A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network

Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics Jg. 113; H. 1; S. 459 - 478
Hauptverfasser: Qu, Yuanyuan, Li, Tao, Fu, Shichen, Wang, Zhisheng, Chen, Jian, Zhang, Yupeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.01.2025
Springer Nature B.V
Schlagworte:
ISSN:0924-090X, 1573-269X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!