The best performing color space and machine learning regression algorithm for the accurate estimation of chromium (VI) and iron (III) in aqueous samples using low-cost and portable flatbed scanner colorimetry
The study utilizes the colorimetric method (involving 1,5-diphenylcarbazide and potassium thiocyanate as complexing agents), computer vision, and machine learning (ML) regression algorithms to determine the content of Cr (VI) and Fe (III) in water samples. To process digital images of water samples,...
Uložené v:
| Vydané v: | Journal of the Iranian Chemical Society Ročník 21; číslo 9; s. 2335 - 2349 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1735-207X, 1735-2428 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!