A clustering-based coevolutionary multi-objective evolutionary algorithm for handling robust and noisy optimization

The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variab...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary intelligence Vol. 17; no. 5-6; pp. 3767 - 3791
Main Authors: de Sousa, Mateus Clemente, Meneghini, Ivan Reinaldo, Guimarães, Frederico Gadelha
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects:
ISSN:1864-5909, 1864-5917
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variables (Robust Optimization) and noise in objective functions (Noisy Optimization). Despite the plethora of methods proposed for Robust or Noisy Optimization, addressing both forms of uncertainty concurrently remains an open research question. We introduce a novel approach based on TEDA-CMOEA/D, augmented with clustering techniques for descendant generation in Robust and Noisy Optimization problems. Notably, the proposed algorithm yields promising results for uncertainty simultaneously sans the requirement for sampling, thereby reducing computational complexity. We leverage an extension of an existing test function generator for Multi-Objective Optimization of the tests. The benchmark integrates uncertainties in decision variables and/or objective functions. Experimental evaluations encompassed varying noise intensities, elucidating the impact of different noise levels on algorithmic performance. The results demonstrate the superior performance of the proposed approach compared to existing algorithms, specifically RNSGA-II and CRMOEA/D. The proposed algorithm emerges as a promising solution for Robust and Noisy Multi-Objective Optimization problems.
AbstractList The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variables (Robust Optimization) and noise in objective functions (Noisy Optimization). Despite the plethora of methods proposed for Robust or Noisy Optimization, addressing both forms of uncertainty concurrently remains an open research question. We introduce a novel approach based on TEDA-CMOEA/D, augmented with clustering techniques for descendant generation in Robust and Noisy Optimization problems. Notably, the proposed algorithm yields promising results for uncertainty simultaneously sans the requirement for sampling, thereby reducing computational complexity. We leverage an extension of an existing test function generator for Multi-Objective Optimization of the tests. The benchmark integrates uncertainties in decision variables and/or objective functions. Experimental evaluations encompassed varying noise intensities, elucidating the impact of different noise levels on algorithmic performance. The results demonstrate the superior performance of the proposed approach compared to existing algorithms, specifically RNSGA-II and CRMOEA/D. The proposed algorithm emerges as a promising solution for Robust and Noisy Multi-Objective Optimization problems.
Author de Sousa, Mateus Clemente
Meneghini, Ivan Reinaldo
Guimarães, Frederico Gadelha
Author_xml – sequence: 1
  givenname: Mateus Clemente
  surname: de Sousa
  fullname: de Sousa, Mateus Clemente
  email: mateus.clemente@ifmg.edu.br
  organization: Department of Engineering and Computing, Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab
– sequence: 2
  givenname: Ivan Reinaldo
  surname: Meneghini
  fullname: Meneghini, Ivan Reinaldo
  organization: Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab
– sequence: 3
  givenname: Frederico Gadelha
  surname: Guimarães
  fullname: Guimarães, Frederico Gadelha
  organization: Department of Computer Science, Universidade Federal de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab
BookMark eNp9kE1PxCAQhonRxHX1D3gi8YwOtNBy3Bi_EhMveiaUUpdNW1agJvrrZa3R6MHTMGGedybPEdof_WgROqVwTgGqi0gZCE6AlQRAckHoHlrQWpSES1rtf79BHqKjGDcAgkFVLlBcYdNPMdngxmfS6GhbbLx99f2UnB91eMPD1CdHfLOxJrlXi3996v7ZB5fWA-58wGs9tn0OwsE3ORTnFo_exTfst8kN7l3vuGN00Ok-2pOvukRP11ePl7fk_uHm7nJ1T0xBZSKcl7bVFWO2YLXUFRfQyRqgZaaojawr3rRMaGF00worrGyrUkrgumw1rakpluhszt0G_zLZmNTGT2HMK1XBcnrNOYU8Vc9TJvgYg-2UcenzzhS06xUFtVOsZsUqK1afihXNKPuDboMbspb_oWKG4nbn3Iafq_6hPgD95JNx
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111715
Cites_doi 10.1016/j.asoc.2020.106139
10.1109/4235.996017
10.1162/evco.2006.14.4.463
10.1007/978-3-319-49487-6_8
10.1109/CEC.2016.7743846
10.1007/s00500-003-0328-5
10.1016/j.cma.2007.03.003
10.1109/TEVC.2007.892759
10.1007/s00158-013-1010-x
10.1109/TSMC.2021.3067785
10.1016/j.knosys.2021.107215
10.1109/TEVC.2019.2933444
10.1016/j.ins.2020.08.022
10.1016/j.energy.2021.120043
10.1109/TEVC.2018.2859638
10.1007/s00291-015-0418-7
10.1016/j.swevo.2016.09.002
10.1088/2632-2153/abedc8
10.1016/j.future.2020.01.017
10.1109/TCYB.2021.3049635
10.1016/j.ejor.2019.09.052
10.1007/978-3-319-47898-2_25
10.1145/3583131.3590420
10.1016/j.ins.2023.03.094
10.1515/9781400831050
10.1007/978-3-642-18965-4_6
10.1109/EALS.2014.7009497
10.1109/IWED.2019.8664250
10.1145/3547578.3547617
10.1109/EAIS.2016.7502508
10.1007/978-3-031-45392-2_3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s12065-024-00956-1
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
EndPage 3791
ExternalDocumentID 10_1007_s12065_024_00956_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-554eda722e3289a7560f9800d2c38c9875bd26a6cabd6e6e9d749905a4da181c3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253021900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5909
IngestDate Mon Oct 06 16:34:01 EDT 2025
Sat Nov 29 06:12:16 EST 2025
Tue Nov 18 21:59:58 EST 2025
Fri Feb 21 02:36:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Multi-objective optimization
Robust optimization
Noisy optimization
Clustering
Evolutionary algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-554eda722e3289a7560f9800d2c38c9875bd26a6cabd6e6e9d749905a4da181c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255485510
PQPubID 2043920
PageCount 25
ParticipantIDs proquest_journals_3255485510
crossref_citationtrail_10_1007_s12065_024_00956_1
crossref_primary_10_1007_s12065_024_00956_1
springer_journals_10_1007_s12065_024_00956_1
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Deb, Sindhya, Hakanen (CR17) 2006; 14
Ide, Schöbel (CR27) 2016; 38
Angelov (CR34) 2014; 8
Beyer, Sendhoff (CR28) 2007; 196
He, Yen, Lv (CR20) 2019; 24
Deb, Pratap, Agarwal, Meyarivan (CR2) 2002; 6
Liu, Li, Wang, Liu (CR22) 2021; 228
Van Veldhuizen, Lamont (CR38) 1998
Rakshit, Konar, Das (CR24) 2017; 33
Lu, Xu, Herrera-Viedma, Han (CR11) 2021; 547
CR37
CR36
Yang, Su (CR12) 2021; 223
CR32
Jin (CR25) 2005; 9
CR31
CR30
Häse, Aldeghi, Hickman, Roch, Christensen, Liles, Hein, Aspuru-Guzik (CR10) 2021; 2
Duan, He, Yen (CR14) 2021; 52
Deb, Pratap, Agarwal, Meyarivan (CR16) 2002; 6
CR4
Gaspar-Cunha, Ferreira, Recio (CR29) 2014; 49
CR6
CR5
He, Yen, Yi (CR19) 2018; 23
Meneghini, Alves, Gaspar-Cunha, Guimaraes (CR1) 2020; 90
CR9
Finck, Hansen, Ros, Auger (CR15) 2010
CR26
Maia, Junior, Guimarães, Castro, Lemos, Galindo, Cohen (CR35) 2020; 106
Meneghini, Guimaraes, Gaspar-Cunha (CR8) 2016
Zhang, Li (CR18) 2007; 11
CR23
Goerigk, Schöbel (CR7) 2016
Liu, Liu, Jin, Li (CR21) 2021; 52
Zhang, Li (CR3) 2007; 11
Trivedi, Srinivasan, Sanyal, Ghosh (CR33) 2016; 21
Balouka, Cohen (CR13) 2021; 291
IR Meneghini (956_CR1) 2020; 90
J Yang (956_CR12) 2021; 223
R Liu (956_CR22) 2021; 228
J Ide (956_CR27) 2016; 38
DA Van Veldhuizen (956_CR38) 1998
Z He (956_CR19) 2018; 23
K Deb (956_CR17) 2006; 14
A Trivedi (956_CR33) 2016; 21
956_CR37
N Balouka (956_CR13) 2021; 291
K Deb (956_CR16) 2002; 6
956_CR5
956_CR4
Q Zhang (956_CR18) 2007; 11
Y Jin (956_CR25) 2005; 9
956_CR36
956_CR6
956_CR9
956_CR30
J Duan (956_CR14) 2021; 52
956_CR32
956_CR31
A Gaspar-Cunha (956_CR29) 2014; 49
Q Zhang (956_CR3) 2007; 11
P Rakshit (956_CR24) 2017; 33
K Deb (956_CR2) 2002; 6
H-G Beyer (956_CR28) 2007; 196
S Finck (956_CR15) 2010
IR Meneghini (956_CR8) 2016
F Häse (956_CR10) 2021; 2
Z He (956_CR20) 2019; 24
956_CR26
J Maia (956_CR35) 2020; 106
P Angelov (956_CR34) 2014; 8
Y Lu (956_CR11) 2021; 547
956_CR23
M Goerigk (956_CR7) 2016
J Liu (956_CR21) 2021; 52
References_xml – volume: 90
  year: 2020
  ident: CR1
  article-title: Scalable and customizable benchmark problems for many-objective optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106139
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR16
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 14
  start-page: 463
  issue: 4
  year: 2006
  end-page: 494
  ident: CR17
  article-title: Introducing robustness in multi-objective optimization
  publication-title: Evol Comput
  doi: 10.1162/evco.2006.14.4.463
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR2
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 21
  start-page: 440
  issue: 3
  year: 2016
  end-page: 462
  ident: CR33
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: IEEE Trans Evol Comput
– ident: CR4
– ident: CR37
– ident: CR30
– ident: CR6
– year: 2016
  ident: CR7
  publication-title: Algorithm engineering in robust optimization
  doi: 10.1007/978-3-319-49487-6_8
– year: 2016
  ident: CR8
  article-title: Competitive coevolutionary algorithm for robust multi-objective optimization: the worst case minimization
  publication-title: IEEE Congr Evolut Comput (CEC)
  doi: 10.1109/CEC.2016.7743846
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  end-page: 12
  ident: CR25
  article-title: A comprehensive survey of fitness approximation in evolutionary computation
  publication-title: Soft Comput
  doi: 10.1007/s00500-003-0328-5
– volume: 196
  start-page: 3190
  issue: 33
  year: 2007
  end-page: 3218
  ident: CR28
  article-title: Robust optimization-a comprehensive survey
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.03.003
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  ident: CR3
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 49
  start-page: 771
  issue: 5
  year: 2014
  end-page: 793
  ident: CR29
  article-title: Evolutionary robustness analysis for multiobjective optimization: benchmark problems
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-1010-x
– year: 1998
  ident: CR38
  publication-title: Multiobjective evolutionary algorithm research: a history and analysis
– volume: 52
  start-page: 3360
  issue: 5
  year: 2021
  end-page: 3375
  ident: CR21
  article-title: A decision variable assortment-based evolutionary algorithm for dominance robust multiobjective optimization
  publication-title: IEEE Trans Syst Man Cybernet Syst
  doi: 10.1109/TSMC.2021.3067785
– ident: CR23
– volume: 228
  year: 2021
  ident: CR22
  article-title: A noisy multi-objective optimization algorithm based on mean and wiener filters
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107215
– ident: CR31
– volume: 24
  start-page: 494
  issue: 3
  year: 2019
  end-page: 507
  ident: CR20
  article-title: Evolutionary multiobjective optimization with robustness enhancement
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2933444
– ident: CR9
– volume: 547
  start-page: 910
  year: 2021
  end-page: 930
  ident: CR11
  article-title: Consensus of large-scale group decision making in social network: the minimum cost model based on robust optimization
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.022
– volume: 223
  year: 2021
  ident: CR12
  article-title: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120043
– ident: CR32
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  ident: CR18
  article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 23
  start-page: 316
  issue: 2
  year: 2018
  end-page: 330
  ident: CR19
  article-title: Robust multiobjective optimization via evolutionary algorithms
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2859638
– ident: CR36
– volume: 38
  start-page: 235
  issue: 1
  year: 2016
  end-page: 271
  ident: CR27
  article-title: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts
  publication-title: OR Spectrum
  doi: 10.1007/s00291-015-0418-7
– ident: CR5
– volume: 33
  start-page: 18
  year: 2017
  end-page: 45
  ident: CR24
  article-title: Noisy evolutionary optimization algorithms-a comprehensive survey
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2016.09.002
– volume: 8
  start-page: 29
  issue: 2
  year: 2014
  end-page: 35
  ident: CR34
  article-title: Outside the box: an alternative data analytics framework
  publication-title: J Autom Mobile Robot Intell Syst
– volume: 2
  issue: 3
  year: 2021
  ident: CR10
  article-title: Olympus: a benchmarking framework for noisy optimization and experiment planning
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abedc8
– volume: 106
  start-page: 672
  year: 2020
  end-page: 684
  ident: CR35
  article-title: Evolving clustering algorithm based on mixture of typicalities for stream data mining
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.01.017
– year: 2010
  ident: CR15
  publication-title: Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions
– ident: CR26
– volume: 52
  start-page: 8300
  issue: 8
  year: 2021
  end-page: 8314
  ident: CR14
  article-title: Robust multiobjective optimization for vehicle routing problem with time windows
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2021.3049635
– volume: 291
  start-page: 457
  issue: 2
  year: 2021
  end-page: 470
  ident: CR13
  article-title: A robust optimization approach for the multi-mode resourceconstrained project scheduling problem
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.09.052
– volume: 9
  start-page: 3
  issue: 1
  year: 2005
  ident: 956_CR25
  publication-title: Soft Comput
  doi: 10.1007/s00500-003-0328-5
– volume: 33
  start-page: 18
  year: 2017
  ident: 956_CR24
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2016.09.002
– volume: 196
  start-page: 3190
  issue: 33
  year: 2007
  ident: 956_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.03.003
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 956_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– ident: 956_CR31
  doi: 10.1007/978-3-319-47898-2_25
– ident: 956_CR4
  doi: 10.1145/3583131.3590420
– ident: 956_CR26
  doi: 10.1016/j.ins.2023.03.094
– volume: 90
  year: 2020
  ident: 956_CR1
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106139
– ident: 956_CR5
  doi: 10.1515/9781400831050
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 956_CR16
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 38
  start-page: 235
  issue: 1
  year: 2016
  ident: 956_CR27
  publication-title: OR Spectrum
  doi: 10.1007/s00291-015-0418-7
– volume: 547
  start-page: 910
  year: 2021
  ident: 956_CR11
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.022
– ident: 956_CR32
  doi: 10.1007/978-3-642-18965-4_6
– volume: 24
  start-page: 494
  issue: 3
  year: 2019
  ident: 956_CR20
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2933444
– ident: 956_CR37
– volume-title: Algorithm engineering in robust optimization
  year: 2016
  ident: 956_CR7
  doi: 10.1007/978-3-319-49487-6_8
– ident: 956_CR30
  doi: 10.1109/EALS.2014.7009497
– volume: 8
  start-page: 29
  issue: 2
  year: 2014
  ident: 956_CR34
  publication-title: J Autom Mobile Robot Intell Syst
– year: 2016
  ident: 956_CR8
  publication-title: IEEE Congr Evolut Comput (CEC)
  doi: 10.1109/CEC.2016.7743846
– ident: 956_CR9
  doi: 10.1109/IWED.2019.8664250
– volume: 2
  issue: 3
  year: 2021
  ident: 956_CR10
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abedc8
– volume: 291
  start-page: 457
  issue: 2
  year: 2021
  ident: 956_CR13
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2019.09.052
– ident: 956_CR23
  doi: 10.1145/3547578.3547617
– volume: 52
  start-page: 8300
  issue: 8
  year: 2021
  ident: 956_CR14
  publication-title: IEEE Trans Cybernet
  doi: 10.1109/TCYB.2021.3049635
– ident: 956_CR36
  doi: 10.1109/EAIS.2016.7502508
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 956_CR3
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 106
  start-page: 672
  year: 2020
  ident: 956_CR35
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.01.017
– volume: 23
  start-page: 316
  issue: 2
  year: 2018
  ident: 956_CR19
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2859638
– volume: 21
  start-page: 440
  issue: 3
  year: 2016
  ident: 956_CR33
  publication-title: IEEE Trans Evol Comput
– volume: 49
  start-page: 771
  issue: 5
  year: 2014
  ident: 956_CR29
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-1010-x
– volume-title: Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions
  year: 2010
  ident: 956_CR15
– ident: 956_CR6
  doi: 10.1007/978-3-031-45392-2_3
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 956_CR2
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume-title: Multiobjective evolutionary algorithm research: a history and analysis
  year: 1998
  ident: 956_CR38
– volume: 52
  start-page: 3360
  issue: 5
  year: 2021
  ident: 956_CR21
  publication-title: IEEE Trans Syst Man Cybernet Syst
  doi: 10.1109/TSMC.2021.3067785
– volume: 223
  year: 2021
  ident: 956_CR12
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120043
– volume: 14
  start-page: 463
  issue: 4
  year: 2006
  ident: 956_CR17
  publication-title: Evol Comput
  doi: 10.1162/evco.2006.14.4.463
– volume: 228
  year: 2021
  ident: 956_CR22
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107215
SSID ssj0062074
Score 2.3156047
Snippet The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3767
SubjectTerms Applications of Mathematics
Artificial Intelligence
Bioinformatics
Clustering
Control
Decision making
Engineering
Evolutionary algorithms
Function generators
Genetic algorithms
Mathematical and Computational Engineering
Mechatronics
Multiple objective analysis
Noise levels
Optimization
Pareto optimum
Research Paper
Robotics
Robustness (mathematics)
Statistical Physics and Dynamical Systems
Uncertainty
Variables
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfRgtSpWq-TgTQP73s2xiOKpiC-8Ldk8tNJ2ZbcK_fdO0qxVUUGPIdlhmUzmmyGZbwCOsixmCPyaaqYLGgkRUxZpn0rEOikiT6mU22YTab-f3d-zS1cUVjev3ZsrSeup58VuAcIlRUyh3ow9bxGWEe4y07Dh6vqu8b9J4FnuZT9LIhozj7lSme9lfIajeYz55VrUos1563__uQHrLrokvZk5bMKCGreh1XRuIO4gt2HtAw3hFtQ9IoYvhjEBh9TgmiSiVK_OKnk1JfbdIS2Lp5l_JJ8m-fChrAaTxxHBCJhY3gYURKqyQKEEh2RcDuopKdE9jVzd5zbcnp_dnF5Q14yBCjylE4phh5I8DQIVYo7GU4yUNOrek4EIM8Ew7SlkkPBE8EImKlFMpphMeTGPJMcoQoQ7sDQux2oXCAKnxIQ-jA0TkOSa60L7hdZSsMIQ0HfAb_YkF46p3DTMGOZzjmWj4xx1nFsd534Hjt-_eZ7xdPy6uttsde7ObJ2HmF0Zqhzf68BJs7Xz6Z-l7f1t-T6sBsY67IvALixNqhd1ACvidTKoq0Nry286CPBC
  priority: 102
  providerName: Springer Nature
Title A clustering-based coevolutionary multi-objective evolutionary algorithm for handling robust and noisy optimization
URI https://link.springer.com/article/10.1007/s12065-024-00956-1
https://www.proquest.com/docview/3255485510
Volume 17
WOSCitedRecordID wos001253021900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: RSV
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hby4PnF9LDl402DfbU6iogjisvhCvJQ0Dx-sW93uCv57J2nqoqAXL4HSNk2ZyXwzyeQbgJ0sixkCv6aa6YJGQsSURdqnErFOishTKuW22ETa7WZ3d6znFtwql1bZ2ERrqGUpzBr5foi-ryEy8b2D1zdqqkaZ3VVXQmMaZtGz8U1K10XQayxxEniWhdnPkojGzGPu0Ex9dC5A8KWIUNSrufi-A9PE2_yxQWpx57T13xEvwoLzOMlhrSJLMKUGy9BqqjkQN7lXoDokoj82vAk4DmrQTRJRqnenm3z4QWz2IS2L59pKkm83ef8Bvz56fCHoBxPL3oAdkWFZYKcEL8mgfKo-SIlG6sWd_lyFm9OT6-Mz6koyUIFzdUTxj5TkaRCoECM1nqK_pBn6nDIQYSYYBj-FDBKeCF7IRCWKyRRDKi_mkeToS4hwDWYG5UCtA0H4lBjWh7HhA5Jcc11ov9BaClYYGvo2-I08cuH4yk3ZjH4-YVo2MsxRhrmVYe63YffrndearePPp7caweVu5lb5RGpt2GtEP7n9e28bf_e2CfOB0TabB7gFM6PhWG3DnHgfPVXDDswenXR7lx2YPk9px2qxadMrbHvxPbaXV7efYZz7NA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkuBSCi1igRYf4ARWE-fpQ1WhtggErDiAxC31ExYtG9gsVPun-I0dOwkrKsGNA8coyUiOP883jme-AdjK84Qj8VtquZU0ViqhPLYh1ch1WsWBMZnwzSaybje_uOCnU_DY1sK4tMrWJ3pHrUvl_pF_izD2dUImYfDj9o66rlHudLVtoVHD4siM_-KWrfp--Avnd5ux_d9nPw9o01WAKoTbiKIZo0XGmIlwsyEypHzLMWzSTEW5wi14IjVLRaqE1KlJDdcZ7gqCRMRaIB2qCO1Ow2zslMVcqiA7bT1_ygKv-hzmaUwTHvCmSKcu1WNI9hQZkQa19t9zIpxEt_8dyHqe2198b1_oI3xoImqyVy-BJZgyg2VYbLtVkMZ5fYJqj6j-vdOFwHFTx96aqNI8NGtPDMfEZ1fSUl7XLECe3RT9Sxzt6OqGYJxPvDoFGiLDUqJRgpdkUPaqMSnRCd801a2f4fxNhr4CM4NyYFaBYHigjWRR4vSOtLDCShtKa7Xi0snsdyBs579QjR67awvSLyZK0g4zBWKm8Jgpwg7sPL1zW6uRvPr0RguUovFMVTFBSQd2W6hNbr9sbe11a5swf3B2clwcH3aP1mGBOaT7nMcNmBkN780XmFMPo141_OrXDIE_bw3Bf_rXUgg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC68EH1YrxXH9ciDbxrsuzuPsruDogyCB7416Rw6y0y39PQM-O-tpLsdXVQQH0PSRZOq5KsiVV8BHCRJyBD4NdVMZzQQIqQs0C6ViHVSBI5SMbfNJuJeL7m7Y5evqvhttnv7JFnXNBiWprw6fpT6eFr45iF0UsQX6tRMerMwH5hEehOvX922d3HkOZaH2U2igIbMYU3ZzPsy3kLT1N_874nUIk935fv_vAo_Gq-TnNRmsgYzKl-HlbajA2kO-Dosv6In3IDRCRGDsWFSwCE1eCeJKNSksVZePhGbj0iL7F99b5I3k3xwX5T96mFI0DMmls8BBZGyyFAowSHJi_7oiRR4bQ2betCfcNP9e_37lDZNGqjA01tRdEeU5LHnKR9jNx6jB6UZeqHSE34iGIZDmfQiHgmeyUhFiskYgywn5IHk6F0IfxPm8iJXW0AQUCUG-n5oGIIk11xn2s20loJlhpi-A26rn1Q0DOamkcYgnXIvmz1OcY9Tu8ep24HDl28ea_6OT1fvtGpPm7M8Sn2MugyFjut04KhV83T6Y2nbX1u-D4uXf7rpxVnv_BcsecZQbNLgDsxV5VjtwoKYVP1RuWdN_Bmok_wK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clustering-based+coevolutionary+multi-objective+evolutionary+algorithm+for+handling+robust+and+noisy+optimization&rft.jtitle=Evolutionary+intelligence&rft.au=de+Sousa%2C+Mateus+Clemente&rft.au=Meneghini%2C+Ivan+Reinaldo&rft.au=Guimar%C3%A3es%2C+Frederico+Gadelha&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=17&rft.issue=5&rft.spage=3767&rft.epage=3791&rft_id=info:doi/10.1007%2Fs12065-024-00956-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon