Application of expectation–maximization algorithm to estimate random walk process noise for GNSS tropospheric delay
GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather con...
Uloženo v:
| Vydáno v: | GPS solutions Ročník 28; číslo 4; s. 204 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1080-5370, 1521-1886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | GNSS (Global Navigation Satellite Systems) tropospheric delay, specifically zenith wet delay (ZWD), shows clear spatial–temporal variations and is usually modeled as RWPN (random walk process noise). However, because RWPN does not take the geographical position of GNSS stations and local weather conditions into account for precise point positioning (PPP), it may lead to biased ZWD estimates. To address the scientific problem and improve ZWD estimates, we adopt the Expectation–Maximization algorithm (EM algorithm) to validate the feasibility of estimating RWPN using only GNSS measurements. Numerical experiments reveal that using only GNSS observations is capable of determining the RWPN parameter, although it could take several days to reach a stable solution if the initial guess deviates far away from the truth. It is also shown that estimating RWPN can almost always effectively improve ZWD estimates by several millimeters in contrast with traditional PPP results. If the ambiguities are fixed to their integer values correctly, the accuracy of RWPN estimates for ZWD can be greatly reduced by
2
mm
/
hour
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1080-5370 1521-1886 |
| DOI: | 10.1007/s10291-024-01714-7 |