Robustness comparison between the capsule network and the convolutional network for facial expression recognition

As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expres...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 4; pp. 2269 - 2278
Main Authors: Li, Donghui, Zhao, Xingcong, Yuan, Guangjie, Liu, Ying, Liu, Guangyuan
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2021
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expression recognition has also made considerable progress. Because facial expressions vary in real environments, such as rotation, shifting, brightness changes, partial occlusion and noise with different intensities, research on the robustness of facial expression recognition is very important. A capsule network consists of capsules, which are groups of neurons, and these capsules can learn posture information through the dynamic routing mechanism. The length of a capsule represents the existence probability, and each neuron in a capsule represents posture information (e.g., position, size, orientation or a combination of these properties). Therefore, in this study, the robustness of the emerging capsule network (CapsNet) is comprehensively compares with that of the traditional convolutional neural network (CNN) and fully convolutional network (FCN) in facial expression recognition tasks. The simulation results based on the Cohn-Kanade (CK+) databases show that the capsule network is more robust than the other networks. Therefore, the capsule network has significant advantages over the other networks in facial expression recognition task in complex real-world environments.
AbstractList As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition, artificial intelligence and other fields. With the development of deep learning and convolutional neural networks, research on facial expression recognition has also made considerable progress. Because facial expressions vary in real environments, such as rotation, shifting, brightness changes, partial occlusion and noise with different intensities, research on the robustness of facial expression recognition is very important. A capsule network consists of capsules, which are groups of neurons, and these capsules can learn posture information through the dynamic routing mechanism. The length of a capsule represents the existence probability, and each neuron in a capsule represents posture information (e.g., position, size, orientation or a combination of these properties). Therefore, in this study, the robustness of the emerging capsule network (CapsNet) is comprehensively compares with that of the traditional convolutional neural network (CNN) and fully convolutional network (FCN) in facial expression recognition tasks. The simulation results based on the Cohn-Kanade (CK+) databases show that the capsule network is more robust than the other networks. Therefore, the capsule network has significant advantages over the other networks in facial expression recognition task in complex real-world environments.
Author Yuan, Guangjie
Zhao, Xingcong
Liu, Ying
Li, Donghui
Liu, Guangyuan
Author_xml – sequence: 1
  givenname: Donghui
  surname: Li
  fullname: Li, Donghui
  organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University
– sequence: 2
  givenname: Xingcong
  surname: Zhao
  fullname: Zhao, Xingcong
  organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University
– sequence: 3
  givenname: Guangjie
  surname: Yuan
  fullname: Yuan, Guangjie
  organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: School of Mathematics and Statistics, Southwest University
– sequence: 5
  givenname: Guangyuan
  surname: Liu
  fullname: Liu, Guangyuan
  email: liugy@swu.edu.cn
  organization: College of Electronic and Information Engineering, Southwest University, Institute of Affective Computing and Information Processing, Southwest University, Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Southwest University
BookMark eNp9kF9LwzAUxYNMcE6_gE8Bn6s3adM2jzL8BwNBFHwLaZrMzi7pklbntzezouDDni6ce36HwzlGE-usRuiMwAUBKC4DgazkCVBIgJScJdsDNCWsSJMi48UETYHTLMlz_nKEjkNYAUCaApmizaOrhtBbHQJWbt1J3wRncaX7D60t7l81VrILQ6uxjZrzb1jaetSdfXft0DfOyvb3a5zHRqomSnrb-Zgb_9hr5Za22XlP0KGRbdCnP3eGnm-un-Z3yeLh9n5-tUhUSnifMCpVXpSZrA2RKWiW55IoXhWcVpWWkDLFGDWG1nVlMlNyYJTrqgBWGsXApDN0PuZ23m0GHXqxcoOPVYOgDDgHTgoWXeXoUt6F4LURqunlrmfvZdMKAmI3sBgHFnFg8T2w2EaU_kM736yl_9wPpSMUotkutf9rtYf6Au-DlHw
CitedBy_id crossref_primary_10_1007_s11042_024_19012_2
crossref_primary_10_1016_j_asoc_2021_107930
crossref_primary_10_1117_1_JEI_32_2_023038
crossref_primary_10_1117_1_JMI_11_1_014003
crossref_primary_10_1007_s11063_023_11155_x
crossref_primary_10_1007_s10489_022_04041_x
crossref_primary_10_1109_ACCESS_2021_3108029
crossref_primary_10_1007_s11042_023_14753_y
crossref_primary_10_1038_s41598_024_68772_2
crossref_primary_10_1016_j_techfore_2021_121289
crossref_primary_10_1155_2021_9326695
crossref_primary_10_1007_s10489_022_04349_8
Cites_doi 10.1007/s10489-018-1388-7
10.1109/TIP.2012.2235848
10.1007/s11263-017-1055-1
10.1007/s10489-019-01491-8
10.21629/JSEE.2017.04.18
10.1007/s10489-017-1121-y
10.1016/j.patcog.2015.04.025
10.1007/s12559-019-09654-y
10.1016/j.patcog.2011.05.006
10.1109/TIP.2018.2886767
10.1016/j.patrec.2019.12.013
10.1016/j.eswa.2012.07.074
10.1016/j.jpdc.2019.04.017
10.1109/CVPR.2018.00231
10.1109/CVPR.2017.243
10.1109/CVPRW.2010.5543262
10.1109/FG.2015.7163082
10.1109/CVPR.2016.90
10.1109/WACV.2016.7477450
10.1109/ChiCC.2016.7553957
10.1145/3175603.3175615
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01895-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 2278
ExternalDocumentID 10_1007_s10489_020_01895_x
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 61472330 and No. 61872301
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-52ac6784adf1a30e566a1c9b792bbea035c552ff2ddbf4f890529eb7058fc50f3
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000584393800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:50:39 EST 2025
Sat Nov 29 05:33:21 EST 2025
Tue Nov 18 22:15:22 EST 2025
Fri Feb 21 02:48:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Facial expression recognition
Robustness
Capsule network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-52ac6784adf1a30e566a1c9b792bbea035c552ff2ddbf4f890529eb7058fc50f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2509909175
PQPubID 326365
PageCount 10
ParticipantIDs proquest_journals_2509909175
crossref_citationtrail_10_1007_s10489_020_01895_x
crossref_primary_10_1007_s10489_020_01895_x
springer_journals_10_1007_s10489_020_01895_x
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chang, Li, Wen, Hu, Ma (CR8) 2019; 49
Sun, Lv (CR24) 2019; 11
Fan, Tjahjadi (CR18) 2015; 48
Ramirez Rivera, Rojas Castillo, Oksam Chae (CR19) 2013; 22
CR17
Simard, Steinkraus, Platt (CR27) 2003
CR16
CR13
CR11
Zhang, Wang, Chen, Kämäräinen (CR6) 2017; 28
CR10
Gu, Xiang, Venkatesh, Huang, Lin (CR21) 2012; 45
CR31
CR30
Zhang, Luo, Chen, Tang (CR25) 2018; 126
Wang, Zhang, Wang (CR15) 2019; 49
CR2
CR3
CR5
CR29
CR28
Chen, Lv, Xu, Can (CR4) 2019; 131
CR26
Zavaschi, Britto, Oliveira, Koerich (CR20) 2013; 40
CR23
CR22
Ekman, Friesen (CR1) 1978; 47
Siddiqi (CR12) 2018; 48
Zhang, Huang, Tian (CR7) 2020; 131
Li, Zeng, Shan, Chen (CR14) 2019; 28
Cheng, Jiang, Jia (CR9) 2014
1895_CR22
Y Cheng (1895_CR9) 2014
H Zhang (1895_CR7) 2020; 131
1895_CR23
THH Zavaschi (1895_CR20) 2013; 40
1895_CR26
Z Zhang (1895_CR25) 2018; 126
PY Simard (1895_CR27) 2003
MH Siddiqi (1895_CR12) 2018; 48
W Gu (1895_CR21) 2012; 45
J Chen (1895_CR4) 2019; 131
1895_CR28
P Ekman (1895_CR1) 1978; 47
1895_CR29
X Sun (1895_CR24) 2019; 11
Z Wang (1895_CR15) 2019; 49
T Chang (1895_CR8) 2019; 49
1895_CR31
1895_CR30
1895_CR11
1895_CR10
1895_CR13
A Ramirez Rivera (1895_CR19) 2013; 22
Y Li (1895_CR14) 2019; 28
X Fan (1895_CR18) 2015; 48
1895_CR2
1895_CR17
1895_CR3
1895_CR16
1895_CR5
C Zhang (1895_CR6) 2017; 28
References_xml – volume: 49
  start-page: 2659
  year: 2019
  end-page: 2671
  ident: CR15
  article-title: Sparse modified marginal fisher analysis for facial expression recognition
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1388-7
– ident: CR22
– volume: 22
  start-page: 1740
  issue: 5
  year: 2013
  end-page: 1752
  ident: CR19
  article-title: Local directional number pattern for face analysis: face and expression recognition
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2235848
– volume: 126
  start-page: 550
  year: 2018
  end-page: 569
  ident: CR25
  article-title: From facial expression recognition to interpersonal relation prediction
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1055-1
– start-page: 958
  year: 2003
  end-page: 963
  ident: CR27
  publication-title: Best practices for convolutional neural networks applied to visual document analysis
– ident: CR2
– volume: 49
  start-page: 4319
  year: 2019
  end-page: 4334
  ident: CR8
  article-title: Facial expression recognition sensing the complexity of testing samples
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01491-8
– ident: CR16
– ident: CR30
– start-page: 211
  year: 2014
  end-page: 214
  ident: CR9
  publication-title: A Deep Structure for Facial Expression Recognition under Partial Occlusion
– ident: CR10
– volume: 28
  start-page: 784
  issue: 04
  year: 2017
  end-page: 792
  ident: CR6
  article-title: Identity-aware convolutional neural networks for facial expression recognition
  publication-title: J Syst Eng Electron
  doi: 10.21629/JSEE.2017.04.18
– volume: 47
  start-page: 126
  issue: 2
  year: 1978
  end-page: 138
  ident: CR1
  article-title: Facial Action Coding System (FACS): A technique for the measurement of facial action [J]
  publication-title: rivista di psichiatria
– volume: 48
  start-page: 2912
  year: 2018
  end-page: 2929
  ident: CR12
  article-title: Accurate and robust facial expression recognition system using real-time YouTube-based datasets
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1121-y
– volume: 48
  start-page: 3407
  issue: 11
  year: 2015
  end-page: 3416
  ident: CR18
  article-title: A spatial-temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.04.025
– volume: 11
  start-page: 587
  year: 2019
  end-page: 597
  ident: CR24
  article-title: Facial expression recognition based on a hybrid model combining deep and shallow features
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09654-y
– ident: CR29
– volume: 45
  start-page: 80
  issue: 1
  year: 2012
  end-page: 91
  ident: CR21
  article-title: Facial expression recognition using radial encoding of local Gabor features and classifier synthesis
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.05.006
– volume: 28
  start-page: 2439
  issue: 5
  year: 2019
  end-page: 2450
  ident: CR14
  article-title: Occlusion aware facial expression recognition using CNN with attention mechanism
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2886767
– ident: CR23
– volume: 131
  start-page: 128
  year: 2020
  end-page: 134
  ident: CR7
  article-title: Facial expression recognition based on deep convolution long short-term memory networks of double-channel weighted mixture
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.12.013
– ident: CR3
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 40
  start-page: 646
  issue: 2
  year: 2013
  end-page: 655
  ident: CR20
  article-title: Fusion of feature sets and classifiers for facial expression recognition
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.074
– ident: CR5
– ident: CR28
– ident: CR26
– volume: 131
  start-page: 97
  year: 2019
  end-page: 102
  ident: CR4
  article-title: Automatic social signal analysis: facial expression recognition using difference convolution neural network [J]
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2019.04.017
– ident: 1895_CR23
  doi: 10.1109/CVPR.2018.00231
– volume: 28
  start-page: 2439
  issue: 5
  year: 2019
  ident: 1895_CR14
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2886767
– start-page: 958
  volume-title: Best practices for convolutional neural networks applied to visual document analysis
  year: 2003
  ident: 1895_CR27
– ident: 1895_CR26
– ident: 1895_CR31
  doi: 10.1109/CVPR.2017.243
– volume: 131
  start-page: 97
  year: 2019
  ident: 1895_CR4
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2019.04.017
– volume: 131
  start-page: 128
  year: 2020
  ident: 1895_CR7
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.12.013
– ident: 1895_CR28
– volume: 11
  start-page: 587
  year: 2019
  ident: 1895_CR24
  publication-title: Cogn Comput
  doi: 10.1007/s12559-019-09654-y
– ident: 1895_CR13
– volume: 49
  start-page: 2659
  year: 2019
  ident: 1895_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1388-7
– ident: 1895_CR17
– volume: 48
  start-page: 3407
  issue: 11
  year: 2015
  ident: 1895_CR18
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2015.04.025
– volume: 40
  start-page: 646
  issue: 2
  year: 2013
  ident: 1895_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.07.074
– volume: 45
  start-page: 80
  issue: 1
  year: 2012
  ident: 1895_CR21
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.05.006
– ident: 1895_CR5
– ident: 1895_CR3
  doi: 10.1109/CVPRW.2010.5543262
– ident: 1895_CR22
  doi: 10.1109/FG.2015.7163082
– volume: 126
  start-page: 550
  year: 2018
  ident: 1895_CR25
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1055-1
– ident: 1895_CR30
  doi: 10.1109/CVPR.2016.90
– volume: 47
  start-page: 126
  issue: 2
  year: 1978
  ident: 1895_CR1
  publication-title: rivista di psichiatria
– ident: 1895_CR29
– ident: 1895_CR2
  doi: 10.1109/WACV.2016.7477450
– ident: 1895_CR10
  doi: 10.1109/ChiCC.2016.7553957
– volume: 48
  start-page: 2912
  year: 2018
  ident: 1895_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1121-y
– ident: 1895_CR11
  doi: 10.1145/3175603.3175615
– volume: 22
  start-page: 1740
  issue: 5
  year: 2013
  ident: 1895_CR19
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2235848
– volume: 49
  start-page: 4319
  year: 2019
  ident: 1895_CR8
  publication-title: Appl Intell
  doi: 10.1007/s10489-019-01491-8
– start-page: 211
  volume-title: A Deep Structure for Facial Expression Recognition under Partial Occlusion
  year: 2014
  ident: 1895_CR9
– ident: 1895_CR16
  doi: 10.1109/CVPR.2015.7298965
– volume: 28
  start-page: 784
  issue: 04
  year: 2017
  ident: 1895_CR6
  publication-title: J Syst Eng Electron
  doi: 10.21629/JSEE.2017.04.18
SSID ssj0003301
Score 2.3555844
Snippet As an important part of human-computer interactions, facial expression recognition has become a popular research topic in computer vision, pattern recognition,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2269
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer Science
Computer vision
Machine learning
Machines
Manufacturing
Mechanical Engineering
Neural networks
Occlusion
Pattern recognition
Processes
Robustness
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwGA06evDiuOK4kYM3DXZJ2uYkIg6eBnGBuZU0TUAY0lk6w_x8v7Rpi4Jz8dJD06aFl3xL8vI9hG50SDUXmhNP-xGhXGckERElYWDDC_B5Is4qsYl4NErGY_7qFtwWjlbZ2MTKUOeFtGvk9-CqwXBCcsEepjNiVaPs7qqT0NhGO7ZKgl9R995bSwy5eqWYBzkGiSI-dodm3NE5aslCgaVlJZyR9U_H1EWbvzZIK78z7P_3jw_Qvos48WM9RA7RljJHqN-oOWA3uY_R7K3IlovSmj4sW3VC7IhcGAJFLAXk1BOFTc0dx8Lk9f3CrNwQhi81rRAOYy3skjxWa8e3NbhlLBXmBH0Onz-eXogTZCASZmoJSauQ4NyoyLUvQk9BKCh8ybOYB1mmhBcyyVigdZDnmaY64XYbUWWxxxItmafDU9QzhVFnCIe5H-Uygugl4ZRxKkJI1XjuJVLDhfIB8hs0UumqlVvRjEna1Vm2CKaAYFohmK4H6LZ9Z1rX6tj49GUDW-rm7SLtMBuguwb4rvnv3s4393aB9gJLhqkoP5eoV86X6grtylX5tZhfV6P2Gwbs9OQ
  priority: 102
  providerName: ProQuest
Title Robustness comparison between the capsule network and the convolutional network for facial expression recognition
URI https://link.springer.com/article/10.1007/s10489-020-01895-x
https://www.proquest.com/docview/2509909175
Volume 51
WOSCitedRecordID wos000584393800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54e_DFuzidIw--aaCXpG0eVSaCOMa8TV9KmjYgjFa3Kv58T7q0U1FBXw60SdOS2_lO8yUfwIH2mRZSC-poN6BM6IRGMmDU9wy8QJ8nw6QSmwh7vWg4FH27KWxSs93rJclqpv6w2Y0Zeo9niFSR4BSR4yK6u8gINgyubpv5FyP0SicPIwsaBGJot8p8X8ZndzTDmF-WRStvc7b6v-9cgxWLLsnxtDusw1yWb8BqrdxA7EDehOdBkbxMSjPNEdUoERJL2iIIComSGD-PMpJPeeJE5un0fpG_2u6Kb6pTEfoSLc3vd5K9WW5tThp2UpFvwc1Z9_r0nFrxBapwVJYYoEqFjozJVLvSdzKEfdJVIgmFlySZdHyuOPe09tI00UxHwiwZZkno8Egr7mh_GxbyIs92gPipG6QqQKQSCcYFkz6GZSJ1IqXRMNECt26DWNmTyY1Axiienals6jTGOo2rOo3fWnDYPPM0PZfj19ztumljO0YnMYI_dMUYrvIWHNVNOUv-ubTdv2Xfg2XPEGEquk8bFsrxS7YPS-q1fJyMOzAf3t13YPGk2-sP8OoipGgvnVNjwyu0ff7QqXr4O15o8fc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC2xjAQXYBZEs40PcBqsSWJn8QEhxCJQQwuNQOpbxnFsCQklDemG5qf4RsqJ060ZCW4cuOQQJ44Sv3quSj27AHYM40ZII6hn_IhyYTKayIhTFlj3Auc8GWd1sYm410v6fXE1Ay_tWhgrq2w5sSbqvFT2H_lvnKqRODG4CA8G99RWjbLZ1baERgOLrn5-wpCt2j8_xvHdDYLTk-ujM-qqClCFcBti5CUVMjSXufEl8zT6M9JXIotFkGVaeixUYRgYE-R5ZrhJhM2F6Sz2wsSo0DMM-52Fec6S2NpVN6YT5mesLrfsYUxDo0j03SIdt1SPW3FSYGVgiQjp-N-JcOrd_peQree50-XP9oVWYMl51OSwMYGvMKOLb7DcVqsgjry-w_2fMhtVQ0vtRE2qLxInVCPoCBMlB9XoTpOi0cYTWeTN-bJ4dCaKT2pb0d0nRtqUA9FjpycuyESRVRY_4OZDXnwV5oqy0GtAWO5HuYrQO0sEDwWXDENRkXuJMnjgogN-O_qpcrux26Igd-l0H2mLmBQRk9aISccd-DW5Z9DsRfLu1ZstTFLHS1U6xUgH9lqgTZvf7m39_d5-wsLZ9eVFenHe627AYmCFP7W8aRPmhg8jvQVf1OPwtnrYri2GwN-PBuAro0BS_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2iFFVseLRFHQrUi3bVWiSxncQLhBAwKgKNRlUrjbpJHceWKqFkIDMw_Bpf1-vEmRFIsGPRTRZx4ijJ8X34HvsAfLaMW6mspIENY8qlzWmqYk5Z5MIL9HkqyRuxiWQwSEcjOVyC-24tjKNVdjaxMdRFpd0c-T66ajScmFyIfetpEcOT_uH4ijoFKVdp7eQ0Woicm7tbTN_qg7MT_Ndfoqh_-vP4O_UKA1Qj9CaYhSmN1pqrwoaKBQZjGxVqmScyynOjAia0EJG1UVHklttUurqYyZNApFaLwDLs9xW8TjDHdHTCofg99wKMNdLLAeY3NI7lyC_Y8cv2uCMqRY4SlkpBZw-d4iLSfVScbXxef_1__lobsOYjbXLUDo1NWDLlW1jvVCyIN2rv4OpHlU_riTP5RM9VGYknsBEMkIlW43p6aUjZcuaJKov2fFXe-KGLT-paMQ0gVrlSBDEzzzMuyZypVZXv4deLvPgWLJdVaT4AYUUYFzrGqC2VXEiuGKaosghSbfHAZQ_CDgmZ9ru0O7GQy2yxv7RDT4boyRr0ZLMefJ3fM273KHn26p0OMpm3V3W2wEsPvnWgWzQ_3dv28719gjeIu-zibHD-EVYjxwdqWE87sDy5nppdWNE3k7_19V4zeAj8eWn8_QNoilwi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+comparison+between+the+capsule+network+and+the+convolutional+network+for+facial+expression+recognition&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Li%2C+Donghui&rft.au=Zhao%2C+Xingcong&rft.au=Yuan%2C+Guangjie&rft.au=Liu%2C+Ying&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=4&rft.spage=2269&rft.epage=2278&rft_id=info:doi/10.1007%2Fs10489-020-01895-x&rft.externalDocID=10_1007_s10489_020_01895_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon