A clustering-based coevolutionary multi-objective evolutionary algorithm for handling robust and noisy optimization
The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variab...
Saved in:
| Published in: | Evolutionary intelligence Vol. 17; no. 5-6; pp. 3767 - 3791 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1864-5909, 1864-5917 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variables (Robust Optimization) and noise in objective functions (Noisy Optimization). Despite the plethora of methods proposed for Robust or Noisy Optimization, addressing both forms of uncertainty concurrently remains an open research question. We introduce a novel approach based on TEDA-CMOEA/D, augmented with clustering techniques for descendant generation in Robust and Noisy Optimization problems. Notably, the proposed algorithm yields promising results for uncertainty simultaneously sans the requirement for sampling, thereby reducing computational complexity. We leverage an extension of an existing test function generator for Multi-Objective Optimization of the tests. The benchmark integrates uncertainties in decision variables and/or objective functions. Experimental evaluations encompassed varying noise intensities, elucidating the impact of different noise levels on algorithmic performance. The results demonstrate the superior performance of the proposed approach compared to existing algorithms, specifically RNSGA-II and CRMOEA/D. The proposed algorithm emerges as a promising solution for Robust and Noisy Multi-Objective Optimization problems. |
|---|---|
| AbstractList | The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in optimization problems. These uncertainties can pose significant challenges for evolutionary algorithms. For example, perturbations in decision variables (Robust Optimization) and noise in objective functions (Noisy Optimization). Despite the plethora of methods proposed for Robust or Noisy Optimization, addressing both forms of uncertainty concurrently remains an open research question. We introduce a novel approach based on TEDA-CMOEA/D, augmented with clustering techniques for descendant generation in Robust and Noisy Optimization problems. Notably, the proposed algorithm yields promising results for uncertainty simultaneously sans the requirement for sampling, thereby reducing computational complexity. We leverage an extension of an existing test function generator for Multi-Objective Optimization of the tests. The benchmark integrates uncertainties in decision variables and/or objective functions. Experimental evaluations encompassed varying noise intensities, elucidating the impact of different noise levels on algorithmic performance. The results demonstrate the superior performance of the proposed approach compared to existing algorithms, specifically RNSGA-II and CRMOEA/D. The proposed algorithm emerges as a promising solution for Robust and Noisy Multi-Objective Optimization problems. |
| Author | de Sousa, Mateus Clemente Meneghini, Ivan Reinaldo Guimarães, Frederico Gadelha |
| Author_xml | – sequence: 1 givenname: Mateus Clemente surname: de Sousa fullname: de Sousa, Mateus Clemente email: mateus.clemente@ifmg.edu.br organization: Department of Engineering and Computing, Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab – sequence: 2 givenname: Ivan Reinaldo surname: Meneghini fullname: Meneghini, Ivan Reinaldo organization: Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab – sequence: 3 givenname: Frederico Gadelha surname: Guimarães fullname: Guimarães, Frederico Gadelha organization: Department of Computer Science, Universidade Federal de Minas Gerais, Machine Intelligence and Data Science - MINDS Lab |
| BookMark | eNp9kE1PxCAQhonRxHX1D3gi8YwOtNBy3Bi_EhMveiaUUpdNW1agJvrrZa3R6MHTMGGedybPEdof_WgROqVwTgGqi0gZCE6AlQRAckHoHlrQWpSES1rtf79BHqKjGDcAgkFVLlBcYdNPMdngxmfS6GhbbLx99f2UnB91eMPD1CdHfLOxJrlXi3996v7ZB5fWA-58wGs9tn0OwsE3ORTnFo_exTfst8kN7l3vuGN00Ok-2pOvukRP11ePl7fk_uHm7nJ1T0xBZSKcl7bVFWO2YLXUFRfQyRqgZaaojawr3rRMaGF00worrGyrUkrgumw1rakpluhszt0G_zLZmNTGT2HMK1XBcnrNOYU8Vc9TJvgYg-2UcenzzhS06xUFtVOsZsUqK1afihXNKPuDboMbspb_oWKG4nbn3Iafq_6hPgD95JNx |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2025_111715 |
| Cites_doi | 10.1016/j.asoc.2020.106139 10.1109/4235.996017 10.1162/evco.2006.14.4.463 10.1007/978-3-319-49487-6_8 10.1109/CEC.2016.7743846 10.1007/s00500-003-0328-5 10.1016/j.cma.2007.03.003 10.1109/TEVC.2007.892759 10.1007/s00158-013-1010-x 10.1109/TSMC.2021.3067785 10.1016/j.knosys.2021.107215 10.1109/TEVC.2019.2933444 10.1016/j.ins.2020.08.022 10.1016/j.energy.2021.120043 10.1109/TEVC.2018.2859638 10.1007/s00291-015-0418-7 10.1016/j.swevo.2016.09.002 10.1088/2632-2153/abedc8 10.1016/j.future.2020.01.017 10.1109/TCYB.2021.3049635 10.1016/j.ejor.2019.09.052 10.1007/978-3-319-47898-2_25 10.1145/3583131.3590420 10.1016/j.ins.2023.03.094 10.1515/9781400831050 10.1007/978-3-642-18965-4_6 10.1109/EALS.2014.7009497 10.1109/IWED.2019.8664250 10.1145/3547578.3547617 10.1109/EAIS.2016.7502508 10.1007/978-3-031-45392-2_3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s12065-024-00956-1 |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| EndPage | 3791 |
| ExternalDocumentID | 10_1007_s12065_024_00956_1 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P M7S PHGZM PHGZT PQGLB PTHSS 7XB 8FE 8FG JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-554eda722e3289a7560f9800d2c38c9875bd26a6cabd6e6e9d749905a4da181c3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253021900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5909 |
| IngestDate | Mon Oct 06 16:34:01 EDT 2025 Sat Nov 29 06:12:16 EST 2025 Tue Nov 18 21:59:58 EST 2025 Fri Feb 21 02:36:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-6 |
| Keywords | Multi-objective optimization Robust optimization Noisy optimization Clustering Evolutionary algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-554eda722e3289a7560f9800d2c38c9875bd26a6cabd6e6e9d749905a4da181c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3255485510 |
| PQPubID | 2043920 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_3255485510 crossref_citationtrail_10_1007_s12065_024_00956_1 crossref_primary_10_1007_s12065_024_00956_1 springer_journals_10_1007_s12065_024_00956_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20241000 2024-10-00 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Deb, Sindhya, Hakanen (CR17) 2006; 14 Ide, Schöbel (CR27) 2016; 38 Angelov (CR34) 2014; 8 Beyer, Sendhoff (CR28) 2007; 196 He, Yen, Lv (CR20) 2019; 24 Deb, Pratap, Agarwal, Meyarivan (CR2) 2002; 6 Liu, Li, Wang, Liu (CR22) 2021; 228 Van Veldhuizen, Lamont (CR38) 1998 Rakshit, Konar, Das (CR24) 2017; 33 Lu, Xu, Herrera-Viedma, Han (CR11) 2021; 547 CR37 CR36 Yang, Su (CR12) 2021; 223 CR32 Jin (CR25) 2005; 9 CR31 CR30 Häse, Aldeghi, Hickman, Roch, Christensen, Liles, Hein, Aspuru-Guzik (CR10) 2021; 2 Duan, He, Yen (CR14) 2021; 52 Deb, Pratap, Agarwal, Meyarivan (CR16) 2002; 6 CR4 Gaspar-Cunha, Ferreira, Recio (CR29) 2014; 49 CR6 CR5 He, Yen, Yi (CR19) 2018; 23 Meneghini, Alves, Gaspar-Cunha, Guimaraes (CR1) 2020; 90 CR9 Finck, Hansen, Ros, Auger (CR15) 2010 CR26 Maia, Junior, Guimarães, Castro, Lemos, Galindo, Cohen (CR35) 2020; 106 Meneghini, Guimaraes, Gaspar-Cunha (CR8) 2016 Zhang, Li (CR18) 2007; 11 CR23 Goerigk, Schöbel (CR7) 2016 Liu, Liu, Jin, Li (CR21) 2021; 52 Zhang, Li (CR3) 2007; 11 Trivedi, Srinivasan, Sanyal, Ghosh (CR33) 2016; 21 Balouka, Cohen (CR13) 2021; 291 IR Meneghini (956_CR1) 2020; 90 J Yang (956_CR12) 2021; 223 R Liu (956_CR22) 2021; 228 J Ide (956_CR27) 2016; 38 DA Van Veldhuizen (956_CR38) 1998 Z He (956_CR19) 2018; 23 K Deb (956_CR17) 2006; 14 A Trivedi (956_CR33) 2016; 21 956_CR37 N Balouka (956_CR13) 2021; 291 K Deb (956_CR16) 2002; 6 956_CR5 956_CR4 Q Zhang (956_CR18) 2007; 11 Y Jin (956_CR25) 2005; 9 956_CR36 956_CR6 956_CR9 956_CR30 J Duan (956_CR14) 2021; 52 956_CR32 956_CR31 A Gaspar-Cunha (956_CR29) 2014; 49 Q Zhang (956_CR3) 2007; 11 P Rakshit (956_CR24) 2017; 33 K Deb (956_CR2) 2002; 6 H-G Beyer (956_CR28) 2007; 196 S Finck (956_CR15) 2010 IR Meneghini (956_CR8) 2016 F Häse (956_CR10) 2021; 2 Z He (956_CR20) 2019; 24 956_CR26 J Maia (956_CR35) 2020; 106 P Angelov (956_CR34) 2014; 8 Y Lu (956_CR11) 2021; 547 956_CR23 M Goerigk (956_CR7) 2016 J Liu (956_CR21) 2021; 52 |
| References_xml | – volume: 90 year: 2020 ident: CR1 article-title: Scalable and customizable benchmark problems for many-objective optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106139 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR16 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 14 start-page: 463 issue: 4 year: 2006 end-page: 494 ident: CR17 article-title: Introducing robustness in multi-objective optimization publication-title: Evol Comput doi: 10.1162/evco.2006.14.4.463 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR2 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 21 start-page: 440 issue: 3 year: 2016 end-page: 462 ident: CR33 article-title: A survey of multiobjective evolutionary algorithms based on decomposition publication-title: IEEE Trans Evol Comput – ident: CR4 – ident: CR37 – ident: CR30 – ident: CR6 – year: 2016 ident: CR7 publication-title: Algorithm engineering in robust optimization doi: 10.1007/978-3-319-49487-6_8 – year: 2016 ident: CR8 article-title: Competitive coevolutionary algorithm for robust multi-objective optimization: the worst case minimization publication-title: IEEE Congr Evolut Comput (CEC) doi: 10.1109/CEC.2016.7743846 – volume: 9 start-page: 3 issue: 1 year: 2005 end-page: 12 ident: CR25 article-title: A comprehensive survey of fitness approximation in evolutionary computation publication-title: Soft Comput doi: 10.1007/s00500-003-0328-5 – volume: 196 start-page: 3190 issue: 33 year: 2007 end-page: 3218 ident: CR28 article-title: Robust optimization-a comprehensive survey publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.03.003 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR3 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 49 start-page: 771 issue: 5 year: 2014 end-page: 793 ident: CR29 article-title: Evolutionary robustness analysis for multiobjective optimization: benchmark problems publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-1010-x – year: 1998 ident: CR38 publication-title: Multiobjective evolutionary algorithm research: a history and analysis – volume: 52 start-page: 3360 issue: 5 year: 2021 end-page: 3375 ident: CR21 article-title: A decision variable assortment-based evolutionary algorithm for dominance robust multiobjective optimization publication-title: IEEE Trans Syst Man Cybernet Syst doi: 10.1109/TSMC.2021.3067785 – ident: CR23 – volume: 228 year: 2021 ident: CR22 article-title: A noisy multi-objective optimization algorithm based on mean and wiener filters publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107215 – ident: CR31 – volume: 24 start-page: 494 issue: 3 year: 2019 end-page: 507 ident: CR20 article-title: Evolutionary multiobjective optimization with robustness enhancement publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2933444 – ident: CR9 – volume: 547 start-page: 910 year: 2021 end-page: 930 ident: CR11 article-title: Consensus of large-scale group decision making in social network: the minimum cost model based on robust optimization publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.022 – volume: 223 year: 2021 ident: CR12 article-title: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty publication-title: Energy doi: 10.1016/j.energy.2021.120043 – ident: CR32 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR18 article-title: Moea/d: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 23 start-page: 316 issue: 2 year: 2018 end-page: 330 ident: CR19 article-title: Robust multiobjective optimization via evolutionary algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2859638 – ident: CR36 – volume: 38 start-page: 235 issue: 1 year: 2016 end-page: 271 ident: CR27 article-title: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts publication-title: OR Spectrum doi: 10.1007/s00291-015-0418-7 – ident: CR5 – volume: 33 start-page: 18 year: 2017 end-page: 45 ident: CR24 article-title: Noisy evolutionary optimization algorithms-a comprehensive survey publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2016.09.002 – volume: 8 start-page: 29 issue: 2 year: 2014 end-page: 35 ident: CR34 article-title: Outside the box: an alternative data analytics framework publication-title: J Autom Mobile Robot Intell Syst – volume: 2 issue: 3 year: 2021 ident: CR10 article-title: Olympus: a benchmarking framework for noisy optimization and experiment planning publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abedc8 – volume: 106 start-page: 672 year: 2020 end-page: 684 ident: CR35 article-title: Evolving clustering algorithm based on mixture of typicalities for stream data mining publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.01.017 – year: 2010 ident: CR15 publication-title: Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions – ident: CR26 – volume: 52 start-page: 8300 issue: 8 year: 2021 end-page: 8314 ident: CR14 article-title: Robust multiobjective optimization for vehicle routing problem with time windows publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2021.3049635 – volume: 291 start-page: 457 issue: 2 year: 2021 end-page: 470 ident: CR13 article-title: A robust optimization approach for the multi-mode resourceconstrained project scheduling problem publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.09.052 – volume: 9 start-page: 3 issue: 1 year: 2005 ident: 956_CR25 publication-title: Soft Comput doi: 10.1007/s00500-003-0328-5 – volume: 33 start-page: 18 year: 2017 ident: 956_CR24 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2016.09.002 – volume: 196 start-page: 3190 issue: 33 year: 2007 ident: 956_CR28 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.03.003 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 956_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – ident: 956_CR31 doi: 10.1007/978-3-319-47898-2_25 – ident: 956_CR4 doi: 10.1145/3583131.3590420 – ident: 956_CR26 doi: 10.1016/j.ins.2023.03.094 – volume: 90 year: 2020 ident: 956_CR1 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106139 – ident: 956_CR5 doi: 10.1515/9781400831050 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 956_CR16 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 38 start-page: 235 issue: 1 year: 2016 ident: 956_CR27 publication-title: OR Spectrum doi: 10.1007/s00291-015-0418-7 – volume: 547 start-page: 910 year: 2021 ident: 956_CR11 publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.022 – ident: 956_CR32 doi: 10.1007/978-3-642-18965-4_6 – volume: 24 start-page: 494 issue: 3 year: 2019 ident: 956_CR20 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2933444 – ident: 956_CR37 – volume-title: Algorithm engineering in robust optimization year: 2016 ident: 956_CR7 doi: 10.1007/978-3-319-49487-6_8 – ident: 956_CR30 doi: 10.1109/EALS.2014.7009497 – volume: 8 start-page: 29 issue: 2 year: 2014 ident: 956_CR34 publication-title: J Autom Mobile Robot Intell Syst – year: 2016 ident: 956_CR8 publication-title: IEEE Congr Evolut Comput (CEC) doi: 10.1109/CEC.2016.7743846 – ident: 956_CR9 doi: 10.1109/IWED.2019.8664250 – volume: 2 issue: 3 year: 2021 ident: 956_CR10 publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abedc8 – volume: 291 start-page: 457 issue: 2 year: 2021 ident: 956_CR13 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.09.052 – ident: 956_CR23 doi: 10.1145/3547578.3547617 – volume: 52 start-page: 8300 issue: 8 year: 2021 ident: 956_CR14 publication-title: IEEE Trans Cybernet doi: 10.1109/TCYB.2021.3049635 – ident: 956_CR36 doi: 10.1109/EAIS.2016.7502508 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 956_CR3 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 106 start-page: 672 year: 2020 ident: 956_CR35 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2020.01.017 – volume: 23 start-page: 316 issue: 2 year: 2018 ident: 956_CR19 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2859638 – volume: 21 start-page: 440 issue: 3 year: 2016 ident: 956_CR33 publication-title: IEEE Trans Evol Comput – volume: 49 start-page: 771 issue: 5 year: 2014 ident: 956_CR29 publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-013-1010-x – volume-title: Real-parameter black-box optimization benchmarking 2010: Presentation of the noisy functions year: 2010 ident: 956_CR15 – ident: 956_CR6 doi: 10.1007/978-3-031-45392-2_3 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 956_CR2 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume-title: Multiobjective evolutionary algorithm research: a history and analysis year: 1998 ident: 956_CR38 – volume: 52 start-page: 3360 issue: 5 year: 2021 ident: 956_CR21 publication-title: IEEE Trans Syst Man Cybernet Syst doi: 10.1109/TSMC.2021.3067785 – volume: 223 year: 2021 ident: 956_CR12 publication-title: Energy doi: 10.1016/j.energy.2021.120043 – volume: 14 start-page: 463 issue: 4 year: 2006 ident: 956_CR17 publication-title: Evol Comput doi: 10.1162/evco.2006.14.4.463 – volume: 228 year: 2021 ident: 956_CR22 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107215 |
| SSID | ssj0062074 |
| Score | 2.3156047 |
| Snippet | The presence of uncertainty is commonplace in real-world scenarios. Uncertainties can be present in both the objective space and the decision space in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3767 |
| SubjectTerms | Applications of Mathematics Artificial Intelligence Bioinformatics Clustering Control Decision making Engineering Evolutionary algorithms Function generators Genetic algorithms Mathematical and Computational Engineering Mechatronics Multiple objective analysis Noise levels Optimization Pareto optimum Research Paper Robotics Robustness (mathematics) Statistical Physics and Dynamical Systems Uncertainty Variables |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfRgtSpWq-TgTQP73s2xiOKpiC-8Ldk8tNJ2ZbcK_fdO0qxVUUGPIdlhmUzmmyGZbwCOsixmCPyaaqYLGgkRUxZpn0rEOikiT6mU22YTab-f3d-zS1cUVjev3ZsrSeup58VuAcIlRUyh3ow9bxGWEe4y07Dh6vqu8b9J4FnuZT9LIhozj7lSme9lfIajeYz55VrUos1563__uQHrLrokvZk5bMKCGreh1XRuIO4gt2HtAw3hFtQ9IoYvhjEBh9TgmiSiVK_OKnk1JfbdIS2Lp5l_JJ8m-fChrAaTxxHBCJhY3gYURKqyQKEEh2RcDuopKdE9jVzd5zbcnp_dnF5Q14yBCjylE4phh5I8DQIVYo7GU4yUNOrek4EIM8Ew7SlkkPBE8EImKlFMpphMeTGPJMcoQoQ7sDQux2oXCAKnxIQ-jA0TkOSa60L7hdZSsMIQ0HfAb_YkF46p3DTMGOZzjmWj4xx1nFsd534Hjt-_eZ7xdPy6uttsde7ObJ2HmF0Zqhzf68BJs7Xz6Z-l7f1t-T6sBsY67IvALixNqhd1ACvidTKoq0Nry286CPBC priority: 102 providerName: Springer Nature |
| Title | A clustering-based coevolutionary multi-objective evolutionary algorithm for handling robust and noisy optimization |
| URI | https://link.springer.com/article/10.1007/s12065-024-00956-1 https://www.proquest.com/docview/3255485510 |
| Volume | 17 |
| WOSCitedRecordID | wos001253021900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1864-5917 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1864-5917 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1864-5917 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: M7S dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1864-5917 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1864-5917 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: M2P dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: RSV dateStart: 20080301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58Hby4PnF9LDl402DfbU6iogjisvhCvJQ0Dx-sW93uCv57J2nqoqAXL4HSNk2ZyXwzyeQbgJ0sixkCv6aa6YJGQsSURdqnErFOishTKuW22ETa7WZ3d6znFtwql1bZ2ERrqGUpzBr5foi-ryEy8b2D1zdqqkaZ3VVXQmMaZtGz8U1K10XQayxxEniWhdnPkojGzGPu0Ex9dC5A8KWIUNSrufi-A9PE2_yxQWpx57T13xEvwoLzOMlhrSJLMKUGy9BqqjkQN7lXoDokoj82vAk4DmrQTRJRqnenm3z4QWz2IS2L59pKkm83ef8Bvz56fCHoBxPL3oAdkWFZYKcEL8mgfKo-SIlG6sWd_lyFm9OT6-Mz6koyUIFzdUTxj5TkaRCoECM1nqK_pBn6nDIQYSYYBj-FDBKeCF7IRCWKyRRDKi_mkeToS4hwDWYG5UCtA0H4lBjWh7HhA5Jcc11ov9BaClYYGvo2-I08cuH4yk3ZjH4-YVo2MsxRhrmVYe63YffrndearePPp7caweVu5lb5RGpt2GtEP7n9e28bf_e2CfOB0TabB7gFM6PhWG3DnHgfPVXDDswenXR7lx2YPk9px2qxadMrbHvxPbaXV7efYZz7NA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkuBSCi1igRYf4ARWE-fpQ1WhtggErDiAxC31ExYtG9gsVPun-I0dOwkrKsGNA8coyUiOP883jme-AdjK84Qj8VtquZU0ViqhPLYh1ch1WsWBMZnwzSaybje_uOCnU_DY1sK4tMrWJ3pHrUvl_pF_izD2dUImYfDj9o66rlHudLVtoVHD4siM_-KWrfp--Avnd5ux_d9nPw9o01WAKoTbiKIZo0XGmIlwsyEypHzLMWzSTEW5wi14IjVLRaqE1KlJDdcZ7gqCRMRaIB2qCO1Ow2zslMVcqiA7bT1_ygKv-hzmaUwTHvCmSKcu1WNI9hQZkQa19t9zIpxEt_8dyHqe2198b1_oI3xoImqyVy-BJZgyg2VYbLtVkMZ5fYJqj6j-vdOFwHFTx96aqNI8NGtPDMfEZ1fSUl7XLECe3RT9Sxzt6OqGYJxPvDoFGiLDUqJRgpdkUPaqMSnRCd801a2f4fxNhr4CM4NyYFaBYHigjWRR4vSOtLDCShtKa7Xi0snsdyBs579QjR67awvSLyZK0g4zBWKm8Jgpwg7sPL1zW6uRvPr0RguUovFMVTFBSQd2W6hNbr9sbe11a5swf3B2clwcH3aP1mGBOaT7nMcNmBkN780XmFMPo141_OrXDIE_bw3Bf_rXUgg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC68EH1YrxXH9ciDbxrsuzuPsruDogyCB7416Rw6y0y39PQM-O-tpLsdXVQQH0PSRZOq5KsiVV8BHCRJyBD4NdVMZzQQIqQs0C6ViHVSBI5SMbfNJuJeL7m7Y5evqvhttnv7JFnXNBiWprw6fpT6eFr45iF0UsQX6tRMerMwH5hEehOvX922d3HkOZaH2U2igIbMYU3ZzPsy3kLT1N_874nUIk935fv_vAo_Gq-TnNRmsgYzKl-HlbajA2kO-Dosv6In3IDRCRGDsWFSwCE1eCeJKNSksVZePhGbj0iL7F99b5I3k3xwX5T96mFI0DMmls8BBZGyyFAowSHJi_7oiRR4bQ2betCfcNP9e_37lDZNGqjA01tRdEeU5LHnKR9jNx6jB6UZeqHSE34iGIZDmfQiHgmeyUhFiskYgywn5IHk6F0IfxPm8iJXW0AQUCUG-n5oGIIk11xn2s20loJlhpi-A26rn1Q0DOamkcYgnXIvmz1OcY9Tu8ep24HDl28ea_6OT1fvtGpPm7M8Sn2MugyFjut04KhV83T6Y2nbX1u-D4uXf7rpxVnv_BcsecZQbNLgDsxV5VjtwoKYVP1RuWdN_Bmok_wK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+clustering-based+coevolutionary+multi-objective+evolutionary+algorithm+for+handling+robust+and+noisy+optimization&rft.jtitle=Evolutionary+intelligence&rft.au=de+Sousa%2C+Mateus+Clemente&rft.au=Meneghini%2C+Ivan+Reinaldo&rft.au=Guimar%C3%A3es%2C+Frederico+Gadelha&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=17&rft.issue=5&rft.spage=3767&rft.epage=3791&rft_id=info:doi/10.1007%2Fs12065-024-00956-1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |