Robustness comparison between the capsule network and the convolutional network for facial expression recognition
As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expres...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 4; pp. 2269 - 2278 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.04.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expression recognition has also made considerable progress. Because facial expressions vary in real environments, such as rotation, shifting, brightness changes, partial occlusion and noise with different intensities, research on the robustness of facial expression recognition is very important. A capsule network consists of capsules, which are groups of neurons, and these capsules can learn posture information through the dynamic routing mechanism. The length of a capsule represents the existence probability, and each neuron in a capsule represents posture information (e.g., position, size, orientation or a combination of these properties). Therefore, in this study, the robustness of the emerging capsule network (CapsNet) is comprehensively compares with that of the traditional convolutional neural network (CNN) and fully convolutional network (FCN) in facial expression recognition tasks. The simulation results based on the Cohn-Kanade (CK+) databases show that the capsule network is more robust than the other networks. Therefore, the capsule network has significant advantages over the other networks in facial expression recognition task in complex real-world environments. |
|---|---|
| AbstractList | As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expression recognition has also made considerable progress. Because facial expressions vary in real environments, such as rotation, shifting, brightness changes, partial occlusion and noise with different intensities, research on the robustness of facial expression recognition is very important. A capsule network consists of capsules, which are groups of neurons, and these capsules can learn posture information through the dynamic routing mechanism. The length of a capsule represents the existence probability, and each neuron in a capsule represents posture information (e.g., position, size, orientation or a combination of these properties). Therefore, in this study, the robustness of the emerging capsule network (CapsNet) is comprehensively compares with that of the traditional convolutional neural network (CNN) and fully convolutional network (FCN) in facial expression recognition tasks. The simulation results based on the Cohn-Kanade (CK+) databases show that the capsule network is more robust than the other networks. Therefore, the capsule network has significant advantages over the other networks in facial expression recognition task in complex real-world environments. |
| Author | Yuan, Guangjie Zhao, Xingcong Liu, Ying Li, Donghui Liu, Guangyuan |
| Author_xml | – sequence: 1 givenname: Donghui surname: Li fullname: Li, Donghui organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University – sequence: 2 givenname: Xingcong surname: Zhao fullname: Zhao, Xingcong organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University – sequence: 3 givenname: Guangjie surname: Yuan fullname: Yuan, Guangjie organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: School of Mathematics and Statistics, Southwest University – sequence: 5 givenname: Guangyuan surname: Liu fullname: Liu, Guangyuan email: liugy@swu.edu.cn organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University |
| BookMark | eNp9kF9LwzAUxYNMcE6_gE8Bn6s3adM2jzL8BwNBFHwLaZrMzi7pklbntzezouDDni6ce36HwzlGE-usRuiMwAUBKC4DgazkCVBIgJScJdsDNCWsSJMi48UETYHTLMlz_nKEjkNYAUCaApmizaOrhtBbHQJWbt1J3wRncaX7D60t7l81VrILQ6uxjZrzb1jaetSdfXft0DfOyvb3a5zHRqomSnrb-Zgb_9hr5Za22XlP0KGRbdCnP3eGnm-un-Z3yeLh9n5-tUhUSnifMCpVXpSZrA2RKWiW55IoXhWcVpWWkDLFGDWG1nVlMlNyYJTrqgBWGsXApDN0PuZ23m0GHXqxcoOPVYOgDDgHTgoWXeXoUt6F4LURqunlrmfvZdMKAmI3sBgHFnFg8T2w2EaU_kM736yl_9wPpSMUotkutf9rtYf6Au-DlHw |
| CitedBy_id | crossref_primary_10_1007_s11042_024_19012_2 crossref_primary_10_1016_j_asoc_2021_107930 crossref_primary_10_1117_1_JEI_32_2_023038 crossref_primary_10_1117_1_JMI_11_1_014003 crossref_primary_10_1007_s11063_023_11155_x crossref_primary_10_1007_s10489_022_04041_x crossref_primary_10_1109_ACCESS_2021_3108029 crossref_primary_10_1007_s11042_023_14753_y crossref_primary_10_1038_s41598_024_68772_2 crossref_primary_10_1016_j_techfore_2021_121289 crossref_primary_10_1155_2021_9326695 crossref_primary_10_1007_s10489_022_04349_8 |
| Cites_doi | 10.1007/s10489-018-1388-7 10.1109/TIP.2012.2235848 10.1007/s11263-017-1055-1 10.1007/s10489-019-01491-8 10.21629/JSEE.2017.04.18 10.1007/s10489-017-1121-y 10.1016/j.patcog.2015.04.025 10.1007/s12559-019-09654-y 10.1016/j.patcog.2011.05.006 10.1109/TIP.2018.2886767 10.1016/j.patrec.2019.12.013 10.1016/j.eswa.2012.07.074 10.1016/j.jpdc.2019.04.017 10.1109/CVPR.2018.00231 10.1109/CVPR.2017.243 10.1109/CVPRW.2010.5543262 10.1109/FG.2015.7163082 10.1109/CVPR.2016.90 10.1109/WACV.2016.7477450 10.1109/ChiCC.2016.7553957 10.1145/3175603.3175615 10.1109/CVPR.2015.7298965 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-020-01895-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 2278 |
| ExternalDocumentID | 10_1007_s10489_020_01895_x |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 61472330 and No. 61872301 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-52ac6784adf1a30e566a1c9b792bbea035c552ff2ddbf4f890529eb7058fc50f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000584393800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:50:39 EST 2025 Sat Nov 29 05:33:21 EST 2025 Tue Nov 18 22:15:22 EST 2025 Fri Feb 21 02:48:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Facial expression recognition Robustness Capsule network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-52ac6784adf1a30e566a1c9b792bbea035c552ff2ddbf4f890529eb7058fc50f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2509909175 |
| PQPubID | 326365 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2509909175 crossref_citationtrail_10_1007_s10489_020_01895_x crossref_primary_10_1007_s10489_020_01895_x springer_journals_10_1007_s10489_020_01895_x |
| PublicationCentury | 2000 |
| PublicationDate | 20210400 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Chang, Li, Wen, Hu, Ma (CR8) 2019; 49 Sun, Lv (CR24) 2019; 11 Fan, Tjahjadi (CR18) 2015; 48 Ramirez Rivera, Rojas Castillo, Oksam Chae (CR19) 2013; 22 CR17 Simard, Steinkraus, Platt (CR27) 2003 CR16 CR13 CR11 Zhang, Wang, Chen, Kämäräinen (CR6) 2017; 28 CR10 Gu, Xiang, Venkatesh, Huang, Lin (CR21) 2012; 45 CR31 CR30 Zhang, Luo, Chen, Tang (CR25) 2018; 126 Wang, Zhang, Wang (CR15) 2019; 49 CR2 CR3 CR5 CR29 CR28 Chen, Lv, Xu, Can (CR4) 2019; 131 CR26 Zavaschi, Britto, Oliveira, Koerich (CR20) 2013; 40 CR23 CR22 Ekman, Friesen (CR1) 1978; 47 Siddiqi (CR12) 2018; 48 Zhang, Huang, Tian (CR7) 2020; 131 Li, Zeng, Shan, Chen (CR14) 2019; 28 Cheng, Jiang, Jia (CR9) 2014 1895_CR22 Y Cheng (1895_CR9) 2014 H Zhang (1895_CR7) 2020; 131 1895_CR23 THH Zavaschi (1895_CR20) 2013; 40 1895_CR26 Z Zhang (1895_CR25) 2018; 126 PY Simard (1895_CR27) 2003 MH Siddiqi (1895_CR12) 2018; 48 W Gu (1895_CR21) 2012; 45 J Chen (1895_CR4) 2019; 131 1895_CR28 P Ekman (1895_CR1) 1978; 47 1895_CR29 X Sun (1895_CR24) 2019; 11 Z Wang (1895_CR15) 2019; 49 T Chang (1895_CR8) 2019; 49 1895_CR31 1895_CR30 1895_CR11 1895_CR10 1895_CR13 A Ramirez Rivera (1895_CR19) 2013; 22 Y Li (1895_CR14) 2019; 28 X Fan (1895_CR18) 2015; 48 1895_CR2 1895_CR17 1895_CR3 1895_CR16 1895_CR5 C Zhang (1895_CR6) 2017; 28 |
| References_xml | – volume: 49 start-page: 2659 year: 2019 end-page: 2671 ident: CR15 article-title: Sparse modified marginal fisher analysis for facial expression recognition publication-title: Appl Intell doi: 10.1007/s10489-018-1388-7 – ident: CR22 – volume: 22 start-page: 1740 issue: 5 year: 2013 end-page: 1752 ident: CR19 article-title: Local directional number pattern for face analysis: face and expression recognition publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2235848 – volume: 126 start-page: 550 year: 2018 end-page: 569 ident: CR25 article-title: From facial expression recognition to interpersonal relation prediction publication-title: Int J Comput Vis doi: 10.1007/s11263-017-1055-1 – start-page: 958 year: 2003 end-page: 963 ident: CR27 publication-title: Best practices for convolutional neural networks applied to visual document analysis – ident: CR2 – volume: 49 start-page: 4319 year: 2019 end-page: 4334 ident: CR8 article-title: Facial expression recognition sensing the complexity of testing samples publication-title: Appl Intell doi: 10.1007/s10489-019-01491-8 – ident: CR16 – ident: CR30 – start-page: 211 year: 2014 end-page: 214 ident: CR9 publication-title: A Deep Structure for Facial Expression Recognition under Partial Occlusion – ident: CR10 – volume: 28 start-page: 784 issue: 04 year: 2017 end-page: 792 ident: CR6 article-title: Identity-aware convolutional neural networks for facial expression recognition publication-title: J Syst Eng Electron doi: 10.21629/JSEE.2017.04.18 – volume: 47 start-page: 126 issue: 2 year: 1978 end-page: 138 ident: CR1 article-title: Facial Action Coding System (FACS): A technique for the measurement of facial action [J] publication-title: rivista di psichiatria – volume: 48 start-page: 2912 year: 2018 end-page: 2929 ident: CR12 article-title: Accurate and robust facial expression recognition system using real-time YouTube-based datasets publication-title: Appl Intell doi: 10.1007/s10489-017-1121-y – volume: 48 start-page: 3407 issue: 11 year: 2015 end-page: 3416 ident: CR18 article-title: A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.04.025 – volume: 11 start-page: 587 year: 2019 end-page: 597 ident: CR24 article-title: Facial expression recognition based on a hybrid model combining deep and shallow features publication-title: Cogn Comput doi: 10.1007/s12559-019-09654-y – ident: CR29 – volume: 45 start-page: 80 issue: 1 year: 2012 end-page: 91 ident: CR21 article-title: Facial expression recognition using radial encoding of local Gabor features and classifier synthesis publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.05.006 – volume: 28 start-page: 2439 issue: 5 year: 2019 end-page: 2450 ident: CR14 article-title: Occlusion aware facial expression recognition using CNN with attention mechanism publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2886767 – ident: CR23 – volume: 131 start-page: 128 year: 2020 end-page: 134 ident: CR7 article-title: Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.12.013 – ident: CR3 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR11 – volume: 40 start-page: 646 issue: 2 year: 2013 end-page: 655 ident: CR20 article-title: Fusion of feature sets and classifiers for facial expression recognition publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.074 – ident: CR5 – ident: CR28 – ident: CR26 – volume: 131 start-page: 97 year: 2019 end-page: 102 ident: CR4 article-title: Automatic social signal analysis: facial expression recognition using difference convolution neural network [J] publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2019.04.017 – ident: 1895_CR23 doi: 10.1109/CVPR.2018.00231 – volume: 28 start-page: 2439 issue: 5 year: 2019 ident: 1895_CR14 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2886767 – start-page: 958 volume-title: Best practices for convolutional neural networks applied to visual document analysis year: 2003 ident: 1895_CR27 – ident: 1895_CR26 – ident: 1895_CR31 doi: 10.1109/CVPR.2017.243 – volume: 131 start-page: 97 year: 2019 ident: 1895_CR4 publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2019.04.017 – volume: 131 start-page: 128 year: 2020 ident: 1895_CR7 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2019.12.013 – ident: 1895_CR28 – volume: 11 start-page: 587 year: 2019 ident: 1895_CR24 publication-title: Cogn Comput doi: 10.1007/s12559-019-09654-y – ident: 1895_CR13 – volume: 49 start-page: 2659 year: 2019 ident: 1895_CR15 publication-title: Appl Intell doi: 10.1007/s10489-018-1388-7 – ident: 1895_CR17 – volume: 48 start-page: 3407 issue: 11 year: 2015 ident: 1895_CR18 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2015.04.025 – volume: 40 start-page: 646 issue: 2 year: 2013 ident: 1895_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2012.07.074 – volume: 45 start-page: 80 issue: 1 year: 2012 ident: 1895_CR21 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2011.05.006 – ident: 1895_CR5 – ident: 1895_CR3 doi: 10.1109/CVPRW.2010.5543262 – ident: 1895_CR22 doi: 10.1109/FG.2015.7163082 – volume: 126 start-page: 550 year: 2018 ident: 1895_CR25 publication-title: Int J Comput Vis doi: 10.1007/s11263-017-1055-1 – ident: 1895_CR30 doi: 10.1109/CVPR.2016.90 – volume: 47 start-page: 126 issue: 2 year: 1978 ident: 1895_CR1 publication-title: rivista di psichiatria – ident: 1895_CR29 – ident: 1895_CR2 doi: 10.1109/WACV.2016.7477450 – ident: 1895_CR10 doi: 10.1109/ChiCC.2016.7553957 – volume: 48 start-page: 2912 year: 2018 ident: 1895_CR12 publication-title: Appl Intell doi: 10.1007/s10489-017-1121-y – ident: 1895_CR11 doi: 10.1145/3175603.3175615 – volume: 22 start-page: 1740 issue: 5 year: 2013 ident: 1895_CR19 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2235848 – volume: 49 start-page: 4319 year: 2019 ident: 1895_CR8 publication-title: Appl Intell doi: 10.1007/s10489-019-01491-8 – start-page: 211 volume-title: A Deep Structure for Facial Expression Recognition under Partial Occlusion year: 2014 ident: 1895_CR9 – ident: 1895_CR16 doi: 10.1109/CVPR.2015.7298965 – volume: 28 start-page: 784 issue: 04 year: 2017 ident: 1895_CR6 publication-title: J Syst Eng Electron doi: 10.21629/JSEE.2017.04.18 |
| SSID | ssj0003301 |
| Score | 2.3555844 |
| Snippet | As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2269 |
| SubjectTerms | Artificial Intelligence Artificial neural networks Computer Science Computer vision Machine learning Machines Manufacturing Mechanical Engineering Neural networks Occlusion Pattern recognition Processes Robustness |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46evDiuOK4kYM3DXZvehIRB0-DuMDcSpImIAzpLJ1hfr4vadqi4Fy8Nt3ge3lL8r18CN2kzFMhSyIiIJsnkentoVxFhIaU-wEMFElhxSbS0YiOx9mrW3BbOFpl4xOtoy5KYdbI7yFUg-OE4iJ-mM6IUY0yu6tOQmMb7ZhTEnxL3XtvPTHU6lYxD2oMkiTZ2DXNuNa5yJCFAkPLollM1j8DU5dt_togtXFn2P_vHx-gfZdx4sfaRA7RltRHqN-oOWA3uY_R7K3ky0VlXB8WrTohdkQuDIkiFgxq6onEuuaOY6aL-nqpV86E4UvNKKTDWDGzJI_l2vFtNW4ZS6U-QZ_D54-nF-IEGYiAmVpB0coEBLeIFcpnoSchFWS-yHiaBZxL5oWxiONAqaAoAG9FM7ONKHnqxVSJGIziFPV0qeUZwhHPfCpTZXq3I8FimnipAOfih5QynsoB8hs0cuFOKzeiGZO8O2fZIJgDgrlFMF8P0G37zLQ-q2Pj3ZcNbLmbt4u8w2yA7hrgu-G_33a--W0XaC8wZBhL-blEvWq-lFdoV6yqr8X82lrtNzE49Qw priority: 102 providerName: ProQuest |
| Title | Robustness comparison between the capsule network and the convolutional network for facial expression recognition |
| URI | https://link.springer.com/article/10.1007/s10489-020-01895-x https://www.proquest.com/docview/2509909175 |
| Volume | 51 |
| WOSCitedRecordID | wos000584393800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58Hby4PnF1XXLwpoW-0qRHXVYEcVnW1-qlJGkCgnTVfeDPd9JNd1VU0EugTZqWzCTzTfNNBuCQCd9EIok9hWjei21sD5cm9njEZRBiRZ7kZbIJ1unwfj_tuqCwYcV2r7Yky5X6Q7BbbOk9oSVS8ZR6iByX0dxxm7Chd3U7W3_RQy_z5KFn4SVJ2nehMt_38dkczTHml23R0tqc1f73neuw5tAlOZmqwwYs6GITalXmBuIm8ha89AZyPBzZZY6oWSZC4khbBEEhUQL95ydNiilPnIgin94fFBOnrvimqhahLzHC_n4n-s1xawsyYycNim24OWtft849l3zBUzgrR-igCoWGLBa5CUTka4R9IlCpZGkopRZ-RBWloTFhnqNsDU_tlqGWzKfcKIoKsANLxaDQu0BimQZcM2PjtGMlKE98pnAhCSLOhWS6DkElg0y5k8ltgoynbH6msh3TDMc0K8c0e6vD0eyZ5-m5HL-2blSizdwcHWYI_tAUo7tK63BciXJe_XNve39rvg-roSXClHSfBiyNXsf6AFbUZPQ4fG3CIru7b8LyabvT7eHVBfOwvPRbtmRXWHbpQ7PU8HeQwPIf |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQCoXaKGoy6P1AU7Uat52DgghHgItrBCi0t6C7dhSJZQsZBeWP8VvZJw4uwIJbhy4xokTJ998nom_8QBsMeGZUCQRVejN08jm9nBpIspDLv0AG_Ikr4tNsF6P9_vpxQw8tbkwVlbZcmJN1Hmp7D_yvzhVI3FicBHvDW6prRplV1fbEhoNLLr68QFDtmr39BC_73YQHB9dHZxQV1WAKoTbECMvoZChI5EbX4SeRn9G-CqVLA2k1MILYxXHgTFBnuNDG57atTAtmRdzo2IcGfb7BeaikDNrV11GJ8wfhnW5ZQ9jGpokad8l6bhUvciKkwIrA-NpTMcvJ8Kpd_tqQbae546XPtsb-gaLzqMm-40JfIcZXSzDUlutgjjyWoHby1KOqqGldqIm1ReJE6oRdISJEoNqdKNJ0WjjiSjy5nhZ3DsTxTu1rejuEyPskgPRY6cnLshEkVUWP-Dfhwx8FWaLstA_gUQy9blmxuamR0rEPPGYQvL0Q86FZLoDfvv1M-V2Y7dFQW6y6T7SFjEZIiarEZONO7AzuWbQ7EXy7tkbLUwyx0tVNsVIB_60QJs2v93b2vu9_YavJ1fnZ9nZaa-7DguBFf7U8qYNmB3ejfQmzKv74f_q7ldtMQSuPxqAz-NEUyY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD4ChhAvXLahlXHxw_bEInJz4jwghICKqqiqpk2qeMlsx5YmVUnbtFD-Gr9ux4nTCiR442GvdePIyedzyfmOP4BvMXd1wKPQkRjNO6Hp7WFChw4LmPB8HMiirBKbiHs9Nhgk_RV4anphDK2ysYmVoc4Kab6Rn6KrRsOJyQU91ZYW0b9qn4_GjlGQMpXWRk6jhkhXPT5g-laeda7wXX_3_fb1r8sbxyoMOBKhN8UsjEu01iHPtMcDV2Fswz2ZiDjxhVDcDaik1NfazzJcgGaJqYspEbuUaUlxlTjvKnyIMcc0dMI-vVt4gSCopJddzG-cKEoGtmHHtu2FhqjkG0oYS6gzf-4Ul5Hui-Js5fPa2__z09qBLRtpk4t6a-zCiso_wnajYkGsUfsE45-FmJVTY_KJXKgyEktgIxggE8lH5WyoSF5z5gnPs_r3Ir-3Wxfv1IxiGkA0N6UIouaWZ5yTBVOryD_D73dZ-B6s5UWuvgAJReIxFWvTsx5KTlnkxhKNqhcwxkWsWuA1SEilPaXdiIUM0-X50gY9KaInrdCTzltwsrhmVJ9R8ua_DxrIpNZelekSLy340YBuOfz6bPtvz3YMG4i79LbT636FTd_wgSrW0wGsTSczdQjr8n76t5wcVZuHwJ_3xt8_qN5cSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+comparison+between+the+capsule+network+and+the+convolutional+network+for+facial+expression+recognition&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Li%2C+Donghui&rft.au=Zhao%2C+Xingcong&rft.au=Yuan%2C+Guangjie&rft.au=Liu%2C+Ying&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=4&rft.spage=2269&rft.epage=2278&rft_id=info:doi/10.1007%2Fs10489-020-01895-x&rft.externalDocID=10_1007_s10489_020_01895_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |