSCpgoxUgVWH4_LM86zdxq-7GwXHglz0kgBfbXG0oly7DicFh-bLP9-2-7fth7Dc6nfaQfuqe70HKzYaO7Ns7gZUJuOp2ocl-TIZJuOD7Ht-ALG42y0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEC1ERfTguOLoqDl408Zekk63N7dBcRzEjbk16XSCorTDLJ79B__QL7HS26ioIJ6zEKqSvCqq6hXAlmaCMq60JSnzLMpiaQmtuUV5EmrPdlWiMsr8Fm-3g04nvPhQxZ9lu5chybymwbA0pYPdbqJ3q8I3A03oBrsmFwgh10L_Z4KapkHGX7-6reII3KdOmeTBwrBTlM18v8dnaBrZm19CpBnyNGv_P_MczBZWJ9nPr8k8jKl0AWplRwdSPPAFmDmvWFz7i7B3ItIH9fbyeimGfdIbPiqCJi5piTTBzxfX5ZTMqFlyn5IDkQp5R_CHwq9nCW6ax9eHJ1bRa8GS-AgHFgs4l4j9iF2x56PNZPJlNJMy9IJY2FpTJhxX-3aMoB-imxUq7SWeQ7kKqKN8bxnG06dUrQBhCpfZsXHlFPVFEssE4VFqwQKbC8rr4JRijmRBRG76YTxGFYVyJqoIRRVlooqcOmxXa7o5Dcevsxul9qLiSfYjPLXD0bry3TrslNoaDf-82-rfpm_C1MVRM2qdts_WYNpFGyhP8m7A-KA3VOswKZ8H9_3eRnZT3wHmCeQR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hanke%E2%80%93Raus+rule+for+Landweber+iteration+in+Banach+spaces&rft.jtitle=Numerische+Mathematik&rft.au=Real%2C+Rommel+R&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0029-599X&rft.eissn=0945-3245&rft.volume=156&rft.issue=1&rft.spage=345&rft.epage=373&rft_id=info:doi/10.1007%2Fs00211-023-01389-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-599X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-599X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-599X&client=summon