A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network
Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled...
Uloženo v:
| Vydáno v: | Nonlinear dynamics Ročník 113; číslo 1; s. 459 - 478 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.01.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled data. Faced with the actual situation that labeled samples are often in short, data are imbalanced in category etc., accurate fault diagnosis based on deep learning is still challenging, so does to explore and explain the evolution of complex faults. A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE) is proposed in this paper. Through semi-supervised learning, LSTM-SSVAE uses unlabeled data to enhance the extraction of discriminant features of data, which make the model less dependent on only labeled data while giving improved fault diagnosis accuracy. The LSTM networks are applied as the encoder and decoder innovatively, and regularization constraints are added in loss function, to improve the clustering effect of the intermediate hidden variables, so that to achieve effective feature extraction and state detection. Based on open datasets, experimental results show that with the same number of labeled samples, the fault diagnosis accuracy obtained by using LSTM-SSVAE is higher than other typical semi-supervised learning models. Based on actual vibration data of working equipment in coal mining, the feasibility of clustering analysis of intermediate hidden variables also proves that the LSTM-SSVAE model is recommendable for fault evolution analysis and is potential for operating conditions prediction of mechanical equipment. |
|---|---|
| AbstractList | Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled data. Faced with the actual situation that labeled samples are often in short, data are imbalanced in category etc., accurate fault diagnosis based on deep learning is still challenging, so does to explore and explain the evolution of complex faults. A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE) is proposed in this paper. Through semi-supervised learning, LSTM-SSVAE uses unlabeled data to enhance the extraction of discriminant features of data, which make the model less dependent on only labeled data while giving improved fault diagnosis accuracy. The LSTM networks are applied as the encoder and decoder innovatively, and regularization constraints are added in loss function, to improve the clustering effect of the intermediate hidden variables, so that to achieve effective feature extraction and state detection. Based on open datasets, experimental results show that with the same number of labeled samples, the fault diagnosis accuracy obtained by using LSTM-SSVAE is higher than other typical semi-supervised learning models. Based on actual vibration data of working equipment in coal mining, the feasibility of clustering analysis of intermediate hidden variables also proves that the LSTM-SSVAE model is recommendable for fault evolution analysis and is potential for operating conditions prediction of mechanical equipment. |
| Author | Zhang, Yupeng Fu, Shichen Wang, Zhisheng Li, Tao Chen, Jian Qu, Yuanyuan |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Qu fullname: Qu, Yuanyuan organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing – sequence: 2 givenname: Tao orcidid: 0009-0003-1081-6679 surname: Li fullname: Li, Tao email: litao04206819@163.com organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing – sequence: 3 givenname: Shichen surname: Fu fullname: Fu, Shichen organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing – sequence: 4 givenname: Zhisheng surname: Wang fullname: Wang, Zhisheng organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing – sequence: 5 givenname: Jian surname: Chen fullname: Chen, Jian organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing – sequence: 6 givenname: Yupeng surname: Zhang fullname: Zhang, Yupeng organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing |
| BookMark | eNp9kE1LJDEQhoMo7PjxB_YU8Bw3H9PdyVFkVxcELwreQjpdmYl2J2OStvHfG52FBQ-e6vC-T1XxHKPDEAMg9JPRC0Zp9yszRjtGKF8TRjlnZDlAK9Z0gvBWPR6iFVU1ooo-_kDHOT9RSgWncoWWSzyB3ZrgrRmxM_NY8ODNJsTsM57iACNefNniDJMned5BevUZBvxqkjfFx1AxM5cIwdZywr35SGPAYwwbnLcxFVIgTfXMFNMbDlCWmJ5P0ZEzY4azf_MEPfz5fX91Q27vrv9eXd4SK5gqpBHWrbtBOamaRvHByd4NgioFQsh1A6p1A7dtLxomhQPer3swvJW2a3rW8VacoPP93l2KLzPkop_inOrTWQvGleykoKy2-L5lU8w5gdO75CeT3jSj-kOw3gvWVbD-FKyXCskvkPXlU0lJxo_fo2KP5nonbCD9_-ob6h0PFpUL |
| CitedBy_id | crossref_primary_10_1016_j_cnsns_2025_108965 crossref_primary_10_1038_s41598_025_02991_z crossref_primary_10_1109_JSEN_2025_3586252 crossref_primary_10_1016_j_jtice_2025_106289 crossref_primary_10_1088_1361_6501_adf910 crossref_primary_10_1109_JSEN_2025_3548675 crossref_primary_10_3390_pr13082388 |
| Cites_doi | 10.18653/v1/N19-1021 10.1109/TIM.2019.2956332 10.1109/INDIN45523.2021.9557362 10.1016/j.mechmachtheory.2013.10.006 10.1016/j.ymssp.2015.10.025 10.1109/TSMC.2019.2932000 10.1007/s11071-021-06857-7 10.1007/s11071-022-07341-6 10.1016/j.ymssp.2016.04.024 10.1016/j.ymssp.2022.109772 10.1177/10775463231211403 10.1109/PEDSTC.2019.8697244 10.1016/j.engappai.2023.106316 10.3390/en15093340 10.1016/j.measurement.2016.04.007 10.1016/j.ymssp.2015.11.014 10.3390/s19092000 10.1109/SOSE52739.2021.9497475 10.1109/TIE.2016.2519325 10.1177/09576509211047002 10.1088/1742-6596/2252/1/012039 10.1016/j.measurement.2016.07.054 10.1177/14759217211036025 10.1007/s11071-021-07032-8 10.1016/j.jsv.2016.05.027 10.1016/j.cosrev.2015.03.001 10.1177/1350650120972591 10.1016/j.ymssp.2012.09.015 10.23919/ChiCC.2019.8865682 10.1016/j.ins.2023.119496 10.1109/ACCESS.2018.2837621 10.1016/j.physd.2019.132306 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11071-024-10221-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1573-269X |
| EndPage | 478 |
| ExternalDocumentID | 10_1007_s11071_024_10221_w |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: No. 2022YQJD12 funderid: http://dx.doi.org/10.13039/501100012226 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c319t-53cf47d9f895592df8bfd3099e33845e96fd2c6b35183fe2b4bea268c75b17263 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321720500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Wed Nov 05 03:34:09 EST 2025 Tue Nov 18 21:43:06 EST 2025 Sat Nov 29 03:06:44 EST 2025 Fri Feb 21 02:39:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fault diagnosis Variational autoencoder Long short-term memory network Clustering analysis Semi-supervised learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-53cf47d9f895592df8bfd3099e33845e96fd2c6b35183fe2b4bea268c75b17263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0003-1081-6679 |
| PQID | 3129878301 |
| PQPubID | 2043746 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_3129878301 crossref_primary_10_1007_s11071_024_10221_w crossref_citationtrail_10_1007_s11071_024_10221_w springer_journals_10_1007_s11071_024_10221_w |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | HouDQiHLuoHWangCYangJComparative study on the use of acoustic emission and vibration analyses for the bearing fault diagnosis of high-speed trainsStruct. Health Monit.20222141518154010.1177/14759217211036025 LiuZ-HLuB-LWeiH-LChenLLiX-HRätschMDeep adversarial domain adaptation model for bearing fault diagnosisIEEE Trans. Syst. Man, Cybern.: Syst.20195174217422610.1109/TSMC.2019.2932000 QiaoZElhattabAShuXHeCA second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detectionNonlinear Dyn.202110670772310.1007/s11071-021-06857-7 Beard, R.V.: Failure accomodation in linear systems through self-reorganization. PhD thesis, Massachusetts Institute of Technology (1971) GanMWangCConstruction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearingsMech. Syst. Signal Process.201672921042016MSSP...72...92G10.1016/j.ymssp.2015.11.014 Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Lerchner, A.: Understanding disentangling in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-vae. arXiv preprint arXiv:1804.03599 (2018) HanTXieWPeiZSemi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbineInf. Sci.202364811949610.1016/j.ins.2023.119496 Zhang, J., Xu, Y., Chen, H., Xing, L.: A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data. Eng. Appl. Artif. Intell. 123, 106316 (2023) ZhouKDiehlETangJDeep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitationsMech. Syst. Signal Process.202318510.1016/j.ymssp.2022.109772 LiuTLiGThe imbalanced data problem in the fault diagnosis of rolling bearingComput. Eng. Sci.2010325150153 LeiYLinJHeZZuoMJA review on empirical mode decomposition in fault diagnosis of rotating machineryMech. Syst. Signal Process.2013351–21081262013MSSP...35..108L10.1016/j.ymssp.2012.09.015 CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIeee Access20186262412625310.1109/ACCESS.2018.2837621 SunWShaoSZhaoRYanRZhangXChenXA sparse auto-encoder-based deep neural network approach for induction motor faults classificationMeasurement2016891711782016Meas...89..171S10.1016/j.measurement.2016.04.007 JiaFLeiYLinJZhouXLuNDeep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive dataMech. Syst. Signal Process.2016723033152016MSSP...72..303J10.1016/j.ymssp.2015.10.025 Maaten, L., Hinton, G.: Visualizing data using t-sne. J Mach Learn Res 9(11), 2579–2605 (2008) WangHXuJYanRGaoRXA new intelligent bearing fault diagnosis method using sdp representation and se-cnnIEEE Trans. Instrum. Meas.2019695237723892020ITIM...69.2377W10.1109/TIM.2019.2956332 Loparo, K.: Case western reserve university bearing data centre website (2012). https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserveuniversity-bearing-data-center-website GuoXChenLShenCHierarchical adaptive deep convolution neural network and its application to bearing fault diagnosisMeasurement2016934905022016Meas...93..490G10.1016/j.measurement.2016.07.054 JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVan HoeckeSConvolutional neural network based fault detection for rotating machineryJ. Sound Vib.20163773313452016JSV...377..331J10.1016/j.jsv.2016.05.027 DongWZhangSHuMZhangLLiuHIntelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selectionNonlinear Dyn.202210732485251710.1007/s11071-021-07032-8 Fu, Y., Gao, Z., Zhang, A., Liu, X.: Fault classification for wind turbine benchmark model based on hilbert-huang transformation and support vector machine strategies. In: 2021 IEEE 19th international conference on industrial informatics (INDIN), pp. 1–8 (2021). IEEE BordoloiDJTiwariROptimum multi-fault classification of gears with integration of evolutionary and svm algorithmsMech. Mach. Theory201473496010.1016/j.mechmachtheory.2013.10.006 Li, L., Noman, K., Li, Y., Fu, H., Deng, Z.: Application of oscillatory time frequency manifold for extraction of rolling element bearing fault signature. In: journal of physics: conference series, vol. 2252, p. 012039 (2022). IOP Publishing Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.2014151313331813277155 Zhao, Z., Zhou, R., Dong, Z.: Aero-engine faults diagnosis based on k-means improved wasserstein gan and relevant vector machine. In: 2019 Chinese control conference (CCC), pp. 4795–4800 (2019). IEEE Afrasiabi, S., Afrasiabi, M., Parang, B., Mohammadi, M.: Real-time bearing fault diagnosis of induction motors with accelerated deep learning approach. In: 2019 10th international power electronics, drive systems and technologies conference (PEDSTC), pp. 155–159 (2019). IEEE ZhuH-LLiuS-SQuY-YHanX-XHeWCaoYA new risk assessment method based on belief rule base and fault tree analysisProc. Inst. Mech. Eng. Part O: J. Risk Reliab.20222363420438 DingXHeQTime-frequency manifold sparse reconstruction: a novel method for bearing fault feature extractionMech. Syst. Signal Process.2016803924132016MSSP...80..392D10.1016/j.ymssp.2016.04.024 ZhaoDLiuFMengHBearing fault diagnosis based on the switchable normalization ssgan with 1-d representation of vibration signals as inputSensors201919920002019Senso..19.2000Z10.3390/s19092000 RuijtersEStoelingaMFault tree analysis: a survey of the state-of-the-art in modeling, analysis and toolsComput. Sci. Rev.2015152962345478510.1016/j.cosrev.2015.03.001 Shin, S., Hyun, S., Shin, Y.-j., Song, J., Bae, D.-H.: Uncertainty based fault type identification for fault knowledge base generation in system of systems. In: 2021 16th international conference of system of systems engineering (SoSE), pp. 216–221 (2021). IEEE ZhangZShaoMMaCLvZZhouJAn enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machineryNonlinear Dyn.202210832385240410.1007/s11071-022-07341-6 Liang, M., Zhou, K.: Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals. Journal of Vibration and Control. 0(0), https://doi.org/10.1177/10775463231211403 (2023) Morales-EspejelGEThermal damage and fatigue estimation in heavily loaded lubricated rolling/sliding contacts with micro-geometryProc. Inst. Mech. Eng. Part J: J. Eng. Tribol.202123581680169110.1177/1350650120972591 YangSYangPYuHBaiJFengWSuYSiYA 2dcnn-rf model for offshore wind turbine high-speed bearing-fault diagnosis under noisy environmentEnergies2022159334010.3390/en15093340 HeSLiuYChenJZiYWavelet transform based on inner product for fault diagnosis of rotating machineryStruct. Health Monit. Adv. Signal Process. Perspect.2017266591 LeiYJiaFLinJXingSDingSXAn intelligent fault diagnosis method using unsupervised feature learning towards mechanical big dataIEEE Trans. Industr. Electron.2016635313731472016ITED...63.3143L10.1109/TIE.2016.2519325 Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019) SherstinskyAFundamentals of recurrent neural network (rnn) and long short-term memory (lstm) networkPhysica D2020404132306405756010.1016/j.physd.2019.132306 Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013) DJ Bordoloi (10221_CR13) 2014; 73 O Janssens (10221_CR15) 2016; 377 D Hou (10221_CR5) 2022; 21 Z Zhang (10221_CR19) 2022; 108 M Fernández-Delgado (10221_CR21) 2014; 15 10221_CR37 T Liu (10221_CR27) 2010; 32 Z Qiao (10221_CR12) 2021; 106 W Sun (10221_CR24) 2016; 89 10221_CR39 P Cao (10221_CR16) 2018; 6 X Ding (10221_CR7) 2016; 80 10221_CR40 F Jia (10221_CR22) 2016; 72 D Zhao (10221_CR38) 2019; 19 GE Morales-Espejel (10221_CR6) 2021; 235 W Dong (10221_CR20) 2022; 107 Y Lei (10221_CR25) 2016; 63 H-L Zhu (10221_CR4) 2022; 236 K Zhou (10221_CR30) 2023; 185 S Yang (10221_CR17) 2022; 15 H Wang (10221_CR18) 2019; 69 T Han (10221_CR29) 2023; 648 10221_CR3 X Guo (10221_CR14) 2016; 93 Y Lei (10221_CR8) 2013; 35 10221_CR1 10221_CR28 10221_CR34 10221_CR11 10221_CR33 10221_CR36 S He (10221_CR9) 2017; 26 M Gan (10221_CR23) 2016; 72 10221_CR10 Z-H Liu (10221_CR26) 2019; 51 10221_CR32 10221_CR31 E Ruijters (10221_CR2) 2015; 15 A Sherstinsky (10221_CR35) 2020; 404 |
| References_xml | – reference: Afrasiabi, S., Afrasiabi, M., Parang, B., Mohammadi, M.: Real-time bearing fault diagnosis of induction motors with accelerated deep learning approach. In: 2019 10th international power electronics, drive systems and technologies conference (PEDSTC), pp. 155–159 (2019). IEEE – reference: ZhouKDiehlETangJDeep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitationsMech. Syst. Signal Process.202318510.1016/j.ymssp.2022.109772 – reference: JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVan HoeckeSConvolutional neural network based fault detection for rotating machineryJ. Sound Vib.20163773313452016JSV...377..331J10.1016/j.jsv.2016.05.027 – reference: RuijtersEStoelingaMFault tree analysis: a survey of the state-of-the-art in modeling, analysis and toolsComput. Sci. Rev.2015152962345478510.1016/j.cosrev.2015.03.001 – reference: DingXHeQTime-frequency manifold sparse reconstruction: a novel method for bearing fault feature extractionMech. Syst. Signal Process.2016803924132016MSSP...80..392D10.1016/j.ymssp.2016.04.024 – reference: WangHXuJYanRGaoRXA new intelligent bearing fault diagnosis method using sdp representation and se-cnnIEEE Trans. Instrum. Meas.2019695237723892020ITIM...69.2377W10.1109/TIM.2019.2956332 – reference: Liang, M., Zhou, K.: Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals. Journal of Vibration and Control. 0(0), https://doi.org/10.1177/10775463231211403 (2023) – reference: SherstinskyAFundamentals of recurrent neural network (rnn) and long short-term memory (lstm) networkPhysica D2020404132306405756010.1016/j.physd.2019.132306 – reference: Shin, S., Hyun, S., Shin, Y.-j., Song, J., Bae, D.-H.: Uncertainty based fault type identification for fault knowledge base generation in system of systems. In: 2021 16th international conference of system of systems engineering (SoSE), pp. 216–221 (2021). IEEE – reference: DongWZhangSHuMZhangLLiuHIntelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selectionNonlinear Dyn.202210732485251710.1007/s11071-021-07032-8 – reference: Zhao, Z., Zhou, R., Dong, Z.: Aero-engine faults diagnosis based on k-means improved wasserstein gan and relevant vector machine. In: 2019 Chinese control conference (CCC), pp. 4795–4800 (2019). IEEE – reference: ZhangZShaoMMaCLvZZhouJAn enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machineryNonlinear Dyn.202210832385240410.1007/s11071-022-07341-6 – reference: ZhaoDLiuFMengHBearing fault diagnosis based on the switchable normalization ssgan with 1-d representation of vibration signals as inputSensors201919920002019Senso..19.2000Z10.3390/s19092000 – reference: ZhuH-LLiuS-SQuY-YHanX-XHeWCaoYA new risk assessment method based on belief rule base and fault tree analysisProc. Inst. Mech. Eng. Part O: J. Risk Reliab.20222363420438 – reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.2014151313331813277155 – reference: Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Lerchner, A.: Understanding disentangling in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-vae. arXiv preprint arXiv:1804.03599 (2018) – reference: Loparo, K.: Case western reserve university bearing data centre website (2012). https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserveuniversity-bearing-data-center-website – reference: Morales-EspejelGEThermal damage and fatigue estimation in heavily loaded lubricated rolling/sliding contacts with micro-geometryProc. Inst. Mech. Eng. Part J: J. Eng. Tribol.202123581680169110.1177/1350650120972591 – reference: GanMWangCConstruction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearingsMech. Syst. Signal Process.201672921042016MSSP...72...92G10.1016/j.ymssp.2015.11.014 – reference: SunWShaoSZhaoRYanRZhangXChenXA sparse auto-encoder-based deep neural network approach for induction motor faults classificationMeasurement2016891711782016Meas...89..171S10.1016/j.measurement.2016.04.007 – reference: LeiYJiaFLinJXingSDingSXAn intelligent fault diagnosis method using unsupervised feature learning towards mechanical big dataIEEE Trans. Industr. Electron.2016635313731472016ITED...63.3143L10.1109/TIE.2016.2519325 – reference: Fu, Y., Gao, Z., Zhang, A., Liu, X.: Fault classification for wind turbine benchmark model based on hilbert-huang transformation and support vector machine strategies. In: 2021 IEEE 19th international conference on industrial informatics (INDIN), pp. 1–8 (2021). IEEE – reference: Zhang, J., Xu, Y., Chen, H., Xing, L.: A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data. Eng. Appl. Artif. Intell. 123, 106316 (2023) – reference: Li, L., Noman, K., Li, Y., Fu, H., Deng, Z.: Application of oscillatory time frequency manifold for extraction of rolling element bearing fault signature. In: journal of physics: conference series, vol. 2252, p. 012039 (2022). IOP Publishing – reference: Beard, R.V.: Failure accomodation in linear systems through self-reorganization. PhD thesis, Massachusetts Institute of Technology (1971) – reference: LiuZ-HLuB-LWeiH-LChenLLiX-HRätschMDeep adversarial domain adaptation model for bearing fault diagnosisIEEE Trans. Syst. Man, Cybern.: Syst.20195174217422610.1109/TSMC.2019.2932000 – reference: HouDQiHLuoHWangCYangJComparative study on the use of acoustic emission and vibration analyses for the bearing fault diagnosis of high-speed trainsStruct. Health Monit.20222141518154010.1177/14759217211036025 – reference: YangSYangPYuHBaiJFengWSuYSiYA 2dcnn-rf model for offshore wind turbine high-speed bearing-fault diagnosis under noisy environmentEnergies2022159334010.3390/en15093340 – reference: QiaoZElhattabAShuXHeCA second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detectionNonlinear Dyn.202110670772310.1007/s11071-021-06857-7 – reference: GuoXChenLShenCHierarchical adaptive deep convolution neural network and its application to bearing fault diagnosisMeasurement2016934905022016Meas...93..490G10.1016/j.measurement.2016.07.054 – reference: LiuTLiGThe imbalanced data problem in the fault diagnosis of rolling bearingComput. Eng. Sci.2010325150153 – reference: CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIeee Access20186262412625310.1109/ACCESS.2018.2837621 – reference: JiaFLeiYLinJZhouXLuNDeep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive dataMech. Syst. Signal Process.2016723033152016MSSP...72..303J10.1016/j.ymssp.2015.10.025 – reference: HeSLiuYChenJZiYWavelet transform based on inner product for fault diagnosis of rotating machineryStruct. Health Monit. Adv. Signal Process. Perspect.2017266591 – reference: BordoloiDJTiwariROptimum multi-fault classification of gears with integration of evolutionary and svm algorithmsMech. Mach. Theory201473496010.1016/j.mechmachtheory.2013.10.006 – reference: Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019) – reference: HanTXieWPeiZSemi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbineInf. Sci.202364811949610.1016/j.ins.2023.119496 – reference: Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013) – reference: Maaten, L., Hinton, G.: Visualizing data using t-sne. J Mach Learn Res 9(11), 2579–2605 (2008) – reference: LeiYLinJHeZZuoMJA review on empirical mode decomposition in fault diagnosis of rotating machineryMech. Syst. Signal Process.2013351–21081262013MSSP...35..108L10.1016/j.ymssp.2012.09.015 – ident: 10221_CR34 doi: 10.18653/v1/N19-1021 – volume: 69 start-page: 2377 issue: 5 year: 2019 ident: 10221_CR18 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2956332 – ident: 10221_CR10 doi: 10.1109/INDIN45523.2021.9557362 – volume: 73 start-page: 49 year: 2014 ident: 10221_CR13 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.10.006 – volume: 72 start-page: 303 year: 2016 ident: 10221_CR22 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.10.025 – ident: 10221_CR36 – volume: 51 start-page: 4217 issue: 7 year: 2019 ident: 10221_CR26 publication-title: IEEE Trans. Syst. Man, Cybern.: Syst. doi: 10.1109/TSMC.2019.2932000 – volume: 106 start-page: 707 year: 2021 ident: 10221_CR12 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06857-7 – volume: 108 start-page: 2385 issue: 3 year: 2022 ident: 10221_CR19 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07341-6 – ident: 10221_CR32 – ident: 10221_CR1 – volume: 80 start-page: 392 year: 2016 ident: 10221_CR7 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.04.024 – volume: 185 year: 2023 ident: 10221_CR30 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109772 – volume: 32 start-page: 150 issue: 5 year: 2010 ident: 10221_CR27 publication-title: Comput. Eng. Sci. – ident: 10221_CR28 doi: 10.1177/10775463231211403 – volume: 26 start-page: 65 year: 2017 ident: 10221_CR9 publication-title: Struct. Health Monit. Adv. Signal Process. Perspect. – ident: 10221_CR39 doi: 10.1109/PEDSTC.2019.8697244 – ident: 10221_CR31 doi: 10.1016/j.engappai.2023.106316 – volume: 15 start-page: 3340 issue: 9 year: 2022 ident: 10221_CR17 publication-title: Energies doi: 10.3390/en15093340 – volume: 89 start-page: 171 year: 2016 ident: 10221_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2016.04.007 – volume: 72 start-page: 92 year: 2016 ident: 10221_CR23 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.11.014 – volume: 19 start-page: 2000 issue: 9 year: 2019 ident: 10221_CR38 publication-title: Sensors doi: 10.3390/s19092000 – ident: 10221_CR3 doi: 10.1109/SOSE52739.2021.9497475 – ident: 10221_CR37 – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 10221_CR25 publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2016.2519325 – volume: 236 start-page: 420 issue: 3 year: 2022 ident: 10221_CR4 publication-title: Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. doi: 10.1177/09576509211047002 – ident: 10221_CR11 doi: 10.1088/1742-6596/2252/1/012039 – volume: 93 start-page: 490 year: 2016 ident: 10221_CR14 publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – volume: 21 start-page: 1518 issue: 4 year: 2022 ident: 10221_CR5 publication-title: Struct. Health Monit. doi: 10.1177/14759217211036025 – volume: 107 start-page: 2485 issue: 3 year: 2022 ident: 10221_CR20 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07032-8 – ident: 10221_CR33 – volume: 377 start-page: 331 year: 2016 ident: 10221_CR15 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 – volume: 15 start-page: 29 year: 2015 ident: 10221_CR2 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2015.03.001 – volume: 235 start-page: 1680 issue: 8 year: 2021 ident: 10221_CR6 publication-title: Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. doi: 10.1177/1350650120972591 – volume: 35 start-page: 108 issue: 1–2 year: 2013 ident: 10221_CR8 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2012.09.015 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10221_CR21 publication-title: J. Mach. Learn. Res. – ident: 10221_CR40 doi: 10.23919/ChiCC.2019.8865682 – volume: 648 start-page: 119496 year: 2023 ident: 10221_CR29 publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119496 – volume: 6 start-page: 26241 year: 2018 ident: 10221_CR16 publication-title: Ieee Access doi: 10.1109/ACCESS.2018.2837621 – volume: 404 start-page: 132306 year: 2020 ident: 10221_CR35 publication-title: Physica D doi: 10.1016/j.physd.2019.132306 |
| SSID | ssj0003208 |
| Score | 2.456771 |
| Snippet | Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 459 |
| SubjectTerms | Accuracy Applications of Nonlinear Dynamics and Chaos Theory Classical Mechanics Cluster analysis Clustering Coal mining Condition monitoring Control Deep learning Dynamical Systems Fault diagnosis Feature extraction Machine learning Original Paper Physics Physics and Astronomy Regularization Semi-supervised learning Statistical Physics and Dynamical Systems Vibration Vibration analysis |
| Title | A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network |
| URI | https://link.springer.com/article/10.1007/s11071-024-10221-w https://www.proquest.com/docview/3129878301 |
| Volume | 113 |
| WOSCitedRecordID | wos001321720500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7RQiV6IBBaNaUgH7hRS429D-dYVY04VYiXclvt2uMSKdmN4k0i_n3HjrcBRCvBeb3elcee-WY8Mx_Aey2QtoXMeZrbjCfWpry0WvKSTJFAlRKELgPZRH5zoyaT0adYFOa6bPfuSjJo6l2xG3kq5PqKhHsvZcg3e_CUzJ3yhA2fv3y_179SBB66C_IsfBRiEktl_j7H7-ZohzH_uBYN1mbc-7__fAkvIrpkl9vt8AqeYN2HXkSaLJ5j14fDX9oQ9uEgpIFq9xo2l2yOvhbYi47ZcjVrmdkm400dC6w5zEdumcP5lLvVwmsaR1OvyeWOYUVWrtrGt8c0uGTeSBrW1GzW1LfM_SCwz70xoM_Mm-VPVm-z0I_g2_j669VHHqkZuKYz2_JUapvkZmSV72AnjFWVNZLQJpLLm6Q4yqwROqtkSirDoqiSCkuRKZ2nFUGmTB7Dft3UeAIsNWJotbAXIxRJpjOFCaJGRbiqyo0sBzDsJFTo2Lfc02fMil3HZb_iBa14EVa82Azgw_07i23XjkdHn3WCL-IJdoUkIKRyRfpvAOedoHePH57t9N-Gv4HnwlMKh6jOGey3yxW-hWd63U7d8l3Y2XdV8vR6 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NDQQ8bNAxrTDAD7yBpdXOD_dxQkybNioEA_UtSuzzVqlNpjpdxX_P2XVWQDAJnuM4kc----589x3AGy2QtoXMeZrbjCfWpry0WvKSTJFAlRKELkOziXw0UuPx8FMsCnNdtnt3JRk09brYjTwVcn1Fwr2XMuDLe7CVkMXyjPmfv3y71b9ShD50h-RZ-CjEOJbK_HmOX83RGmP-di0arM3xzv_95xPYjuiSHa22w1PYwLoHOxFpsniOXQ8e_0RD2IMHIQ1Uu11YHrEZ-lpgLzpmy8W0ZWaVjDdxLHTNYT5yyxzOJtwtrr2mcTT1DbncMazIykXbeHpMg3PmjaRhTc2mTX3J3BWBfe6NAX1m1sy_s3qVhf4Mvh5_uHh_wmNrBq7pzLY8ldomuRla5RnshLGqskYS2kRyeZMUh5k1QmeVTEllWBRVUmEpMqXztCLIlMk92KybGveBpUYMrBb2cIgiyXSmMEHUqAhXVbmRZR8GnYQKHXnLffuMabFmXPYrXtCKF2HFi2Uf3t6-c71i7bhz9EEn-CKeYFdIAkIqV6T_-vCuE_T68d9ne_5vw1_Dw5OLj-fF-eno7AU8Er69cIjwHMBmO1_gS7ivb9qJm78Ku_wH0yT3Xg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BgGl72KBsWmFsfuANrK12PtzHaVCBmKpJA9S3KLHPo1KbVHW6av89ZyddB4JJiOc4TmSf736_830AvNUCSSxkyuPUJjyyNua51ZLnZIoEqpggdB6aTaTDoRqN-pf3svhDtPvqSrLJafBVmsr6ZGbsyTrxjVgL0WARcc9Yenz5GJ5EPpDe8_Wr73e6WIrQk-6UWIb3SIzatJk_z_GraVrjzd-uSIPlGez-_z8_h50WdbKzRkxewCMsO7DbIlDWnm_Xge175Qk78CyEh2r3EpZnbIo-R9hvKbP5YlIz0wTpjR0L3XSY9-gyh9Mxd4uZ10COpr4hKt66G1m-qCtfNtPgnHnjaVhVsklVXjP3g0gA90aCPjOt5resbKLT9-Db4OPX80-8bdnANZ3lmsdS2yg1fat8ZTthrCqskYRCkahwFGM_sUbopJAxqRKLoogKzEWidBoXBKUSuQ8bZVXiAbDYiJ7Vwp72UUSJThRGiBoV4a0iNTLvQm-1W5lu65n7thqTbF2J2a94RiuehRXPll14d_fOrKnm8eDow5UQZO3JdpkkgKRSRXqxC-9Xm75-_PfZXv3b8GPYvPwwyC4-D7-8hi3huw4Hx88hbNTzBb6Bp_qmHrv5URD4n269AFE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanical+fault+diagnosis+model+with+semi-supervised+variational+autoencoder+based+on+long+short-term+memory+network&rft.jtitle=Nonlinear+dynamics&rft.au=Qu%2C+Yuanyuan&rft.au=Li%2C+Tao&rft.au=Fu%2C+Shichen&rft.au=Wang%2C+Zhisheng&rft.date=2025-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=1&rft.spage=459&rft.epage=478&rft_id=info:doi/10.1007%2Fs11071-024-10221-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_024_10221_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |