A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network

Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 113; číslo 1; s. 459 - 478
Hlavní autoři: Qu, Yuanyuan, Li, Tao, Fu, Shichen, Wang, Zhisheng, Chen, Jian, Zhang, Yupeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.01.2025
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled data. Faced with the actual situation that labeled samples are often in short, data are imbalanced in category etc., accurate fault diagnosis based on deep learning is still challenging, so does to explore and explain the evolution of complex faults. A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE) is proposed in this paper. Through semi-supervised learning, LSTM-SSVAE uses unlabeled data to enhance the extraction of discriminant features of data, which make the model less dependent on only labeled data while giving improved fault diagnosis accuracy. The LSTM networks are applied as the encoder and decoder innovatively, and regularization constraints are added in loss function, to improve the clustering effect of the intermediate hidden variables, so that to achieve effective feature extraction and state detection. Based on open datasets, experimental results show that with the same number of labeled samples, the fault diagnosis accuracy obtained by using LSTM-SSVAE is higher than other typical semi-supervised learning models. Based on actual vibration data of working equipment in coal mining, the feasibility of clustering analysis of intermediate hidden variables also proves that the LSTM-SSVAE model is recommendable for fault evolution analysis and is potential for operating conditions prediction of mechanical equipment.
AbstractList Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised deep learning has been proved to be effective by their powerful capacities in feature extracting, but usually requiring large number of labeled data. Faced with the actual situation that labeled samples are often in short, data are imbalanced in category etc., accurate fault diagnosis based on deep learning is still challenging, so does to explore and explain the evolution of complex faults. A mechanical fault diagnosis model with Semi-Supervised Variational Autoencoder based on Long Short-Term Memory network (LSTM-SSVAE) is proposed in this paper. Through semi-supervised learning, LSTM-SSVAE uses unlabeled data to enhance the extraction of discriminant features of data, which make the model less dependent on only labeled data while giving improved fault diagnosis accuracy. The LSTM networks are applied as the encoder and decoder innovatively, and regularization constraints are added in loss function, to improve the clustering effect of the intermediate hidden variables, so that to achieve effective feature extraction and state detection. Based on open datasets, experimental results show that with the same number of labeled samples, the fault diagnosis accuracy obtained by using LSTM-SSVAE is higher than other typical semi-supervised learning models. Based on actual vibration data of working equipment in coal mining, the feasibility of clustering analysis of intermediate hidden variables also proves that the LSTM-SSVAE model is recommendable for fault evolution analysis and is potential for operating conditions prediction of mechanical equipment.
Author Zhang, Yupeng
Fu, Shichen
Wang, Zhisheng
Li, Tao
Chen, Jian
Qu, Yuanyuan
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Qu
  fullname: Qu, Yuanyuan
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
– sequence: 2
  givenname: Tao
  orcidid: 0009-0003-1081-6679
  surname: Li
  fullname: Li, Tao
  email: litao04206819@163.com
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
– sequence: 3
  givenname: Shichen
  surname: Fu
  fullname: Fu, Shichen
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
– sequence: 4
  givenname: Zhisheng
  surname: Wang
  fullname: Wang, Zhisheng
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
– sequence: 5
  givenname: Jian
  surname: Chen
  fullname: Chen, Jian
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
– sequence: 6
  givenname: Yupeng
  surname: Zhang
  fullname: Zhang, Yupeng
  organization: School of Mechanical and Electronic Engineering, China University of Mining and Technology-Beijing
BookMark eNp9kE1LJDEQhoMo7PjxB_YU8Bw3H9PdyVFkVxcELwreQjpdmYl2J2OStvHfG52FBQ-e6vC-T1XxHKPDEAMg9JPRC0Zp9yszRjtGKF8TRjlnZDlAK9Z0gvBWPR6iFVU1ooo-_kDHOT9RSgWncoWWSzyB3ZrgrRmxM_NY8ODNJsTsM57iACNefNniDJMned5BevUZBvxqkjfFx1AxM5cIwdZywr35SGPAYwwbnLcxFVIgTfXMFNMbDlCWmJ5P0ZEzY4azf_MEPfz5fX91Q27vrv9eXd4SK5gqpBHWrbtBOamaRvHByd4NgioFQsh1A6p1A7dtLxomhQPer3swvJW2a3rW8VacoPP93l2KLzPkop_inOrTWQvGleykoKy2-L5lU8w5gdO75CeT3jSj-kOw3gvWVbD-FKyXCskvkPXlU0lJxo_fo2KP5nonbCD9_-ob6h0PFpUL
CitedBy_id crossref_primary_10_1016_j_cnsns_2025_108965
crossref_primary_10_1038_s41598_025_02991_z
crossref_primary_10_1109_JSEN_2025_3586252
crossref_primary_10_1016_j_jtice_2025_106289
crossref_primary_10_1088_1361_6501_adf910
crossref_primary_10_1109_JSEN_2025_3548675
crossref_primary_10_3390_pr13082388
Cites_doi 10.18653/v1/N19-1021
10.1109/TIM.2019.2956332
10.1109/INDIN45523.2021.9557362
10.1016/j.mechmachtheory.2013.10.006
10.1016/j.ymssp.2015.10.025
10.1109/TSMC.2019.2932000
10.1007/s11071-021-06857-7
10.1007/s11071-022-07341-6
10.1016/j.ymssp.2016.04.024
10.1016/j.ymssp.2022.109772
10.1177/10775463231211403
10.1109/PEDSTC.2019.8697244
10.1016/j.engappai.2023.106316
10.3390/en15093340
10.1016/j.measurement.2016.04.007
10.1016/j.ymssp.2015.11.014
10.3390/s19092000
10.1109/SOSE52739.2021.9497475
10.1109/TIE.2016.2519325
10.1177/09576509211047002
10.1088/1742-6596/2252/1/012039
10.1016/j.measurement.2016.07.054
10.1177/14759217211036025
10.1007/s11071-021-07032-8
10.1016/j.jsv.2016.05.027
10.1016/j.cosrev.2015.03.001
10.1177/1350650120972591
10.1016/j.ymssp.2012.09.015
10.23919/ChiCC.2019.8865682
10.1016/j.ins.2023.119496
10.1109/ACCESS.2018.2837621
10.1016/j.physd.2019.132306
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11071-024-10221-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-269X
EndPage 478
ExternalDocumentID 10_1007_s11071_024_10221_w
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: No. 2022YQJD12
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c319t-53cf47d9f895592df8bfd3099e33845e96fd2c6b35183fe2b4bea268c75b17263
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321720500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 03:34:09 EST 2025
Tue Nov 18 21:43:06 EST 2025
Sat Nov 29 03:06:44 EST 2025
Fri Feb 21 02:39:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fault diagnosis
Variational autoencoder
Long short-term memory network
Clustering analysis
Semi-supervised learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-53cf47d9f895592df8bfd3099e33845e96fd2c6b35183fe2b4bea268c75b17263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-1081-6679
PQID 3129878301
PQPubID 2043746
PageCount 20
ParticipantIDs proquest_journals_3129878301
crossref_primary_10_1007_s11071_024_10221_w
crossref_citationtrail_10_1007_s11071_024_10221_w
springer_journals_10_1007_s11071_024_10221_w
PublicationCentury 2000
PublicationDate 20250100
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References HouDQiHLuoHWangCYangJComparative study on the use of acoustic emission and vibration analyses for the bearing fault diagnosis of high-speed trainsStruct. Health Monit.20222141518154010.1177/14759217211036025
LiuZ-HLuB-LWeiH-LChenLLiX-HRätschMDeep adversarial domain adaptation model for bearing fault diagnosisIEEE Trans. Syst. Man, Cybern.: Syst.20195174217422610.1109/TSMC.2019.2932000
QiaoZElhattabAShuXHeCA second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detectionNonlinear Dyn.202110670772310.1007/s11071-021-06857-7
Beard, R.V.: Failure accomodation in linear systems through self-reorganization. PhD thesis, Massachusetts Institute of Technology (1971)
GanMWangCConstruction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearingsMech. Syst. Signal Process.201672921042016MSSP...72...92G10.1016/j.ymssp.2015.11.014
Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Lerchner, A.: Understanding disentangling in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-vae. arXiv preprint arXiv:1804.03599 (2018)
HanTXieWPeiZSemi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbineInf. Sci.202364811949610.1016/j.ins.2023.119496
Zhang, J., Xu, Y., Chen, H., Xing, L.: A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data. Eng. Appl. Artif. Intell. 123, 106316 (2023)
ZhouKDiehlETangJDeep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitationsMech. Syst. Signal Process.202318510.1016/j.ymssp.2022.109772
LiuTLiGThe imbalanced data problem in the fault diagnosis of rolling bearingComput. Eng. Sci.2010325150153
LeiYLinJHeZZuoMJA review on empirical mode decomposition in fault diagnosis of rotating machineryMech. Syst. Signal Process.2013351–21081262013MSSP...35..108L10.1016/j.ymssp.2012.09.015
CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIeee Access20186262412625310.1109/ACCESS.2018.2837621
SunWShaoSZhaoRYanRZhangXChenXA sparse auto-encoder-based deep neural network approach for induction motor faults classificationMeasurement2016891711782016Meas...89..171S10.1016/j.measurement.2016.04.007
JiaFLeiYLinJZhouXLuNDeep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive dataMech. Syst. Signal Process.2016723033152016MSSP...72..303J10.1016/j.ymssp.2015.10.025
Maaten, L., Hinton, G.: Visualizing data using t-sne. J Mach Learn Res 9(11), 2579–2605 (2008)
WangHXuJYanRGaoRXA new intelligent bearing fault diagnosis method using sdp representation and se-cnnIEEE Trans. Instrum. Meas.2019695237723892020ITIM...69.2377W10.1109/TIM.2019.2956332
Loparo, K.: Case western reserve university bearing data centre website (2012). https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserveuniversity-bearing-data-center-website
GuoXChenLShenCHierarchical adaptive deep convolution neural network and its application to bearing fault diagnosisMeasurement2016934905022016Meas...93..490G10.1016/j.measurement.2016.07.054
JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVan HoeckeSConvolutional neural network based fault detection for rotating machineryJ. Sound Vib.20163773313452016JSV...377..331J10.1016/j.jsv.2016.05.027
DongWZhangSHuMZhangLLiuHIntelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selectionNonlinear Dyn.202210732485251710.1007/s11071-021-07032-8
Fu, Y., Gao, Z., Zhang, A., Liu, X.: Fault classification for wind turbine benchmark model based on hilbert-huang transformation and support vector machine strategies. In: 2021 IEEE 19th international conference on industrial informatics (INDIN), pp. 1–8 (2021). IEEE
BordoloiDJTiwariROptimum multi-fault classification of gears with integration of evolutionary and svm algorithmsMech. Mach. Theory201473496010.1016/j.mechmachtheory.2013.10.006
Li, L., Noman, K., Li, Y., Fu, H., Deng, Z.: Application of oscillatory time frequency manifold for extraction of rolling element bearing fault signature. In: journal of physics: conference series, vol. 2252, p. 012039 (2022). IOP Publishing
Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.2014151313331813277155
Zhao, Z., Zhou, R., Dong, Z.: Aero-engine faults diagnosis based on k-means improved wasserstein gan and relevant vector machine. In: 2019 Chinese control conference (CCC), pp. 4795–4800 (2019). IEEE
Afrasiabi, S., Afrasiabi, M., Parang, B., Mohammadi, M.: Real-time bearing fault diagnosis of induction motors with accelerated deep learning approach. In: 2019 10th international power electronics, drive systems and technologies conference (PEDSTC), pp. 155–159 (2019). IEEE
ZhuH-LLiuS-SQuY-YHanX-XHeWCaoYA new risk assessment method based on belief rule base and fault tree analysisProc. Inst. Mech. Eng. Part O: J. Risk Reliab.20222363420438
DingXHeQTime-frequency manifold sparse reconstruction: a novel method for bearing fault feature extractionMech. Syst. Signal Process.2016803924132016MSSP...80..392D10.1016/j.ymssp.2016.04.024
ZhaoDLiuFMengHBearing fault diagnosis based on the switchable normalization ssgan with 1-d representation of vibration signals as inputSensors201919920002019Senso..19.2000Z10.3390/s19092000
RuijtersEStoelingaMFault tree analysis: a survey of the state-of-the-art in modeling, analysis and toolsComput. Sci. Rev.2015152962345478510.1016/j.cosrev.2015.03.001
Shin, S., Hyun, S., Shin, Y.-j., Song, J., Bae, D.-H.: Uncertainty based fault type identification for fault knowledge base generation in system of systems. In: 2021 16th international conference of system of systems engineering (SoSE), pp. 216–221 (2021). IEEE
ZhangZShaoMMaCLvZZhouJAn enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machineryNonlinear Dyn.202210832385240410.1007/s11071-022-07341-6
Liang, M., Zhou, K.: Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals. Journal of Vibration and Control. 0(0), https://doi.org/10.1177/10775463231211403 (2023)
Morales-EspejelGEThermal damage and fatigue estimation in heavily loaded lubricated rolling/sliding contacts with micro-geometryProc. Inst. Mech. Eng. Part J: J. Eng. Tribol.202123581680169110.1177/1350650120972591
YangSYangPYuHBaiJFengWSuYSiYA 2dcnn-rf model for offshore wind turbine high-speed bearing-fault diagnosis under noisy environmentEnergies2022159334010.3390/en15093340
HeSLiuYChenJZiYWavelet transform based on inner product for fault diagnosis of rotating machineryStruct. Health Monit. Adv. Signal Process. Perspect.2017266591
LeiYJiaFLinJXingSDingSXAn intelligent fault diagnosis method using unsupervised feature learning towards mechanical big dataIEEE Trans. Industr. Electron.2016635313731472016ITED...63.3143L10.1109/TIE.2016.2519325
Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019)
SherstinskyAFundamentals of recurrent neural network (rnn) and long short-term memory (lstm) networkPhysica D2020404132306405756010.1016/j.physd.2019.132306
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
DJ Bordoloi (10221_CR13) 2014; 73
O Janssens (10221_CR15) 2016; 377
D Hou (10221_CR5) 2022; 21
Z Zhang (10221_CR19) 2022; 108
M Fernández-Delgado (10221_CR21) 2014; 15
10221_CR37
T Liu (10221_CR27) 2010; 32
Z Qiao (10221_CR12) 2021; 106
W Sun (10221_CR24) 2016; 89
10221_CR39
P Cao (10221_CR16) 2018; 6
X Ding (10221_CR7) 2016; 80
10221_CR40
F Jia (10221_CR22) 2016; 72
D Zhao (10221_CR38) 2019; 19
GE Morales-Espejel (10221_CR6) 2021; 235
W Dong (10221_CR20) 2022; 107
Y Lei (10221_CR25) 2016; 63
H-L Zhu (10221_CR4) 2022; 236
K Zhou (10221_CR30) 2023; 185
S Yang (10221_CR17) 2022; 15
H Wang (10221_CR18) 2019; 69
T Han (10221_CR29) 2023; 648
10221_CR3
X Guo (10221_CR14) 2016; 93
Y Lei (10221_CR8) 2013; 35
10221_CR1
10221_CR28
10221_CR34
10221_CR11
10221_CR33
10221_CR36
S He (10221_CR9) 2017; 26
M Gan (10221_CR23) 2016; 72
10221_CR10
Z-H Liu (10221_CR26) 2019; 51
10221_CR32
10221_CR31
E Ruijters (10221_CR2) 2015; 15
A Sherstinsky (10221_CR35) 2020; 404
References_xml – reference: Afrasiabi, S., Afrasiabi, M., Parang, B., Mohammadi, M.: Real-time bearing fault diagnosis of induction motors with accelerated deep learning approach. In: 2019 10th international power electronics, drive systems and technologies conference (PEDSTC), pp. 155–159 (2019). IEEE
– reference: ZhouKDiehlETangJDeep convolutional generative adversarial network with semi-supervised learning enabled physics elucidation for extended gear fault diagnosis under data limitationsMech. Syst. Signal Process.202318510.1016/j.ymssp.2022.109772
– reference: JanssensOSlavkovikjVVervischBStockmanKLoccufierMVerstocktSWalleRVan HoeckeSConvolutional neural network based fault detection for rotating machineryJ. Sound Vib.20163773313452016JSV...377..331J10.1016/j.jsv.2016.05.027
– reference: RuijtersEStoelingaMFault tree analysis: a survey of the state-of-the-art in modeling, analysis and toolsComput. Sci. Rev.2015152962345478510.1016/j.cosrev.2015.03.001
– reference: DingXHeQTime-frequency manifold sparse reconstruction: a novel method for bearing fault feature extractionMech. Syst. Signal Process.2016803924132016MSSP...80..392D10.1016/j.ymssp.2016.04.024
– reference: WangHXuJYanRGaoRXA new intelligent bearing fault diagnosis method using sdp representation and se-cnnIEEE Trans. Instrum. Meas.2019695237723892020ITIM...69.2377W10.1109/TIM.2019.2956332
– reference: Liang, M., Zhou, K.: Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals. Journal of Vibration and Control. 0(0), https://doi.org/10.1177/10775463231211403 (2023)
– reference: SherstinskyAFundamentals of recurrent neural network (rnn) and long short-term memory (lstm) networkPhysica D2020404132306405756010.1016/j.physd.2019.132306
– reference: Shin, S., Hyun, S., Shin, Y.-j., Song, J., Bae, D.-H.: Uncertainty based fault type identification for fault knowledge base generation in system of systems. In: 2021 16th international conference of system of systems engineering (SoSE), pp. 216–221 (2021). IEEE
– reference: DongWZhangSHuMZhangLLiuHIntelligent fault diagnosis of wind turbine gearboxes based on refined generalized multi-scale state joint entropy and robust spectral feature selectionNonlinear Dyn.202210732485251710.1007/s11071-021-07032-8
– reference: Zhao, Z., Zhou, R., Dong, Z.: Aero-engine faults diagnosis based on k-means improved wasserstein gan and relevant vector machine. In: 2019 Chinese control conference (CCC), pp. 4795–4800 (2019). IEEE
– reference: ZhangZShaoMMaCLvZZhouJAn enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machineryNonlinear Dyn.202210832385240410.1007/s11071-022-07341-6
– reference: ZhaoDLiuFMengHBearing fault diagnosis based on the switchable normalization ssgan with 1-d representation of vibration signals as inputSensors201919920002019Senso..19.2000Z10.3390/s19092000
– reference: ZhuH-LLiuS-SQuY-YHanX-XHeWCaoYA new risk assessment method based on belief rule base and fault tree analysisProc. Inst. Mech. Eng. Part O: J. Risk Reliab.20222363420438
– reference: Fernández-DelgadoMCernadasEBarroSAmorimDDo we need hundreds of classifiers to solve real world classification problems?J. Mach. Learn. Res.2014151313331813277155
– reference: Burgess, C.P., Higgins, I., Pal, A., Matthey, L., Watters, N., Desjardins, G., Lerchner, A.: Understanding disentangling in β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-vae. arXiv preprint arXiv:1804.03599 (2018)
– reference: Loparo, K.: Case western reserve university bearing data centre website (2012). https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserveuniversity-bearing-data-center-website
– reference: Morales-EspejelGEThermal damage and fatigue estimation in heavily loaded lubricated rolling/sliding contacts with micro-geometryProc. Inst. Mech. Eng. Part J: J. Eng. Tribol.202123581680169110.1177/1350650120972591
– reference: GanMWangCConstruction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearingsMech. Syst. Signal Process.201672921042016MSSP...72...92G10.1016/j.ymssp.2015.11.014
– reference: SunWShaoSZhaoRYanRZhangXChenXA sparse auto-encoder-based deep neural network approach for induction motor faults classificationMeasurement2016891711782016Meas...89..171S10.1016/j.measurement.2016.04.007
– reference: LeiYJiaFLinJXingSDingSXAn intelligent fault diagnosis method using unsupervised feature learning towards mechanical big dataIEEE Trans. Industr. Electron.2016635313731472016ITED...63.3143L10.1109/TIE.2016.2519325
– reference: Fu, Y., Gao, Z., Zhang, A., Liu, X.: Fault classification for wind turbine benchmark model based on hilbert-huang transformation and support vector machine strategies. In: 2021 IEEE 19th international conference on industrial informatics (INDIN), pp. 1–8 (2021). IEEE
– reference: Zhang, J., Xu, Y., Chen, H., Xing, L.: A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data. Eng. Appl. Artif. Intell. 123, 106316 (2023)
– reference: Li, L., Noman, K., Li, Y., Fu, H., Deng, Z.: Application of oscillatory time frequency manifold for extraction of rolling element bearing fault signature. In: journal of physics: conference series, vol. 2252, p. 012039 (2022). IOP Publishing
– reference: Beard, R.V.: Failure accomodation in linear systems through self-reorganization. PhD thesis, Massachusetts Institute of Technology (1971)
– reference: LiuZ-HLuB-LWeiH-LChenLLiX-HRätschMDeep adversarial domain adaptation model for bearing fault diagnosisIEEE Trans. Syst. Man, Cybern.: Syst.20195174217422610.1109/TSMC.2019.2932000
– reference: HouDQiHLuoHWangCYangJComparative study on the use of acoustic emission and vibration analyses for the bearing fault diagnosis of high-speed trainsStruct. Health Monit.20222141518154010.1177/14759217211036025
– reference: YangSYangPYuHBaiJFengWSuYSiYA 2dcnn-rf model for offshore wind turbine high-speed bearing-fault diagnosis under noisy environmentEnergies2022159334010.3390/en15093340
– reference: QiaoZElhattabAShuXHeCA second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detectionNonlinear Dyn.202110670772310.1007/s11071-021-06857-7
– reference: GuoXChenLShenCHierarchical adaptive deep convolution neural network and its application to bearing fault diagnosisMeasurement2016934905022016Meas...93..490G10.1016/j.measurement.2016.07.054
– reference: LiuTLiGThe imbalanced data problem in the fault diagnosis of rolling bearingComput. Eng. Sci.2010325150153
– reference: CaoPZhangSTangJPreprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learningIeee Access20186262412625310.1109/ACCESS.2018.2837621
– reference: JiaFLeiYLinJZhouXLuNDeep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive dataMech. Syst. Signal Process.2016723033152016MSSP...72..303J10.1016/j.ymssp.2015.10.025
– reference: HeSLiuYChenJZiYWavelet transform based on inner product for fault diagnosis of rotating machineryStruct. Health Monit. Adv. Signal Process. Perspect.2017266591
– reference: BordoloiDJTiwariROptimum multi-fault classification of gears with integration of evolutionary and svm algorithmsMech. Mach. Theory201473496010.1016/j.mechmachtheory.2013.10.006
– reference: Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: A simple approach to mitigating kl vanishing. arXiv preprint arXiv:1903.10145 (2019)
– reference: HanTXieWPeiZSemi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbineInf. Sci.202364811949610.1016/j.ins.2023.119496
– reference: Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
– reference: Maaten, L., Hinton, G.: Visualizing data using t-sne. J Mach Learn Res 9(11), 2579–2605 (2008)
– reference: LeiYLinJHeZZuoMJA review on empirical mode decomposition in fault diagnosis of rotating machineryMech. Syst. Signal Process.2013351–21081262013MSSP...35..108L10.1016/j.ymssp.2012.09.015
– ident: 10221_CR34
  doi: 10.18653/v1/N19-1021
– volume: 69
  start-page: 2377
  issue: 5
  year: 2019
  ident: 10221_CR18
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2956332
– ident: 10221_CR10
  doi: 10.1109/INDIN45523.2021.9557362
– volume: 73
  start-page: 49
  year: 2014
  ident: 10221_CR13
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.10.006
– volume: 72
  start-page: 303
  year: 2016
  ident: 10221_CR22
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.10.025
– ident: 10221_CR36
– volume: 51
  start-page: 4217
  issue: 7
  year: 2019
  ident: 10221_CR26
  publication-title: IEEE Trans. Syst. Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2019.2932000
– volume: 106
  start-page: 707
  year: 2021
  ident: 10221_CR12
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06857-7
– volume: 108
  start-page: 2385
  issue: 3
  year: 2022
  ident: 10221_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07341-6
– ident: 10221_CR32
– ident: 10221_CR1
– volume: 80
  start-page: 392
  year: 2016
  ident: 10221_CR7
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.04.024
– volume: 185
  year: 2023
  ident: 10221_CR30
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109772
– volume: 32
  start-page: 150
  issue: 5
  year: 2010
  ident: 10221_CR27
  publication-title: Comput. Eng. Sci.
– ident: 10221_CR28
  doi: 10.1177/10775463231211403
– volume: 26
  start-page: 65
  year: 2017
  ident: 10221_CR9
  publication-title: Struct. Health Monit. Adv. Signal Process. Perspect.
– ident: 10221_CR39
  doi: 10.1109/PEDSTC.2019.8697244
– ident: 10221_CR31
  doi: 10.1016/j.engappai.2023.106316
– volume: 15
  start-page: 3340
  issue: 9
  year: 2022
  ident: 10221_CR17
  publication-title: Energies
  doi: 10.3390/en15093340
– volume: 89
  start-page: 171
  year: 2016
  ident: 10221_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 72
  start-page: 92
  year: 2016
  ident: 10221_CR23
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 19
  start-page: 2000
  issue: 9
  year: 2019
  ident: 10221_CR38
  publication-title: Sensors
  doi: 10.3390/s19092000
– ident: 10221_CR3
  doi: 10.1109/SOSE52739.2021.9497475
– ident: 10221_CR37
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 10221_CR25
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2016.2519325
– volume: 236
  start-page: 420
  issue: 3
  year: 2022
  ident: 10221_CR4
  publication-title: Proc. Inst. Mech. Eng. Part O: J. Risk Reliab.
  doi: 10.1177/09576509211047002
– ident: 10221_CR11
  doi: 10.1088/1742-6596/2252/1/012039
– volume: 93
  start-page: 490
  year: 2016
  ident: 10221_CR14
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 21
  start-page: 1518
  issue: 4
  year: 2022
  ident: 10221_CR5
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217211036025
– volume: 107
  start-page: 2485
  issue: 3
  year: 2022
  ident: 10221_CR20
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-07032-8
– ident: 10221_CR33
– volume: 377
  start-page: 331
  year: 2016
  ident: 10221_CR15
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 15
  start-page: 29
  year: 2015
  ident: 10221_CR2
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2015.03.001
– volume: 235
  start-page: 1680
  issue: 8
  year: 2021
  ident: 10221_CR6
  publication-title: Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
  doi: 10.1177/1350650120972591
– volume: 35
  start-page: 108
  issue: 1–2
  year: 2013
  ident: 10221_CR8
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.09.015
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10221_CR21
  publication-title: J. Mach. Learn. Res.
– ident: 10221_CR40
  doi: 10.23919/ChiCC.2019.8865682
– volume: 648
  start-page: 119496
  year: 2023
  ident: 10221_CR29
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119496
– volume: 6
  start-page: 26241
  year: 2018
  ident: 10221_CR16
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2018.2837621
– volume: 404
  start-page: 132306
  year: 2020
  ident: 10221_CR35
  publication-title: Physica D
  doi: 10.1016/j.physd.2019.132306
SSID ssj0003208
Score 2.456771
Snippet Condition monitoring and accurate fault diagnosis are always concerned for stable operating of mechanical equipment. The fault diagnosis based on supervised...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Accuracy
Applications of Nonlinear Dynamics and Chaos Theory
Classical Mechanics
Cluster analysis
Clustering
Coal mining
Condition monitoring
Control
Deep learning
Dynamical Systems
Fault diagnosis
Feature extraction
Machine learning
Original Paper
Physics
Physics and Astronomy
Regularization
Semi-supervised learning
Statistical Physics and Dynamical Systems
Vibration
Vibration analysis
Title A mechanical fault diagnosis model with semi-supervised variational autoencoder based on long short-term memory network
URI https://link.springer.com/article/10.1007/s11071-024-10221-w
https://www.proquest.com/docview/3129878301
Volume 113
WOSCitedRecordID wos001321720500011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xKBI9AF1adXlUPnArlnbtPJwjqkCcEIKC9hbFr7LSboLWWVb8-44Th4UKKsE5jhN57JlvxjPzARxxXaS-sxc1Q2VplHFLRZJJKodKMWs4y0RLNpFeXIjRKLsMRWGuy3bvriQbTb0sdkNPBV1fFlHvpQzpYhXW0dwJT9hwdX37pH85a3joBuhZ-CjEKJTKvD7HS3O0xJj_XIs21uZs-2P_uQNbAV2Sk3Y7fIEVU_ZgOyBNEs6x68HnZ20Ie7DRpIEqtwuLEzI1vhbYi47YYj6piW6T8caONKw5xEduiTPTMXXze69pHE79gC53CCuSYl5Xvj2mNjPijaQmVUkmVfmHuDsE-9QbA_zMtJo9krLNQv8KN2env3-d00DNQBWe2ZrGXNko1ZkVvoMd01ZIqzmiTYMubxSbLLGaqUTyGFWGNUxG0hQsESqNJUKmhH-DtbIqzXcgFpWOygaW6YxHsYqFsjJNB1IKa1XBiz4MOwnlKvQt9_QZk3zZcdmveI4rnjcrni_68PPpnfu2a8d_Rx90gs_DCXY5RyAkUoH6rw_HnaCXj9-ebe99w_dhk3lK4SaqcwBr9WxuDuGTeqjHbvaj2dl_ARhb9NU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8ISsQHkVPCKWgffIMmd-1-dB-JkWCEixE097bZfuEld7vkuseF_97pbpdDIybwvN3uptPO_GY68xuAj1wXqWf2omaoLI0ybqlIMknlUClmDWeZaJtNpKORGI-zb6EozHXZ7t2VZKOpV8Vu6Kmg68si6r2UIV2uwdMILZZnzP9-_vNW_3LW9KEboGfhoxDjUCrz7zn-NEcrjPnXtWhjbY63Hvefr-BlQJfkqN0O2_DElD3YCkiThHPsevDiDg1hDzaaNFDlXsPyiMyMrwX2oiO2WExrottkvIkjTdcc4iO3xJnZhLrFldc0Dqe-Rpc7hBVJsagrT4-pzZx4I6lJVZJpVV4S9wvBPvXGAD8zq-Y3pGyz0N_Aj-PPF59OaGjNQBWe2ZrGXNko1ZkVnsGOaSuk1RzRpkGXN4pNlljNVCJ5jCrDGiYjaQqWCJXGEiFTwndgvaxKswvEotJR2cAynfEoVrFQVqbpQEphrSp40YdhJ6FcBd5y3z5jmq8Yl_2K57jiebPi-bIPB7fvXLWsHf8dvdcJPg8n2OUcgZBIBeq_Phx2gl49vn-2tw8b_gGen1ycneanX0Zf38Em8-2FmwjPHqzX84XZh2fqup64-ftml_8GmdH3uQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RHlV7gBJaNS3QPfRWViS7fqyPqCUCgSKkFpSb5X1BpMSOsg5R_313bIcAAiTUs9djax8z883OfAPwnessRmYvarrK0iDhloookVR2lWLWcJaIutlE3O-LwSC5uFfFX2W7L64k65oGZGnKy8OJtofLwjePWjwMZgFFxNKl8zewFmAiPeL131d3upizqiddx6MMjEgMmrKZp2U8NE1Lf_PRFWlleXpb___PH2Cz8TrJUb1NtmHF5C3YajxQ0pxv14L39-gJW7BRpYcqtwPzIzI2WCOMS0psNhuVRNdJekNHqm46BCO6xJnxkLrZBDWQ86JvPRRvwo0km5UF0mZqMyVoPDUpcjIq8mvibjwIoGgk_GfGxfQvyevs9I9w2Tv-8_OENi0bqPJnuaQhVzaIdWIFMtsxbYW0mnsv1HgoHIQmiaxmKpI89KrEGiYDaTIWCRWH0rtSEf8Eq3mRm89ArFdGKulYphMehCoUyso47kgprFUZz9rQXaxWqho-c2yrMUqXTMw446mf8bSa8XTehh9370xqNo8XR-8uNkHanGyXcu8giVh4vdiGg8WiLx8_L-3L64Z_g7cXv3rp-Wn_7Cu8Y9h1uAr87MJqOZ2ZPVhXt-XQTferDf8POY8ArA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanical+fault+diagnosis+model+with+semi-supervised+variational+autoencoder+based+on+long+short-term+memory+network&rft.jtitle=Nonlinear+dynamics&rft.au=Qu%2C+Yuanyuan&rft.au=Li%2C+Tao&rft.au=Fu%2C+Shichen&rft.au=Wang%2C+Zhisheng&rft.date=2025-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=1&rft.spage=459&rft.epage=478&rft_id=info:doi/10.1007%2Fs11071-024-10221-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_024_10221_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon