A New Ontology Convolutional Neural Network for Extorting Essential Elements in Video Mining

Nowadays, people use video compression for recreating video without affecting the quality with reduced size. In recent years, the number of video files has increased in social media, smartphones and video recording tools. It is not easy to search and retrieve specific content-based videos. With the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of signal processing systems Ročník 95; číslo 6; s. 735 - 749
Hlavní autori: Ganesh, R. Karthik, Kanthavel, R., Dhaya, R., Robinson, Y. Harold, Julie, E. Golden, Kumar, Raghvendra, Duong, Phet, Thong, Pham Huy, Son, Le Hoang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2023
Springer Nature B.V
Predmet:
ISSN:1939-8018, 1939-8115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, people use video compression for recreating video without affecting the quality with reduced size. In recent years, the number of video files has increased in social media, smartphones and video recording tools. It is not easy to search and retrieve specific content-based videos. With the use of advanced techniques, the video clips were retrieved based on an object, themes, people and other entities. Video communication tolerates a lot of problems despite using a restricted volume of cutting-edge methodology to accumulate huge-sized videos. For this motivation, the video compression technique is used. Extracting semantic data from a large number of video-based applications is necessary. These advanced techniques were mainly used in digital marketing, social marketing, and video editing. The semantic data analysis is aimed to extract the video by expressing it in text or speech. It is used to understand the content of the video and extract it in the form of footage or video clips through a query. The existing methodologies are insufficient and high amount of optimization cost. The speedy expansion in the available quantity of video information has increased an essential constraint to lengthen. Intellectual methodologies are used to construct and extort the semantic substance. In this paper, Convolutional Neural Network with VGGNet is developed for extorting essential elements in videos and for spatial modification within the frames. Rule-related information employs temporal associations to extort the characterizations. The dynamic movements are extorted by the Optical stream algorithm and it finds the temporal positions. The new algorithm is experimentally validated.
AbstractList Nowadays, people use video compression for recreating video without affecting the quality with reduced size. In recent years, the number of video files has increased in social media, smartphones and video recording tools. It is not easy to search and retrieve specific content-based videos. With the use of advanced techniques, the video clips were retrieved based on an object, themes, people and other entities. Video communication tolerates a lot of problems despite using a restricted volume of cutting-edge methodology to accumulate huge-sized videos. For this motivation, the video compression technique is used. Extracting semantic data from a large number of video-based applications is necessary. These advanced techniques were mainly used in digital marketing, social marketing, and video editing. The semantic data analysis is aimed to extract the video by expressing it in text or speech. It is used to understand the content of the video and extract it in the form of footage or video clips through a query. The existing methodologies are insufficient and high amount of optimization cost. The speedy expansion in the available quantity of video information has increased an essential constraint to lengthen. Intellectual methodologies are used to construct and extort the semantic substance. In this paper, Convolutional Neural Network with VGGNet is developed for extorting essential elements in videos and for spatial modification within the frames. Rule-related information employs temporal associations to extort the characterizations. The dynamic movements are extorted by the Optical stream algorithm and it finds the temporal positions. The new algorithm is experimentally validated.
Author Ganesh, R. Karthik
Thong, Pham Huy
Kumar, Raghvendra
Kanthavel, R.
Robinson, Y. Harold
Julie, E. Golden
Son, Le Hoang
Dhaya, R.
Duong, Phet
Author_xml – sequence: 1
  givenname: R. Karthik
  surname: Ganesh
  fullname: Ganesh, R. Karthik
  organization: Department of Computer Science and Engineering, SCAD College of Engineering and Technology
– sequence: 2
  givenname: R.
  surname: Kanthavel
  fullname: Kanthavel, R.
  organization: School of Computing and Digital Initiative, HINDUSTAN Institute of Science and Technology
– sequence: 3
  givenname: R.
  surname: Dhaya
  fullname: Dhaya, R.
  organization: Department of Information Technology, KCG College of Technology
– sequence: 4
  givenname: Y. Harold
  surname: Robinson
  fullname: Robinson, Y. Harold
  organization: Department of Computer Science and Engineering, Francis Xavier Engineering College
– sequence: 5
  givenname: E. Golden
  surname: Julie
  fullname: Julie, E. Golden
  organization: Department of Computer Science and Engineering, Anna University Regional Campus
– sequence: 6
  givenname: Raghvendra
  surname: Kumar
  fullname: Kumar, Raghvendra
  organization: Department of Computer Science and Engineering, GIET University
– sequence: 7
  givenname: Phet
  surname: Duong
  fullname: Duong, Phet
  email: dt.phet@hutech.edu.vn
  organization: Faculty of Information Technology, HUTECH University
– sequence: 8
  givenname: Pham Huy
  surname: Thong
  fullname: Thong, Pham Huy
  organization: VNU Information Technology Institute, Vietnam National University
– sequence: 9
  givenname: Le Hoang
  surname: Son
  fullname: Son, Le Hoang
  email: sonlh@vnu.edu.vn
  organization: VNU Information Technology Institute, Vietnam National University
BookMark eNp9kM1LwzAYxoNMcJv-A54CnqtJ2qTtcYz6AdNd1JMQ0jYdmV0yk9S6_95sVQQPO70vPM_v_XgmYKSNlgBcYnSNEUpvHMaE0QiROEI4Y0nUn4AxzuM8yjCmo98-aGdg4twaIYZSisfgbQafZA-X2pvWrHZwbvSnaTuvjBZtkDp7KL439h02xsLiyxvrlV7BwjmpvQp60cpNaB1UGr6qWhr4qHSwnIPTRrROXvzUKXi5LZ7n99Fiefcwny2iKsa5jyipy4w1VU3rCuE0PCEJYY1IaZxVNWGplGVSJyLJGyYoo1XNqrypZVYyUWZ5GU_B1TB3a81HJ53na9PZ8IDjMaEUo5SlWXCRwVVZ45yVDd9atRF2xzHi-xT5kCIPB_BDirwPUPYPqpQX-3i8Fao9jsYD6sIevZL276oj1DdMFIrd
CitedBy_id crossref_primary_10_2478_amns_2024_2511
crossref_primary_10_1108_ECAM_03_2024_0328
Cites_doi 10.1109/93.556537
10.1016/j.sigpro.2017.02.013
10.1109/TIM.2014.2299371
10.1109/JBHI.2015.2437396
10.1016/S0079-6123(06)55002-2
10.1016/j.image.2015.04.014
10.1007/s11263-011-0512-5
10.1016/j.compeleceng.2013.10.005
10.1080/09540091.2021.2006146
10.1109/TIFS.2010.2080675
10.1109/TIP.2014.2336549
10.1109/TPAMI.2009.77
10.1016/j.compbiomed.2017.08.022
10.1109/EIC.2015.7230722
10.1109/ICME.2009.5202577
10.1109/MNET.2018.1700394
10.1007/s11265-020-01614-2
10.1007/s00138-018-0942-y
10.1016/j.inffus.2021.06.003
10.5121/ijsc.2011.2407
10.1109/CVPR.2015.7298961
10.5220/0005206402010209
10.1137/080738970
10.1109/TKDE.2011.189
10.1109/MobileCloud.2017.9
10.1007/s00530-021-00881-8
10.1109/IST.2012.6295575
10.1109/ICCV.2011.6126542
10.1109/ICCV.2013.273
10.1109/ICCV.1999.790410
10.1109/CVPR.2005.38
10.1007/s11263-012-0515-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11265-023-01864-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database (subscription)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-8115
EndPage 749
ExternalDocumentID 10_1007_s11265_023_01864_w
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P9P
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8P
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABQSL
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-52db86fcd5dc017023e226fa7538cd267eeb4d4a49f6a565cd6c9fde8b6ab89b3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000994640000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-8018
IngestDate Sun Nov 30 04:08:32 EST 2025
Tue Nov 18 21:05:08 EST 2025
Sat Nov 29 01:43:37 EST 2025
Fri Feb 21 02:42:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Temporal Position
Video compression; Convolutional Neural Network
Ontology Model
Semantic contents
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-52db86fcd5dc017023e226fa7538cd267eeb4d4a49f6a565cd6c9fde8b6ab89b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255107678
PQPubID 2044217
PageCount 15
ParticipantIDs proquest_journals_3255107678
crossref_primary_10_1007_s11265_023_01864_w
crossref_citationtrail_10_1007_s11265_023_01864_w
springer_journals_10_1007_s11265_023_01864_w
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationSubtitle for Signal, Image, and Video Technology (formerly the Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology)
PublicationTitle Journal of signal processing systems
PublicationTitleAbbrev J Sign Process Syst
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tsai, Flagg, Nakazawa, Rehg (CR27) 2012; 100
Dubey, Singh, Singh (CR9) 2016; 20
Tola, Lepetit, Fua (CR23) 2010; 32
Tiwari, Kanhangad, Pachori (CR10) 2017; 53
Acharya, Oh, Hagiwara, Tan, Adam, Gertych, Tan (CR6) 2017; 89
CR17
CR39
Oliva, Torralba (CR15) 2006; 155
CR16
CR38
CR37
CR36
CR13
CR35
CR34
CR33
CR32
CR31
Bay, Tuytelaars, Van Gool (CR14) 2006
Wold, Blum, Keislar, Wheaten (CR12) 1996; 3
Fadaei, Amirfattahi, Ahmadzadeh (CR11) 2017; 137
CR4
CR3
CR5
CR8
Li, Liu, Zhang, Meur, Shen (CR19) 2015; 38
CR7
CR29
CR28
Fallahpour, Shirmohammadi, Semsarzadeh, Zhao (CR2) 2014; 63
CR26
CR25
CR24
Ejaz, Mehmood, Baik (CR18) 2014; 40
CR22
CR21
CR40
Wei, Liu, Zhu, Zhang, Hsieh (CR30) 2022; 34
Huang, Yang, Hsu (CR1) 2010; 5
Fang, Wang, Lin, Fang (CR20) 2014; 23
HY Huang (1864_CR1) 2010; 5
1864_CR40
M Fallahpour (1864_CR2) 2014; 63
A Oliva (1864_CR15) 2006; 155
1864_CR22
1864_CR21
1864_CR24
1864_CR26
1864_CR25
1864_CR28
SR Dubey (1864_CR9) 2016; 20
1864_CR29
S Fadaei (1864_CR11) 2017; 137
E Wold (1864_CR12) 1996; 3
Y Fang (1864_CR20) 2014; 23
D Tsai (1864_CR27) 2012; 100
E Tola (1864_CR23) 2010; 32
Z Wei (1864_CR30) 2022; 34
1864_CR31
N Ejaz (1864_CR18) 2014; 40
1864_CR33
1864_CR5
1864_CR32
1864_CR8
1864_CR13
1864_CR35
1864_CR7
1864_CR34
1864_CR37
1864_CR36
1864_CR4
1864_CR17
1864_CR39
1864_CR3
UR Acharya (1864_CR6) 2017; 89
1864_CR16
J Li (1864_CR19) 2015; 38
1864_CR38
H Bay (1864_CR14) 2006
AK Tiwari (1864_CR10) 2017; 53
References_xml – ident: CR22
– volume: 3
  start-page: 27
  issue: 3
  year: 1996
  end-page: 36
  ident: CR12
  article-title: Content-based classification, search, and retrieval of audio
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/93.556537
– ident: CR4
– ident: CR39
– ident: CR16
– ident: CR37
– ident: CR33
– volume: 137
  start-page: 274
  year: 2017
  end-page: 286
  ident: CR11
  article-title: Local derivative radial patterns: A new texture descriptor for content-based image retrieval
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2017.02.013
– ident: CR35
– ident: CR29
– volume: 63
  start-page: 1057
  issue: 5
  year: 2014
  end-page: 1072
  ident: CR2
  article-title: Tampering detection in compressed digital video using watermarking
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2014.2299371
– ident: CR8
– volume: 20
  start-page: 1139
  issue: 4
  year: 2016
  end-page: 1147
  ident: CR9
  article-title: Local Bit-Plane Decoded Pattern: A Novel Feature Descriptor for Biomedical Image Retrieval
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2437396
– ident: CR40
– ident: CR25
– volume: 155
  start-page: 23
  year: 2006
  end-page: 36
  ident: CR15
  article-title: Building the gist of a scene: The role of global image features in recognition
  publication-title: Progress in Brain Research
  doi: 10.1016/S0079-6123(06)55002-2
– ident: CR21
– volume: 38
  start-page: 100
  year: 2015
  end-page: 114
  ident: CR19
  article-title: Spatiotemporal saliency detection based on superpixel-level trajectory
  publication-title: Signal Processing Image Commununication
  doi: 10.1016/j.image.2015.04.014
– volume: 100
  start-page: 190
  year: 2012
  end-page: 202
  ident: CR27
  article-title: Motion coherent tracking using multi-label MRF optimization
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-011-0512-5
– ident: CR3
– ident: CR38
– volume: 40
  start-page: 993
  year: 2014
  end-page: 1005
  ident: CR18
  article-title: Feature aggregation based visual attention model for video summarization
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.10.005
– volume: 53
  start-page: 73
  year: 2017
  end-page: 85
  ident: CR10
  article-title: Histogram refinement for texture descriptor based image retrieval
  publication-title: Signal Process: Image Communication
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 34
  start-page: 409
  issue: 1
  year: 2022
  end-page: 428
  ident: CR30
  article-title: Sentiment classification of Chinese Weibo based on extended sentiment dictionary and organisational structure of comments
  publication-title: Connection Science
  doi: 10.1080/09540091.2021.2006146
– volume: 5
  start-page: 625
  issue: 4
  year: 2010
  end-page: 637
  ident: CR1
  article-title: A video watermarking technique based on pseudo-3-D DCT and quantization index modulation
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2010.2080675
– volume: 23
  start-page: 3910
  year: 2014
  end-page: 3921
  ident: CR20
  article-title: Video saliency incorporating spatiotemporal cues and uncertainty weighting
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2336549
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR5
– start-page: 404
  year: 2006
  end-page: 417
  ident: CR14
  publication-title: Surf: Speeded-up robust features
– ident: CR7
– volume: 32
  start-page: 815
  issue: 5
  year: 2010
  end-page: 830
  ident: CR23
  article-title: Daisy: An efficient dense descriptor applied to wide-baseline stereo
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.77
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 89
  start-page: 389
  year: 2017
  ident: CR6
  article-title: A deep convolutional neural network model to classify heartbeats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.08.022
– volume: 38
  start-page: 100
  year: 2015
  ident: 1864_CR19
  publication-title: Signal Processing Image Commununication
  doi: 10.1016/j.image.2015.04.014
– volume: 89
  start-page: 389
  year: 2017
  ident: 1864_CR6
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: 1864_CR28
  doi: 10.1109/EIC.2015.7230722
– volume: 5
  start-page: 625
  issue: 4
  year: 2010
  ident: 1864_CR1
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2010.2080675
– ident: 1864_CR25
  doi: 10.1109/ICME.2009.5202577
– ident: 1864_CR5
– ident: 1864_CR7
  doi: 10.1109/MNET.2018.1700394
– volume: 155
  start-page: 23
  year: 2006
  ident: 1864_CR15
  publication-title: Progress in Brain Research
  doi: 10.1016/S0079-6123(06)55002-2
– ident: 1864_CR40
  doi: 10.1007/s11265-020-01614-2
– volume: 34
  start-page: 409
  issue: 1
  year: 2022
  ident: 1864_CR30
  publication-title: Connection Science
  doi: 10.1080/09540091.2021.2006146
– volume: 100
  start-page: 190
  year: 2012
  ident: 1864_CR27
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-011-0512-5
– ident: 1864_CR31
  doi: 10.1007/s00138-018-0942-y
– ident: 1864_CR17
– ident: 1864_CR34
– ident: 1864_CR39
  doi: 10.1016/j.inffus.2021.06.003
– volume: 40
  start-page: 993
  year: 2014
  ident: 1864_CR18
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.10.005
– volume: 32
  start-page: 815
  issue: 5
  year: 2010
  ident: 1864_CR23
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.77
– ident: 1864_CR38
– ident: 1864_CR29
  doi: 10.5121/ijsc.2011.2407
– start-page: 404
  volume-title: Surf: Speeded-up robust features
  year: 2006
  ident: 1864_CR14
– ident: 1864_CR21
  doi: 10.1109/CVPR.2015.7298961
– ident: 1864_CR22
  doi: 10.5220/0005206402010209
– volume: 3
  start-page: 27
  issue: 3
  year: 1996
  ident: 1864_CR12
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/93.556537
– ident: 1864_CR37
  doi: 10.1137/080738970
– ident: 1864_CR3
  doi: 10.1109/TKDE.2011.189
– volume: 20
  start-page: 1139
  issue: 4
  year: 2016
  ident: 1864_CR9
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2437396
– ident: 1864_CR8
  doi: 10.1109/MobileCloud.2017.9
– ident: 1864_CR33
  doi: 10.1007/s00530-021-00881-8
– ident: 1864_CR4
  doi: 10.1109/IST.2012.6295575
– ident: 1864_CR24
  doi: 10.1109/ICCV.2011.6126542
– ident: 1864_CR26
  doi: 10.1109/ICCV.2013.273
– ident: 1864_CR13
  doi: 10.1109/ICCV.1999.790410
– ident: 1864_CR35
  doi: 10.1109/CVPR.2005.38
– ident: 1864_CR32
  doi: 10.1007/s11265-020-01614-2
– volume: 53
  start-page: 73
  year: 2017
  ident: 1864_CR10
  publication-title: Signal Process: Image Communication
– ident: 1864_CR36
  doi: 10.1007/s11263-012-0515-x
– volume: 137
  start-page: 274
  year: 2017
  ident: 1864_CR11
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2017.02.013
– ident: 1864_CR16
– volume: 23
  start-page: 3910
  year: 2014
  ident: 1864_CR20
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2336549
– volume: 63
  start-page: 1057
  issue: 5
  year: 2014
  ident: 1864_CR2
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2014.2299371
SSID ssj0060751
Score 2.3441873
Snippet Nowadays, people use video compression for recreating video without affecting the quality with reduced size. In recent years, the number of video files has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Algorithms
Artificial neural networks
Circuits and Systems
Classification
Clips
Computer Imaging
Data analysis
Electrical Engineering
Engineering
Image Processing and Computer Vision
Marketing
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Semantics
Signal,Image and Speech Processing
Video communication
Video compression
Video recorders
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6edCD3-J0Sg7etLh-LE1OMkeHF-cQlR2E0nwUBtLOdW763_uSpk4FdxEKPbQJpb-X95G8934InTEmXSqSwKE-JU4QBtRJwhQAkWBsud9KhZSGbCLs9-lwyAZ2w62waZWVTjSKWuZC75Ff-uD7QqgCuvVq_Opo1ih9umopNFZRXXcqAzmvX0f9wX2liwkYRLc8V2ZaF1NbNlMWz7ke0dXJOp-IksCZ_zRNC3_z1xGpsTy9rf9-8zbatD4n7pRCsoNWVLaLNr51ItxDzx0M6g7fZYbO9gN382xmhRJG6g4e5mZSxjH4uTh6h2Bdp0zjqND1SyDGOCpT0Qs8yvDTSKoc3xr6iX302IseujeOJV5wBKzIKQSnklMCMLWl0P11PF-Bl5YmENpQIT0SKsUDGSQBS0kCHqGQRLBUKspJwinj_gGqZXmmDhFuhbxFPMUUXBCLcRb6pJUknPluO6WhbCC3-uexsF3JNTnGS7zop6xxiuEjYoNTPG-g868x47Inx9K3mxU4sV2fRbxApoEuKngXj_-e7Wj5bMdo3TMSpbdpmqg2nbypE7QmZtNRMTm10vkJjJDrmA
  priority: 102
  providerName: ProQuest
Title A New Ontology Convolutional Neural Network for Extorting Essential Elements in Video Mining
URI https://link.springer.com/article/10.1007/s11265-023-01864-w
https://www.proquest.com/docview/3255107678
Volume 95
WOSCitedRecordID wos000994640000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1939-8115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060751
  issn: 1939-8018
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5c1wd98BbXo-TBNy1sj02TR5WKIK6Lx7KIUJqjsCBd2a7Xv3eSba2KCgqlfWgSQmYyRzLzDcAe58pjMg1dFjDqhlHI3DTKkCAKla0I2plUyhabiLpdNhjwXpkUVlTR7tWVpJXUdbKb51OTTWzifxgN3ecGNDsGbcb46Ff9Sv5SVILe9C6ZG_nLylSZ78f4rI5qG_PLtajVNidL_5vnMiyW1iU5nLLDCszofBUWPmAOrsHdIUHBRi5yW7j2lRyP8qeS_bCnweqwHxscTtCiJfELuuUmOJrEhclUQoYl8TTovCDDnPSHSo_IuS00sQ43J_H18albllhwJe69CbqhSjCKBOkoaZB0_ECjPZal6MQwqXwaaS1CFaYhz2iKtp9UVPJMaSZoKhgXwQbM5qNcbwJpR6JNfc01Puh1CSQMbaep4IHXyVikWuBVK53IEn_clMG4T2rkZLNyCU4isSuXPLdg_73PwxR949fWOxUBk3InFkmAPhO6uKiTW3BQEaz-_fNoW39rvg3zvqW5OaDZgdnJ-FHvwpx8mgyLsQPNo7jbu3SgcRa5jgkwvcJ3r3PrWN59A1AL5Wg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gXpwF8c1Bz1pcbqYJgcR0RFldPSg4kGozVIZkFbt6Oif8jf6kraOCnrzIBR6aBOyfG9L3gKwyrlymYwDh_mMOkEYMCcOE9wQhcJW-PVEKmWLTYStFru64md98FbFwhi3yoonWkatMmnOyDd91H3RVEHeunP_4JiqUeZ2tSqhUcCiqV-7aLLl20f7uL9rnnfQON87dMqqAo5EuHXQ8lKCURzDlpImeYzna1RBkhj1diaVR0OtRaCCOOAJjVHdkYpKnijNBI0F48LHfvthMMC5GYpqhk7F-SmKX7e4xeaG87MySKcI1XM9amKhjfcSo4HT_SoIe9rttwtZK-cOxv_bCk3AWKlRk92CBCahT6dTMPopz-I0XO8SZObkNLXFel_JXpY-lySHLU1-EvuyDvEEtXjSeOlkJr3CLWnkJjoLiZQ0Ckf7nLRTctlWOiMntrjGDFz8yfRmYSDNUj0HpB6KOvU01_igpSl46NN6HAvuu1sJC1UN3GqPI1nmXDelP-6iXrZog4sIBxFZXETdGqx_tLkvMo78-vdiBYao5D551ENCDTYqOPU-_9zb_O-9rcDw4fnJcXR81GouwIhn0WwOpBZhoPP4pJdgSD532vnjsqULAjd_DbN37nxJug
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdGDb3F95uBNi9uHaXJc1l0UdRVfeBBK8ygsSHexq6v_3knaWhUVRCj00CSEmUlmpjPzDcAO58plMg4c5jPqBGHAnDhMkCEKla3wG4lUyjabCLtddnfHLz5U8dts9zIkmdc0GJSmdLg_UMl-VfjmetRUFptcIEYDZzQOEwF6Miap6_LqtryLKSpEN48rc3MXs6Js5vs1Pqumyt78EiK1mqcz9_89z8NsYXWSZi4mCzCm00WY-YBFuAT3TYIXHjlPbUPbV9Lqp8-FWOJMg-FhXzZpnKClS9ov6K6bpGnSzkwFEwoyaefJ6BnppeS2p3SfnNkGFMtw02lft46covWCI_FMDtE9VYJRZNSBkgZhx_M12mlJjM4Nk8qjodYiUEEc8ITGaBNKRSVPlGaCxoJx4a9ALe2nehVIIxQN6mmu8UFvTPDQp404Ftx3DxIWqjq4JdUjWeCSm_YYD1GFqGwoF-EmIku5aFSH3fc5gxyV49fRGyUzo-KEZpGPvhQKDOrqOuyVzKs-_7za2t-Gb8PUxWEnOj3unqzDtGfZb_7hbEBt-PikN2FSPg972eOWFdw3fePszg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Ontology+Convolutional+Neural+Network+for+Extorting+Essential+Elements+in+Video+Mining&rft.jtitle=Journal+of+signal+processing+systems&rft.au=Ganesh%2C+R.+Karthik&rft.au=Kanthavel%2C+R.&rft.au=Dhaya%2C+R.&rft.au=Robinson%2C+Y.+Harold&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=1939-8018&rft.eissn=1939-8115&rft.volume=95&rft.issue=6&rft.spage=735&rft.epage=749&rft_id=info:doi/10.1007%2Fs11265-023-01864-w&rft.externalDocID=10_1007_s11265_023_01864_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-8018&client=summon